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Abstract
Using Cohen’s classification of symplectic reflection groups, we prove that the parabolic subgroups, that is, sta-
bilizer subgroups, of a finite symplectic reflection group, are themselves symplectic reflection groups. This is the
symplectic analog of Steinberg’s Theorem for complex reflection groups.
Using computational results required in the proof, we show the non-existence of symplectic resolutions for sym-
plectic quotient singularities corresponding to three exceptional symplectic reflection groups, thus reducing further
the number of cases for which the existence question remains open.
Another immediate consequence of our result is that the singular locus of the symplectic quotient singularity
associated to a symplectic reflection group is pure of codimension two.

1. Introduction

The study of finite symplectic reflection groups over the complex numbers begun with Cohen’s clas-
sification [9]. More recently, these groups have been studied extensively in the context of symplectic
quotient singularities because Verbitsky’s Theorem [28, Theorem 1.1] says that if the quotient V/G, for
G ⊂ Sp(V), admits a symplectic resolution then necessarily G is a symplectic reflection group. See, for
example, the introduction of [7] for a more detailed overview.

The name ‘symplectic reflection group’ invites one to compare them to complex reflection groups.
A fundamental result for the latter is Steinberg’s Theorem [26, Theorem 1.5] which says that the
parabolic subgroups of complex reflection groups are generated by the complex reflections they con-
tain. Thus, it is natural to ask if the parabolic subgroups of symplectic reflection groups are themselves
generated by symplectic reflections.

This question was posed in [9, Remark (iv)] and again in [6, Question 9.1]. In this paper, we answer
the question in the affirmative.

Theorem 1.1. Let (G, V) be a symplectic reflection group and choose v ∈ V . Then the stabilizer Gv of v
in G is also a symplectic reflection group.

Specifically, the theorem says that the stabilizer of v is generated by those symplectic reflections in
G that fix v. It would be interesting to see what other properties of complex reflection groups can be
generalized to symplectic reflection groups.

The stabilizer Gv of a vector v is usually called a parabolic subgroup of G. Therefore, Theorem 1.1
says that ‘every parabolic subgroup of a symplectic reflection group is a symplectic reflection group’.

The proof of Theorem 1.1 given in Section 3 is a case-by-case analysis using the classification of
irreducible symplectic reflection groups; see Propositions 3.3, 3.4, and Lemma 3.5. The proof of Lemma
3.5 relies on the computation of all maximal parabolic subgroups of seven remaining groups using a
computer algebra program; see Section 7.

C© The Author(s), 2023. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust.

https://doi.org/10.1017/S0017089522000416 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000416
https://orcid.org/0000-0001-9868-2350
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0017089522000416&domain=pdf
https://doi.org/10.1017/S0017089522000416


402 Gwyn Bellamy et al.

Remark 1.2. By an easy induction (see Corollary 3.6), one can show that any subgroup of G that fixes
a subset U ⊂ V pointwise is also a symplectic reflection group.

Remark 1.3. As noted in [6, Remark 9.2], it would be interesting to have a conceptual proof of
Theorem 1.1 that does not rely on the classification of symplectic reflection groups. Such a proof would
provide a deeper insight into the nature of symplectic reflection groups. The proofs of Steinberg’s
Theorem for complex reflection groups given in [19, 26], and [4, Chapter V, Exercise 8] all make
use of alternative (but equivalent) characterizations of these groups. We are not aware of any similar
characterization of symplectic reflection groups that would help here.

An immediate consequence of the main result is the following; see Corollary 4.3.

Theorem 1.4. If G is a symplectic reflection group then the singular locus of the quotient V/G is of
pure codimension two.

In Section 6, we return to the motivating geometric question regarding the existence of symplectic
resolutions. Exploiting the computational results necessary for the proof of Lemma 3.5, we are able to
show that:

Theorem 1.5. The symplectic quotients C6/W(R), C8/W(S1), and C
10/W(U) do not admit (projective)

symplectic resolutions.

See Theorem 6.1 for the proof. This leaves 45 cases in which the existence of a symplectic
(equivalently crepant) resolution is not yet known. All remaining cases have rank 4.

A sympletic reflection can be viewed as a particular type of bireflection. It is well-known that the
latter appear in the context of complete intersections. More specifically, given a vector space V and
finite group G ⊂ GL(V), one can ask if V/G is a complete intersection; if this is the case we say that G
is a CI-group.

Before a complete (but highly nontrivial) classification of CI-groups was given by Gordeev [15] and
Nakajima [22–24], a concise necessary condition on G for it to be a CI-group was given by Kac and
Watanabe. They showed in [18, Theorem C] that if G is a CI-group then necessarily every parabolic
subgroup of G is generated by either pseudo-reflections or bireflections. If we assume V symplectic and
G ⊂ Sp(V) then this condition simply says that every parabolic subgroup of G must be a symplectic
reflection group. In light of our main result, this simplifies the statement that if G is a CI-group then G
must be a symplectic reflection group.

One might then expect that symplectic reflection groups give rise to a large number of CI-groups.
Indeed, in dimension 2, the resulting Kleinian singularities are all hypersurface, and hence every finite
subgroup of SL2(C) is a CI-group. However, we show in Proposition 5.1 that if dim V > 4 and G ⊂ Sp(V)
is symplectically irreducible (not a proper product of symplectic reflection groups) then G is not a CI-
group. Thus, symplectic reflection groups do not appear to give any new examples of CI-groups in
dimensions larger than 4. It would be interesting to see if there are any symplectic reflection groups in
dimension 4 that are CI-groups.

