
MATRICES WITH ELEMENTS IN A BOOLEAN RING 

A. T. BUTSOX 

1. Introduction. Let 33 be a Boolean ring of at least two elements con
taining a unit 1. Form the set 5Dt of matrices A, B, . . . of order n having 
entries aiJt bijy . . . (i, j = 1, 2, . . . , n), which are members of 93. A matrix 
U of 9JÎ is called unimodular if there exists a matrix V of $R such that VU= I, 
the identity matrix. Two matrices A and B are said to be left-associates if 
there exists a unimodular matrix U satisfying UA = B. The main results 
in this paper are the constructions of two canonical forms for left-associated 
matrices of 9W. The first form may be described very simply; however, it 
lacks the desirable property of containing the maximum possible number of 
rows which consist entirely of O's. Although the second has this property, 
its description is quite complicated. They are somewhat similar to the well-
known Hermite form for matrices with elements in a principal ideal ring 
(4); and, accordingly, use is made of them to establish analogues of several 
other familiar results concerning matrices with elements in a principal ideal 
ring. Although row equivalence (left-associativity) and a diagonal canonical 
form for equivalent matrices of 5DÎ are mentioned in (2, pp. 164-165), the 
author has been unable to locate his results anywhere in the literature. 

2. Properties of S3. A Boolean ring may be defined as a ring whose ele
ments are all idempotent. It is easily shown, see (2, pp. 154-155), that it is a 
commutative ring of characteristic two, in the usual sense. Then for any x 
in 33, the element x' = 1 + x, called the complement of x, satisfies x + x' = 1, 
xxr = 0, and (x')f = x. Bell (1) observed that x v y = x + x'y is the g.c.d. 
of x and y. Following is a summary of the less obvious but easily established 
properties of 93 which we shall use in the sequel: 

(2.1) xx = x; 

(2.2) xy = yx; 

(2.3) x + x = 0; 

(2.4) x + xf = 1, xx' = 0, (x'Y = x; 
n 

(2.5) V Xt = Xi V X2 V . . . V Xn = Xi + x'iX2 + x[x'<>X^ + . . . + x[x'2 . . . Xn-iXn 

is the g.c.d. of xh x2, . . . , xn; 

(2.6) ( ] £ xj)[ V xA = ^ xjt t = 1, 2, . . . , n; 
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(2.7) (i*)' X1X2 • • • Xni \X\X2 • • • Xn) 

(2.8) V Xi; = 0 if and only if x\ — x2 = . . . = xn = 0; 

(2.9) xy = 0 if and only if xy' = x. 

3. Canonical forms. In constructing the canonical forms only one type 
of elementary operation is needed, the addition to the elements of a row of x 
times the corresponding elements of another row, x being in S3. Furthermore, 
this elementary operation can be accomplished by multiplying the given 
matrix on the left by an elementary matrix, namely the matrix obtained by 
performing the desired elementary operation upon the identity matrix I. 
If £ is any elementary matrix, it follows from (2.3) that EE = / . Quite 
obviously then, any elementary matrix is unimodular, and a product of uni-
modular matrices is unimodular. To facilitate describing the constructions, 
we first establish a lemma. 

LEMMA 3.1. 

matrix of W : 
For 0 < j < n, let A(j) = [B(j) H(n — j)] be the following 

611 

621 b22 

b j \ bj2 

bj+2,1 bj+2,2 

bn\ bn2 

0 
0 

0 
0 

bjj 0 0 

bj+zj hj+2j+i hj+2j+2 

• bnj hntj+i hnij+2 

where A = A(n) = [B(n) H(0)], H = A (0) = [J5(0) H(n)], and hPQ hqq = 0, 
hpq hvv = hvq for p = q + 1, q + 2, . . . , n; q = j + 1, j + 2, . . . , n. Then 
there exists a unimodular matrix Uj {which is a product of elementary matrices) 
such that multiplying A (j) on the left by Uj leaves the last n — j columns of 
A (j) invariant, and replaces the elements bkj of the jth column of A(j) by elements 
hkj, where hkj = 0 for k = 1, 2, . . . ,7 — 1; and hkjhjj = 0, hkjhkk = hkj for 
fc = j -{- I, j -\- 2, . . . , n. (In terms of matrices we have 

AU - 1) = UjA(j) = Uj[B(j) H(n - j)] = [B(j - 1) H(n -j+ 1)], 

where it is to be understood that although H(n — j) is a submatrix of H(n — j + 1 ), 
B(j — 1) is n°t necessarily a submatrix of B(j)). 