2. Preliminaries

Throughout this paper, V is a finite-dimensional complex vector space equipped with a symplectic form
ω : V × V →C. In particular, V is even dimensional. Let

Sp(V) := {g ∈ GL(V) | ω(g.v, g.w) = ω(v, w) for all v, w ∈ V}
be the group of symplectic automorphisms of V .
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Let G ≤ Sp(V) be a (finite) symplectic reflection group. This means that G is generated by symplectic
reflections; these are the elements g ∈ G with rk(g − 1) = 2.

Lemma 2.1. Let v ∈ V and H = StabG(v). Let VH ⊂ V be the subspace of points fixed by H and W ⊂ V
the (unique) H-invariant complement to VH in V .

Then VH , W are symplectic subspaces and W is the symplectic orthogonal complement (VH)⊥ to VH .

Proof. For VH to be symplectic, we need to show that ω restricts to a nondegenerate form on VH . Let
u ∈ VH . As ω is nondegenerate on V , there exists w ∈ V with ω(u, w) �= 0. Then 1

|H|
∑

g∈H gw ∈ VH and

ω

(
u,

1

|H|
∑
g∈H

gw

)
= 1

|H|
∑
g∈Gv

ω(gu, gw) = ω(u, w) �= 0 ,

as required.
We now show that the H-invariant complement W of VH is contained in (VH)⊥. Let w ∈ W. Then

w′ := 1
|H|
∑

g∈H gw ∈ W by H-invariance of W, but also w′ ∈ VH as w′ is fixed by H. Hence, we must have
w′ = 0 and so

ω(u, w) = 1

|H|
∑
g∈H

ω(gu, gw) = ω(u, w′) = 0

for all u ∈ VH as required.
Thus, W ⊂ (VH)⊥ and equality follows directly for dimension reasons. In particular, W is a symplectic

subspace.

Lemma 2.2. Theorem 1.1 holds trivially for triples (V , ω, G) with dim V ≤ 4.

Proof. Let v, H = Gv, and W be as in Lemma 2.1. Since W is symplectic, H is a subgroup of Sp(W).
We must have dim W < dim V and dim W is even.

If dim V = 2 then there are no nontrivial symplectic subspaces of V and Theorem 1.1 is vacu-
ous. When dim V = 4, every proper symplectic subspace has dimension 2 and all finite subgroups of
Sp2(C) = SL2(C) are symplectic reflection groups. Thus, Theorem 1.1 holds in this case.

3. Proof of the theorem

We prove Theorem 1.1 case-by-case using the explicit classification of symplectically irreducible
symplectic reflection groups in [9]. Cohen’s paper is actually concerned with irreducible quaternion
reflection groups, but one can see that these classes of groups are equivalent [9, p. 295].

We recall the basic definitions leading to the different cases which we consider.

Definition 3.1. Let V be a symplectic vector space and G ≤ Sp(V) a finite group.

(i) The group G is called complex (resp. symplectically) reducible if there exists a nontrivial
decomposition into complex (resp. symplectic) G-invariant subspaces V = V1 ⊕ V2. Otherwise,
we call G complex (resp. symplectically) irreducible.

(ii) The group G is called complex (resp. symplectically) imprimitive if there exists a nontrivial
decomposition V = V1 ⊕ · · · ⊕ Vn into complex (resp. symplectic) subspaces Vi ⊂ V such that
for any i ∈ {1, . . . , n} and any g ∈ G there exists j ∈ {1, . . . , n} with gVi = Vj. In this case, we call
the decomposition V = V1 ⊕ · · · ⊕ Vn a system of imprimitivity. Otherwise we call G complex
(resp. symplectically) primitive.
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Remark 3.2. Assume that (V , G) is a symplectic reflection group. If V = V1 ⊕ V2 is a decomposition
of V into a direct sum of G-modules, both of which are symplectic subspaces of V , then G = G1 × G2,
with each Gi ⊂ Sp(Vi) a symplectic reflection group. Then, the stabilizer Gv = Gv1 × Gv2 of a vector
v = v1 + v2 in V , with vi ∈ Vi, is a symplectic reflection group if and only if each Gvi is a symplectic
reflection group in Gi.

From now on, we assume that the action of G on V is symplectically irreducible.

3.1. Complex reducible groups

Symplectic irreducibility does not imply complex irreducibility since V might decompose into non-
symplectic G-submodules. However, this can only happen if G preserves a Lagrangian subspace h⊂ V .
In this case, G acts on h by complex reflections; see [6, Section 4.1].

Assume now that the action of G on V is induced by a complex reflection group W ≤ GL(h), where
V ∼= h⊕ h∗. For clarity, we will write H∨, if we mean the induced action of a subgroup H ≤ W on h⊕ h∗.

This particular case of Theorem 1.1 was already proved as part of [3, Proposition 7.7]. Since our
claim is weaker than the statement of loc. cit., a shorter argument suffices. We give it here for the sake
of completeness.

Proposition 3.3. Theorem 1.1 holds if (G, V) is a complex reducible symplectic reflection group.

Proof. Let G be defined by a complex reflection group W as above. Let v ∈ V , so there are v1 ∈ h and
v∗

2 ∈ h∗ with v = v1 + v∗
2 and we have

StabG(v) = StabW(v1)∨ ∩ StabW(v∗
2)∨ .

Since h∗ is the dual of the representation h, there exists v2 ∈ h with StabW(v2) = StabW(v∗
2).

By Steinberg’s Theorem [26, Theorem 1.5], the group StabW(v1) is generated by complex reflections.
We have

StabW(v1) ∩ StabW(v2) = StabStabW (v1)(v2) ,

and a second application of Steinberg’s Theorem implies that this intersection is generated by complex
reflections. Hence, StabG(v) is generated by symplectic reflections as claimed.

3.2. Symplectically imprimitive groups

We assume from now on that G is complex irreducible.
In this section, we assume, moreover, that G is symplectically imprimitive. Let V = V1 ⊕ · · · ⊕ Vn,

with n ≥ 2, be a system of imprimitivity. It is explained in the proof of [9, Theorem 2.9] that we have
dim Vi = 2 in this case. Note that Cohen works over the quaternions and shows that dim Vi = 1 as a
quaternionic vector space; this is the symplectic analogue of [8, Proposition 2.2].

By Lemma 2.2, we may assume dim V > 4. Then G is constructed as follows. Let K ≤ SL2(C)
be a finite group and let H ≤ K be a subgroup containing [K, K]. Let Gn(K, H) be the subgroup of
K � Sn consisting of all pairs (σ , k), where k = (k1, . . . , kn) ∈ Kn and σ ∈ Sn, satisfying k1 · · · kn ∈ H; see
[9, Notation 2.8]. Then [9, Theorem 2.9] says that G is conjugate to some Gn(K, H), where
dim V = 2n.

Notice that the transpositions in Sn act as symplectic reflections on V; they simply swap two
summands in the system of imprimitivity.
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Proposition 3.4. Theorem 1.1 holds if G is complex irreducible and symplectically imprimitive.

Proof. We may assume G = Gn(K, H) as described above.
Let v = (v1, . . . , vn) ∈ V = V1 ⊕ · · · ⊕ Vn. Now let σ ∈ Sn such that for the permutation v′ of v given

by v′
j := vσ (i) we have a ‘block structure’

(v′
1, . . . , v′

n0
, v′

n0+1, . . . , v′
n0+n1

, . . . , v′
n0+···+nr−1+1, . . . , v′

n0+···+nr
) ,

given by the condition that Kv′
i = Kv′

j if and only if there exists 0 ≤ s ≤ r with (
∑s−1

t=−1 nt) + 1 ≤ i, j ≤∑s
t=0 nt, where we set n−1 := 0. That is, we permute the entries of v so that elements in the same K-orbit

lie next to each other and the number of elements lying in the same orbit is given by the ni. Without
loss of generality, we may assume v′

1 = · · · = v′
n0

= 0. After fixing representatives w0, . . . , wr for the
occurring orbits, we can find an element k ∈ Kn such that

k.v′ = w = (w0, . . . , w0, w1, . . . , w1, . . . , wr, . . . , wr) ,

where (Kwi) ∩ (Kwj) = ∅ for i �= j and w0 = 0. Combining σ and k therefore gives an element g ∈ K � Sn

with g.v = w.
If an element τh ∈ Gn(K, H) stabilizes the vector w, then τ ∈ Sn0 × Sn1 × · · · × Snr . Furthermore, we

must have h = (h1, . . . , hn0 , 1, . . . , 1) where h1, . . . , hn0 ∈ K with h1 · · · hn0 ∈ H.
Hence, StabGn(K,H)(v) is (K � Sn)-conjugate to Gn0 (K, H) × Sn1 × · · · × Snr , which is a (in general,

reducible) symplectic reflection group. Notice that we may have ni = 1 for some of the blocks, resulting
in trivial factors in the above product. The claim now follows as symplectic reflections are preserved
under conjugation.

3.3. Symplectically primitive groups

The only remaining case is where G is complex irreducible and symplectically primitive. Then G is
conjugate to one of the groups classified in [9, Theorem 3.6] and [9, Theorem 4.2]. Once again, we may
assume dim V > 4 by Lemma 2.2. This leaves only seven groups to consider. These are given explicitly
via the root systems Q to U in [9, Table II] and one can check with the help of a computer that all
stabilizer subgroups are indeed generated by symplectic reflections. A list of the groups occurring in
this way can be found in Section 7.

Lemma 3.5. Theorem 1.1 holds if G is complex irreducible and symplectically primitive.

This finishes the proof of Theorem 1.1. Finally, we note how Theorem 1.1 implies the statement in
Remark 1.2. The proof is the same easy induction as in [26, Section 7] (see also [20, Corollary 9.51]);
we repeat it for the reader’s convenience.

Corollary 3.6. Let V be a finite-dimensional (complex) symplectic vector space and G ⊂ Sp(V) a finite
symplectic reflection group. Let U be a subset of V . Then the subgroup of G that fixes U pointwise is
also a symplectic reflection group.

Proof. As the action of G is linear, we may replace U be the linear span 〈U〉 and assume in the
following that U is a subspace of V .

Let u1, . . . , uk be a basis of U. Recalling that StabG(U) fixes U pointwise in this discussion, we have

StabG(U) = StabG(u1) ∩ StabG(〈u2, . . . , uk〉) .

Now

StabG(u1) ∩ StabG(〈u2, . . . , uk〉) = StabStabG(u1)(〈u2, . . . , uk〉)
and StabG(u1) is a symplectic reflection group by Theorem 1.1. Hence, the claim follows by induction
on k.
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4. Applications
4.1. Minimal and maximal parabolic subgroups

We note the following results on the rank of minimal and maximal parabolic subgroups where
minimality and maximality are to be understood with respect to inclusion.

Corollary 4.1. Let G ≤ Sp(V) be a finite symplectic reflection group and let {1} �= H ≤ G be a minimal
parabolic subgroup. Then we have dim VH = dim V − 2, that is, H is of rank 2.

Proof. By Corollary 3.6, the parabolic subgroup H must contain a symplectic reflection s. Set
K := StabG(Vs). Then

StabG(VH + VK) = StabH(VK) = H ∩ K ,

so H = K by minimality of H. Hence dim VH = dim Vs = dim V − 2.
The analogous result for maximal parabolic subgroups is easier and does not require Theorem 1.1.