Let Ekj denote the elementary matrix obtained from / by adding xkj times 
the elements of the £th row to the corresponding elements of the 7th row, 
where xi; = &'̂ ; 

Xkj = b'jjbijbij. . . 6i_i,i, k = 2, 3, . . . , j — 1; 

Xkj = h'kkbijboj. • . bk-i,j, k = j + 1, j + 2, . . . , n. 
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MATRICES WITH ELEMENTS IN A BOOLEAN RING 49 

I t is quite obvious tha t adding xkj t imes the elements of the &th row to the 
corresponding elements of the 7th row, for k = 1, 2, . . . ,j — 1, does not 
affect the last n — j columns of A(j). For q = j + 1, j + 2, . . . , k\ 
k = J + l , j + 2, . . . , w; 

Xkjhjcq = KkbijKj. . . b'fc-itihkg = hkqhkkb[jb21. . . ftUi,.? 

= hkQhkkhkkb[jb2j. . . ^ - i , i = 0. 

Hence adding x/c; t imes the elements of the &th row to the corresponding 
elements of the 7th row, for k = j + 1, 7 + 2, . . . , n, does not affect the last 
n — j columns of A(j) either. Then multiplying A(j) on the left by the uni-
modular matr ix 

Ej = EnjEn-ij . . . Ej+ij Ej-ij • • • EijE\j 

leaves the last n — j columns unaltered, and replaces bjj by 

hjj = bu v . . . vbJjv(bJ+i,Jh'j+itJ+1)v . . . v(baJKn). 

Let Fkj, for k = 1, 2, . . . ,j — 1, j + 1, . . . , n, denote the elementary matr ix 
obtained from / by adding b,cj t imes the elements of the j t h row to the corre
sponding elements of the &th row. Multiplication of EjA(j) on the left by 
Fkj obviously leaves the last n — j columns invariant, and replaces b/:J by 
hkj = bkj + bjcjhjj. By (2.6) and (2.3) hkj = bkj + bkj = 0 for k = 1, 2, . . . , 
j — 1. For k = j + 1, j + 2, . . . , n ; 

hjhjj = (bkj + b^.jhj^hjj = bkJfii} + bkJhjj = 0. 

Using (2.7) we can write 

hj = (bkj + bkjhjj) = bkjh'jj 

= bkj(bkjhkk)'b'ijb2j. . . b'jjibj+ujhj+i^+i)' . . . 

(bk-itjhk-itk-i) (bk+\,jhk+ifk+\)' . . . (bnjhnnY'î 

and since 

bkj(bkjh'kk)' = M * + 6 ^ / 4 ) = é*i + 6*7/4 

= ^ ( l + Z40 = ^A-*, 

^ = bkjhkkb\jb2j. . . b'jjibj+i.jh'j+i^+iy . . . 

(ftfc-l,i^i-l.*-l) (#AH-1, A+l,A;+l) ' • • • (bnjhnn)\ 

and it is now obvious t ha t hkjhkk = Z^. Lett ing 

^- = W - u • • • Fj+ijFj-ij - - - FzjFiji 
it is apparen t t ha t F ^ is the desired unimodular matr ix Uj. 

We remark tha t if hi5 = 0, then by (2.8) 

bu = Ô2i = . • . = bjj = 0, (**,***) = 0 , k = j + 1,7 + 2, . . . , n, 

whence by (2.9) bkjhkk = bki. So in this particular case we may choose Uj = 7". 
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We also note t h a t if hvv = 0, then the requirement t ha t hvqhvv = hvq implies 
t h a t hpg = 0 for g = j + 1, j + 2, . . . , p. 

T H E O R E M 3.1. For any matrix A of 2)I there exists a unimodular matrix U 
of 2)i which is a product of elementary matrices and such that UA = II has the 
following properties: hvq = 0 for g > p, hvqhqq = 0, and hvqhvv = hvq. (Note 
t h a t if a diagonal element is 0, then the entire row consists of 0's). This form 
II is unique. 

Successive applications of Lemma 3.1 to A = A (n) for j = n, n — 1, . . . , 1 

yields A(0) = [5(0) H in)} = H and UiU2 . • . Un = U as the desired matrices. 
T o prove the uniqueness of H, let U and Vbe unimodular matrices such tha t 

UA = II and VA = G each have the form described above. (The result 
t h a t a unimodular matr ix has an inverse is implied by the succeeding corollary, 
which is established without assuming the uniqueness of II. T o simplify 
mat te rs , we use this now.) Then U~lII = A = V~]G, and PH = G, QG = II, 
where P = VU~l and Q = UV~l. Thus , for fixed i, the following systems of 
equat ions must be satisfied: 

n n 

23 pikhkt = gn, 23 qjkgkt = hit1 t = 1, 2, . . . , n, 
k= t k=t 

where git = hit = 0 for t > i. Consider the first system. The last equation 
pinhnn = 0 and the condition hnthnn = hnt imply pinhnt = 0 for / = l , 2 , . . . , n . 
T h u s the first system is equivalent to 

W . - 1 

X Pikhkt = git, t = 1, 2, . . . , n - 1. 