Lemma 4.2. Let G ≤ Sp(V) be a finite symplectic reflection group with VG = {0} and let H ≤ G be a
maximal parabolic subgroup. Then dim VH = 2, that is, H is of rank dim V − 2.

Proof. Let S ⊂ G be the set of symplectic reflections. Since G = 〈S〉, there must exist some s ∈ S that
is not in H. Then dim Vs = dim V − 2 and we know

dim Vs + dim VH − dim Vs ∩ VH = dim V

as Vs + VH = V . So if dim VH > 2 then Vs ∩ VH �= {0}. If this is the case, then let K := StabG(Vs ∩ VH).
Since VK �= {0}, we have K �= G. But 〈s, H〉 ≤ K so H is a proper subgroup of K. This is a contradiction.
Thus, dim VH = 2.

4.2. Codimension of symplectic quotient singularities

As another application, we have the following result on the singular locus of the quotient V/G.

Corollary 4.3. (= Theorem 1.4) If G is a symplectic reflection group then the singular locus of V/G is
of pure codimension two.

Proof. Let Z ⊂ V/G be an irreducible component of the singular locus. Choose p ∈ Z generic and
q ∈ V a point mapping to p under the quotient map V → V/G. Let H be the stabilizer of q in G. Then
Luna’s slice theorem [21] says that the map V/H → V/G induced by the map V → V , v �→ v + q, is étale
at 0 ∈ V/H. In particular, the codimension at p of the singular locus in V/G equals the codimension at
0 of the singular locus in V/H.

Decompose V = W ⊕ VH as a H-module. The fact that p is generic in Z means that 0 is an isolated
singularity in W/H. But Theorem 1.1 says that H acts on W as a symplectic reflection group. This implies
that the singular locus of W/H has at least one irreducible component of codimension two (for instance,
along the points stabilized by a symplectic reflection). We deduce that dim W = 2 and the irreducible
component Z of the singular locus has codimension 2 in V/G.

5. Complete intersections

In this section, we consider whether V/G is a complete intersection.
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Proposition 5.1. Let G be a symplectically irreducible finite subgroup of Sp(V) with dim V > 4. Then
G is not a CI-group.

Proof. We begin by noting that [18, Theorem A] says that if G is a CI-group then G must be a
symplectic reflection group. Assuming this, we can make use of the classifications in [9, 15].

First, let G be complex reducible, so the action of G on the symplectic space V is induced from a
complex reflection group W acting on h with V = h⊕ h∗. If G is a CI-group, we must have [G, G] = {1}
by [15, Theorem 3]. In other words, G is abelian. But this can only happen if W = G(m, p, 1) in the
classification [25]. In particular, the group W is rank 1 and hence G is rank 2.

Next, assume that G is complex irreducible and symplectically imprimitive, with system of imprim-
itivity V = V1 ⊕ · · · ⊕ Vk. Recall that this implies dim Vi = 2 for all i, as shown in the proof of [9,
Theorem 2.9]. But then G cannot be a CI-group by [15, 5.2] which says that if G is a CI-group then
dim Vi = 1 for all i.

If G is symplectically primitive and has rank at least six, then it must be complex primitive by [9]. But
then it cannot be a CI-group by [15, Theorem 5]. We note that this also follows from our computational
results in Section 7, together with the arguments in the first paragraph, since all of these groups contain
a stabilizer of type G(m, p, n) with n > 1 which is not a CI-group; this contradicts [18, Theorem C].

Since the finite subgroups of Sp2(C) = SL2(C) are well-known to be CI-groups, it remains to
understand which symplectic reflection groups of rank 4 are CI-groups. In theory, one could use the
classification of Gordeev and Nakajima [15, 22–24] for this, but this appears to be very difficult to do
in practice.

Modulo the groups of rank four, Proposition 5.1 answers the first half of [11, Problem 1] in the case
of symplectic quotient singularities.

6. Symplectic resolutions

In this section, we return to the question of whether the symplectic quotient V/G, for a symplectically
irreducible symplectic reflection group G, admits a symplectic (equivalently crepant) projective resolu-
tion. In recent years, much progress has been made in classifying all groups for which this question has
a positive answer. The combined work of [2, 5–7, 10, 14, 29] leaves only 48 open cases.

We explain how the computational results in Section 7 imply that the symplectic quotient associated
to the groups W(R), W(S1) and W(U) (as given in [9, Table III]) do not admit projective symplectic
resolutions.

Theorem 6.1. (= Theorem 1.5) The symplectic quotients C6/W(R), C8/W(S1), and C
10/W(U) do not

admit (projective) symplectic resolutions.

Proof. If there exists a resolution in any of these cases, then the symplectic quotient associated to
every parabolic subgroup also admits a symplectic resolution by [17, Theorem 1.6].

From the results described in Section 7, we see that W(R) (respectively W(S1)) contains a parabolic
subgroup conjugate to the complex reflection group G(5, 5, 2) (respectively, conjugate to G(3, 3, 3)). In
both cases, the quotient by this parabolic does not admit a symplectic resolution by [2]. Hence, neither
do the quotients by W(R) and W(S1).

Finally, W(S1) is the stabilizer of a root of W(U) by [9, Table III] (see also Section 7). Therefore, this
quotient cannot admit a symplectic resolution either.

Remark 6.2. With Theorem 6.1 in hand, there are now only 45 groups for which the question of
existence of a symplectic resolution is not yet decided. These are the groups given in [7, Table 6], together
with the groups W(Oi) and W(Pi) for i = 1, 2, 3 in [9, Table III]. All of them are symplectically primitive,
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of rank 4. This last fact means that the strategy used in this section cannot be applied, as noted in the
proof of Lemma 2.2.

7. Explicit results on symplectically primitive groups

We state the explicit results required for Lemma 3.5 and Theorem 6.1, by listing (up to conjugacy) all
the maximal parabolic subgroups one finds for the groups in question in Section 7.2. We now give an
outline of how these groups were computed.

Given a symplectically primitive symplectic reflection group, one computes the conjugacy classes
of all subgroups using the computer algebra systems GAP [12] or Magma [1] with the command
ConjugacyClassesSubgroups or Subgroups, respectively. One then checks which of these sub-
groups are parabolic by determining their fixed space using basic linear algebra and then the stabilizer
of the fixed space using the command Stabilizer in either GAP or Magma; if this stabilizer coincides
with the group, we have found a parabolic subgroup. Let H be one of the parabolic subgroups. One now
computes all symplectic reflections contained in H by computing the conjugacy classes of H (using
ConjugacyClasses in either GAP or Magma) and checking whether the given representative is a sym-
plectic reflection. Finally, one checks whether H is generated by the conjugacy classes of symplectic
reflections determined in this way. As in Corollary 3.6, it suffices to consider the maximal parabolic
subgroups: if v, w ∈ V , with Gw ≤ Gv, then it suffices to check, by induction on rank, that Gv is generated
by symplectic reflections.

Identifying a parabolic subgroup with a group in Cohen’s classification is an easy but tedious task
using the classification and linear algebra. As the matrices generating the parabolic subgroups tend
to become quite large, we do not do this in detail here; Section 7.1 serves as an example for these
computations.

Magma and GAP files with the necessary code to generate the symplectically primitive symplectic
reflection groups can be found on the second author’s github page.1

7.1. An example: the group W(S1)

As an illustration, we show that there is a parabolic subgroup H of W(S1) which is isomorphic (as
a symplectic reflection group) to the complex reducible symplectic group coming from the complex
reflection group G(3, 3, 3).

The necessary computer calculations were carried out and cross-checked using the software package
Hecke [16] and the computer algebra systems GAP [12] and Magma [1].

7.1.1. The group
The group W(S1) is a subgroup of Sp8(C) of order 28 · 33 = 6912. Like all complex primitive groups, it
is given by a root system [9, Table II]. Cohen lists 36 root lines for the group. However, four are enough
to generate a group of the correct order. A choice of root lines are

(1, i, 0, 0, 0, 0, 1, −i), (1 − i, 1 − i, 0, 0, 0, 0, 0, 0),

(1 − i, 0, 1 − i, 0, 0, 0, 0, 0), (1 − i, 0, 0, 1 − i, 0, 0, 0, 0).

Note that these are the ‘complexified’ versions of the vectors over the quaternions given in [9]. Thus,
the group W(S1) ≤ Sp8(C) is generated by the symplectic reflection matrices

1https://github.com/joschmitt/Parabolics
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M1 := 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 i −1 −i
−i 1 −i 1

1 i 1 i
−i 1 i −1
1 −i 1 −i
−i −1 i 1

−1 i 1 −i
i 1 i 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M2 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1

1
1

−1
−1

1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

M3 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1

−1
1

−1
1

−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, M4 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1

1
−1

−1
1

1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

through these root lines.

7.1.2. The parabolic subgroup
Let v := (0, 0, 0, 1, −α, α, −α, α + 1)� ∈C

8, where α := 1
2
(i − 1). Let H ≤ W(S1) be the stabilizer of v.

Using the command Stabilizer in either GAP or Magma one can compute this group:

H = 〈M2, M3M1M3, M4M1M4〉 .

The space VH ⊂C
8 of vectors fixed by H is generated by v and (1, −1, 1, 0, α + 1, −α − 1, α + 1, 3α)�.

Its H-invariant complement W has a basis given by the columns w1, . . . , w6 ∈C
8 of the matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ 2 + ζ + 1 ζ 3 + ζ 2 − ζ − 2 ζ −ζ 3 + ζ 2 + ζ − 2 ζ 2 − ζ + 1 −ζ 3 + ζ

−ζ 3 − ζ 2 + ζ + 2 −ζ 2 − ζ − 1 −ζ −ζ 2 + ζ − 1 ζ 3 − ζ 2 − ζ + 2 ζ 3 − ζ

−ζ 3 − 2ζ 2 + 1 −ζ 3 − 2ζ 2 + 1 ζ ζ 3 − 2ζ 2 + 1 ζ 3 − 2ζ 2 + 1 −ζ 3 + ζ

0 0 −2ζ 3 + ζ 0 0 ζ 3 + ζ

−ζ 2 − ζ + 1 −ζ 3 + ζ 2 + ζ ζ 3 + ζ 2 ζ 3 − ζ 2 − ζ ζ 2 + ζ − 1 −ζ 3 + ζ 2 − 1
ζ 3 − ζ 2 − ζ ζ 2 + ζ − 1 −ζ 3 − ζ 2 −ζ 2 − ζ + 1 −ζ 3 + ζ 2 + ζ ζ 3 − ζ 2 + 1

ζ 3 − 1 ζ 3 − 1 ζ 3 + ζ 2 −ζ 3 + 1 −ζ 3 + 1 −ζ 3 + ζ 2 − 1
0 0 −ζ 3 − ζ 2 + 2ζ + 2 0 0 −ζ 3 − ζ 2 + 2ζ − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where ζ ∈C is a primitive 12-th root of unity such that ζ 3 = i.
By changing the basis from C

8 to W ⊕ VH and restricting to W we may identify H with the subgroup
HW of Sp(W) generated by the matrices⎛

⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

1
1

1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

ζ 2 − 1
1

−ζ 2

−ζ 2

1
ζ 2 − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The basis of W was chosen so that the symplectic form on W is, up to a constant, given by the matrix(
I3

−I3

)
.

One can see directly that HW leaves the subspace 〈w1, w2, w3〉 invariant and that this subspace is
Lagrangian. Hence, HW is a complex reducible, but symplectically irreducible, group coming from a
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complex reflection group in GL(〈w1, w2, w3〉). Since the complex reflection group has rank 3 and order
54, it must be conjugate to G(3, 3, 3) in the classification [25].

7.2. Maximal parabolic subgroups

In this section, we list the maximal parabolic subgroups up to conjugation.

7.2.1. W(Q)
The group W(Q) is a subgroup of Sp6(C) of order 26 · 33 · 7 = 12, 096. It is generated by the symplectic
reflections corresponding to the root lines

(2, 0, 0, 0, 0, 0) ,
1

2

(
2i, 2i, −i + 1, 0, 0, i

√
5 − 1

)
,

1

2

(
2i, 2, i + 1, 0, 0, i + √

5
)

,
1

2

(
2, 2i, i + 1, 0, 0, i + √

5
)

.

The maximal parabolic subgroups are each conjugate to H1 := G(3, 3, 2) or H2 := G(4, 2, 2). They
stabilize the following vectors:

v

H1 (1, 0, 0, α, β, 0)

H2 (1, 0, 1, α, 2β, α)

where α := 1

6

(
i
√

5 + i − √
5 + 1

)
and β := 1

3

(
−i + √

5
)
.

7.2.2. W(R)
The group W(R) is a subgroup of Sp6(C) of order 28 · 33 · 52 · 7 = 12, 09, 600. It is generated by the
symplectic reflections corresponding to the root lines

(2, 0, 0, 0, 0, 0) ,
1

2

(
i + 1, i − 1, 0, −i

√
5 + 1, −i − √

5, 0
)

,

1

2

(
0, 0, i + 1, −i, 1, i + √

5
)

,
1

2

(
0, 2i, i + √

5, 2, 0, −i − 1
)

.

The maximal parabolic subgroups are conjugate to H1 := G(3, 3, 2), H2 := G(5, 5, 2), or
H3 := G(D2, C2, 1). They stabilize the following vectors:

v

H1

(
0, 1,

√
5 − 1,

√
5 − 1, 1

2

(
i
√

5 − i + √
5 − 3, 0

)
H2

(
0, 1, 1

2

(
i
√

5 + i − 2
)

, 1
2

(
i
√

5 + i + √
5 + 1

)
, 1, 1

2

(
−2i + √

5 + 1
))

H3

(
0, 1, 1

2

(√
5 + 3

)
, 1

2

(
−i

√
5 − i + √

5 + 1
)

, 1, 1
2

(
−i

√
5 − 3i

))

7.2.3. W(S1)
The group W(S1) is a subgroup of Sp8(C) of order 28 · 33 = 6912. It is generated by the symplectic
reflections corresponding to the root lines

(1, i, 0, 0, 0, 0, 1, −i) , (− i + 1, −i + 1, 0, 0, 0, 0, 0, 0) ,

(− i + 1, 0, −i + 1, 0, 0, 0, 0, 0) , (− i + 1, 0, 0, −i + 1, 0, 0, 0, 0) .
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The maximal parabolic subgroups are conjugate to H1 := C2 × C2 × C2, H2 := G(2, 2, 3), or
H3 := G(3, 3, 3). They stabilize the following vectors:

v

H1 (1, 0, 0, −1, 0, 0, 0, 0)

H2 (0, 1, i, 0, 0, 0, 0, 0)

H2 (1, i, i, −1, 0, 0, 0, 0)

H2 (0, 0, 1, 0, 0, 0, 0, 0)

H2 (0, 1, 0, 0, 0, 0, 1, 0)

H3

(
0, 0, 0, 1,

1

2
(1 − i),

1

2
(i − 1),

1

2
(1 − i),

1

2
(i + 1)

)
Note that multiple occurrences of H2 in the above table means that there are distinct maximal parabolic
subgroups which are conjugate in GL8(C), but not in W(S1).

7.2.4. W(S2)
The group W(S2) is a subgroup of Sp8(C) of order 210 · 34 = 82, 944. It is generated by the symplectic
reflections corresponding to the root lines

(1, i, 0, 0, 0, 0, 1, −i) , (− i + 1, −i + 1, 0, 0, 0, 0, 0, 0) ,

(− i + 1, 0, −i + 1, 0, 0, 0, 0, 0) , (2, 0, 0, 0, 0, 0, 0, 0) .

The maximal parabolic subgroups are conjugate to H1 := C2 × G(3, 3, 2), H2 := G(2, 2, 3),
H3 := G(2, 1, 3), H4 := G(3, 3, 3), and H5 := G(4, 4, 3). They stabilize the following vectors:

v

H1 (1, −1, −1, 0, 0, 0, 0, 0)

H2 (1, −1, 0, 0, 0, 0, i − 1, 0)

H3 (0, 1, 0, 0, 0, 0, 0, 0)

H4 (1, 0, 1, 0, −1, i − 1, −i, 0)

H5 (1, −i, 0, 0, 0, 0, 0, 0)

7.2.5. W(S3)
The group W(S3) is a subgroup of Sp8(C) of order 213 · 34 · 5 = 3, 317, 760. It is generated by the
symplectic reflections corresponding to the root lines

(1, i, 0, 0, 0, 0, 1, −i) , (− i + 1, −i + 1, 0, 0, 0, 0, 0, 0) ,

(− i + 1, 0, −i + 1, 0, 0, 0, 0, 0) , (2, 0, 0, 0, 0, 0, 0, 0) ,

(− i + 1, 0, 0, 0, 0, −i + 1, 0, 0) .

The maximal parabolic subgroups are conjugate to H1 := C2 × G(3, 3, 2), H2 := G(2, 2, 3),
H3 := G(3, 3, 3), and H4 := G3(D2, C2). They stabilize the following vectors:

v

H1 (1, −i, 0, 0, 0, 0, 3, i)

H2 (0, 0, 2, 0, −1, i, i, 1)

H3 (0, 1, 0, −1, −1, i − 1, i, 0)

H4 (1, 0, 0, 1, 0, 0, 0, 0)
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7.2.6. W(T)
The group W(T) is a subgroup of Sp8(C) of order 28 · 34 · 53 = 2, 592, 000. It is generated by the
symplectic reflections corresponding to the root lines

(− ζ 3 + ζ 2 + 1, ζ 3 − ζ 2, −1, 0, 0, 0, 0, 0) , (1, 0, 0, 0, 0, 0, 0, 0) ,

(1, 1, 1, 1, 0, 0, 0, 0) , (1, i, 0, 0, 0, 0, −1, i) ,

where ζ is a primitive 10-th root of unity.
The maximal parabolic subgroups are conjugate to H1 := C2 × G(3, 3, 2), H2 := C2 × G(5, 5, 2),

H3 := G(2, 2, 3), H4 := G(3, 3, 3), H5 := G23, and H6 := G(5, 5, 3). They stabilize the following
vectors:

v

H1 (0, 0, 0, 0, 1, 1
2
(− ζ 3 + ζ 2 + 1), −ζ 3 + ζ 2 + 1

2
, 1

2
(ζ 3 − ζ 2))

H2 (0, 0, 0, 0, 1, −ζ 3 + ζ 2 + 1, −ζ 3 + ζ 2, 2ζ 3 − 2ζ 2 − 2)

H3 (1, 0, ζ 3 + ζ 2 + 1, −3ζ 3 + 3ζ 2 + 4, iζ 3 − iζ 2 − ζ 3 + ζ 2 + 1,

−2iζ 3 − 2iζ 2 − 2i − 2ζ 3 + 2ζ 2 + 4, i + ζ 3 − ζ 2, −iζ 3 + iζ 2 + i + 1)

H3 (0, 0, 0, 0, 1, −ζ 3 + ζ 2 + 2, 0, ζ 3 − ζ 2 − 3)

H4 (1, 0, −ζ 3 + ζ 2 + 1, ζ 3 − ζ 2, −i, iζ 3 − iζ 2 − i + ζ 3 − ζ 2 − 1,

iζ 3 − iζ 2 + 1, ζ 3 − ζ 2)

H5 (0, 1, 1
5
(4iζ 3 − 4iζ 2 − 2i + 3ζ 3 − 3ζ 2 − 4), (2iζ 3 − 2iζ 2 − 6i − ζ 3 + ζ 2 + 3),

1
5
(4iζ 3 − 4iζ 2 − 2i − 2ζ 3 + 2ζ 2 + 6), (3iζ 3 − 3iζ 2 − 4i + ζ 3 − ζ 2 − 3),

1
5
(iζ 3 − iζ 2 − 3i + 2ζ 3 − 2ζ 2 − 1))

H6 (0, 1, ζ 3 − ζ 2, ζ 3 − ζ 2 + 1, −2iζ 3 + 2iζ 2, −iζ 3 + iζ 2 − ζ 3 + ζ 2 + 1,

−iζ 3 + iζ 2 + i − 1, i − ζ 3 + ζ 2)

Note that there are two distinct maximal parabolic subgroups which are conjugate in GL8(C), but not
in W(T).

7.2.7. W(U)
The group W(U) is a subgroup of Sp10(C) of order 211 · 35 · 5 · 11 = 12, 096. It is generated by the
symplectic reflections corresponding to the root lines

(2, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

(0, 2, i − 1, i − 1, 2, 0, 0, −i + 1, −i + 1, 0) ,

(0, 2, i − 1, −i − 1, 2i, 0, 0, i − 1, −i − 1, 0) ,

(0, 2, −i − 1, i − 1, 0, 0, 0, i + 1, i − 1, 2) ,

(2, i − 1, i − 1, 2, 0, 0, −i + 1, −i + 1, 0, 0) .

The maximal parabolic subgroups are conjugate to H1 := C2 × G(2, 2, 3), H2 := C2 × G(3, 3, 3),
H3 :=S5, H4 := G(3, 3, 4), and H5 := W(S1). They stabilize the following vectors:

v

H1 (2, 0, i − 1, 0, −i + 3, 2i + 2, −2, −i − 1, 0, i − 1)

H2 (0, 2, i − 1, 0, −i − 1, −6i, 0, i + 1, 0, −i + 1)

H3 (1, 0, −2i + 1, i + 1, −i + 1, −i, 2i, i, −2i, 0)

H4 (2, 0, 0, −i − 1, −i − 1, 0, −i + 1, −2i, −i − 1, i + 1)

H5 (2, 0, i + 1, 0, i − 1, 0, −2i, i − 1, 0, i + 1)

https://doi.org/10.1017/S0017089522000416 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000416


Glasgow Mathematical Journal 413

Acknowledgements. This paper originated in the workshop on computational group theory in Oberwolfach in August 2021,
where the third author mentioned the computational difficulties in his talk, concerning parabolic subgroups of symplectic reflection
groups [27]. The third author would lik e to thank Alexander Hulpke and Eamonn O’Brien for explaining how to overcome these
difficulties during the workshop; he also thanks Gunter Malle for reminding him of the question of whether the analogue of
Steinberg’s Theorem holds for symplectic reflection groups. We moreover thank Gunter Malle for comments on an early version
of this paper. We would like to thank the referee for a detailed reading of the paper and useful comments.

This work is a contribution to the SFB-TRR 195 ‘Symbolic Tools in Mathematics and their Application’ of the German
Research Foundation (DFG).

References
[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symb. Comput. 24(3-4) (1997),

235–265, Computational algebra and number theory (London, 1993).
[2] G. Bellamy, On singular Calogero–Moser spaces, Bull. Lond. Math. Soc. 41(2) (2009), 315–326.
[3] K. A. Brown and I. Gordon, Poisson orders, symplectic reflection algebras and representation theory, J. Reine Angew.

Math. 559(559) (2003), 193–216.
[4] N. Bourbaki, Groupes et algébres de Lie (Hermann, Paris, 1968).
[5] G. Bellamy and T. Schedler, A new linear quotient of C4 admitting a symplectic resolution, Math. Z. 273(3-4)(2013),

753–769.
[6] G. Bellamy and T. Schedler, On the (non)existence of symplectic resolutions of linear quotients, Math. Res. Lett. 23(6)

(2016), 1537–1564.
[7] G. Bellamy, J. Schmitt and U. Thiel, Towards the classification of symplectic linear quotient singularities admitting a

symplectic resolution, Math. Z. 300(1) (2022), 661–681.
[8] A. M. Cohen, Finite complex reflection groups, Annales scientifiques de l’É.N.S. 4th ser. 9(3) (1976), 379–436.
[9] A. M. Cohen, Finite quaternionic reflection groups, J. Algebra 64(2) (1980), 293–324.

[10] P. Etingof and V. Ginzburg, Symplectic refiection algebras, Calogero–Moser space, and deformed Harish–Chandra
homomorphism, Invent. Math. 147(2) (2002), 243–348.

[11] B. Fu, A survey on symplectic singularities and symplectic resolutions, Ann. Math. Blaise Pascal 13(2) (2006),
209–236.

[12] GAP, Groups, Algorithms, and Programming, Version 4.11.1. The GAP Group (2021). Available at
https://www.gap-system.org.

[13] V. Ginzburg and D. Kaledin, Poisson deformations of symplectic quotient singularities, Adv. Math. 186(1) (2004), 1–57.
[14] I. Gordon, Baby Verma modules for rational Cherednik algebras, Bull. London Math. Soc. 35(03) (2003), 321–336.
[15] N. L. Gordeev, Finite linear groups whose algebra of invariants is a complete intersection, Izv. Akad. Nauk SSSR Ser. Mat.

50(2) (1986), 343–392.
[16] C. Fieker, W. Hart, T. Hofmann and F. Johansson, Nemo/Hecke: computer algebra and number theory packages for the

Julia programming language, in ISSAC’17 – Proceedings of the 2017 ACM International Symposium on Symbolic and
Algebraic Computation (ACM, New York, 2017), 157–164.

[17] D. Kaledin, On crepant resolutions of symplectic quotient singularities, Selecta Math. 9(4) (2003), 529–555.
[18] V. Kac and K.-i. Watanabe, Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math.

Soc. 6(2) (1982), 221–223.
[19] G. I. Lehrer, A new proof of Steinbergs fixed-point theorem, Int. Math. Res. Not. 28 (2004), 1407–1411.
[20] G. I. Lehrer and D. E. Taylor, Unitary reflection groups, Australian Mathematical Society Lecture Series, vol. 20

(Cambridge University Press, Cambridge, 2009).
[21] D. Luna, Slices étales, Sur les groupes algébriques, vol. Mémoire 33, Bull. Soc. Math. France, Paris (1973), 81–105.
[22] H. Nakajima, Quotient singularities which are complete intersections, Manuscripta Math. 48(1-3) (1984),

163–187.
[23] H. Nakajima, Quotient complete intersections of affine spaces by finite linear groups, Nagoya Math. J. 98 (1985), 1–36.
[24] H. Nakajima and K.-i. Watanabe, The classification of quotient singularities which are complete intersections, in Complete

intersections (Acireale 1983), vol. 1092, Lecture Notes in Mathematics (Springer, Berlin, 1984), 102–120.
[25] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304.
[26] R. Steinberg, Differential equations invariant under finite reflection groups, Trans. Amer. Math. Soc. 112(3) (1964),

392–400.
[27] U. Thiel, Geometry and representation theory associated to symplectic reflection groups, in Computational group theory

(2021), 16–19, Oberwolfach Reports 38.
[28] M. Verbitsky, Holomorphic symplectic geometry and orbifold singularities, Asian J. Math. 4(3) (2000), 553–563.
[29] R. Yamagishi, On smoothness of minimal models of quotient singularities by finite subgroups of SLn(C), Glasg. Math. J.

60(3) (2018), 603–634.

https://doi.org/10.1017/S0017089522000416 Published online by Cambridge University Press

https://www.gap-system.org
https://doi.org/10.1017/S0017089522000416

	Introduction
	Preliminaries
	Proof of the theorem
	Complex reducible groups
	Symplectically imprimitive groups
	Symplectically primitive groups
	Applications
	Minimal and maximal parabolic subgroups
	Codimension of symplectic quotient singularities
	Complete intersections
	Symplectic resolutions
	Explicit results on symplectically primitive groups
	An example: the group

	The group
	The parabolic subgroup
	Maximal parabolic subgroups
	W(Q)
	W(R)
	W(S-1)
	W(S_2)
	W(S_2)
	W(T)
	W(U)