T h e last equat ion pitn^ihn-itn-i = 0 of this system and the condition /^ . . i , , 
An_i,„_i = hn-itt imply £ M _ i / ^ _ M = 0 for / = 1, 2, . . . , n - 1. T h u s this 
system may be reduced to 

Z) £*A« = gn, t = 1, 2, . . . , n - 2. 
k=t 

Continuing this reduction for / = n — 2, n — 3, . . . , i + 1 yields pikhkt = 0 
for k > i, t = 1, 2, . . . , n, and replaces the first system by the equivalent 
system 

2 1 Pi A i = £/*, / = 1, 2, . . . , i. 

Similarly, the second system is equivalent to 

i 

J2 qugkt = Ai«, / = 1,2, . . . , i . 

Now />n*f< = g** and g ^ g ^ = Ay* imply 

ga = P i ^ i i = Paqaga = piiqupiihu 
= Çiipiihii = ? f i £ f i = A f f . 
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T h u s Paha = hu, and puhit = htu for / = 1, 2, . . . , /', since hithit = //,,. 
Similarly, g^ga- = git and g * ^ , = g „ . Now consider 

piti-ihi-iti-i + pahiti-i = gf ,*-i , 

< 7 € f € _ i g i _ i f i _ i + qugiti-i = / t < f i _ i . 

Multiplying by ^ î ; ? _i and giti-\, respectively, gives 

hij-i = hifi-igiti-i, gi,i-i — htii-igtti-i, 

since hi<i^ihi.i>f_i = g M _ i g j _ M _ i = 0, and puhiti-i = hLi^u qugij-i = gf,/_-i-

Hence g*,*_i = fe«,i-i, and also piti_ihi-iti-i = ç?, j_i^v_i,x_i = 0 which implies 

ptti-ihi-itt = qiti-igi-itt = 0, / = 1, 2, . . . , ' / — 1. 

Next we consider 

piti-2hi-2,i-2 + piti-lhi-iti-2 + pahiti-2 = gi,i-2> 

qiyi_2gir-2,i-2 + qi,i-lgi-l,i-2 + Çagiti-2 = hi,i~2 

which are simply piti_2hi-2,i-2 + A*,*-2 = g M - 2 and qiti-2gi-2,i-2 + gij-2 = 
/^.*_2. Multiplying by /h,*-2 and gM_2, respectively, gives 

hiti-2 ~ gi,i-2hij-2, gi,i-2 ~ "i, i—lgi, i-2-

Then • giti-2 = &M-2> and piA^ 1-2,1-2 = qi,i-2gi-2,i-2 = 0 which implies 

pitt-.2hi-.2,t = Çi,i-2gl-2,t = 0, / = 1, 2, . . . , / - 2. 

Continuing this procedure yields git = hit for t = I, 2, . . . , i. Now letting i 
range from 1 t o w establishes the identi ty of G and i1/. Hence i ï is unique. 

COROLLARY 3.1. Every unimodular matrix of 90? is a product of a finite number 
of elementary matrices. 

If the matr ix A in the above theorem is unimodular, then UA = H, being 
a product of unimodular matrices, is also unimodular. Then there exists a 
matr ix K such tha t KH = / . The properties of the elements of i J a r e restrictive 
enough to require tha t H = K = I. Since U is a product of elementary 
matrices, say EtEt^i . . . £ 1 , we have £*£*_i . N. . EiA = I. Hence A = Ei 
£2 . • • Eu the desired result. We remark tha t it is now obvious tha t AU = I 
so tha t 17 = A~l. 

The canonical form H does not have, in general, the maximum possible 
number of rows whose elements are all 0's t ha t could be obtained by elemen
ta ry row operations on A. The succeeding lemma makes this apparent . Our 
procedure now will be to obtain a second canonical form for A by performing 
elementary operations on H t ha t will replace a row wherever possible by a 
row of 0's and alter the form of H as little as possible. 

L E M M A 3.2. Let H be the matrix described in the preceding theorem and 
hjj, hhh, . . . , hjtjt, j \ < jo < . . . < j t , be the diagonal elements in the last 
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n — j + I columns of H that are different from 0. Then a necessary and sufficient 
condition that there exists a unimodular matrix Vj, such that multiplication of 
IT on the left by Vj replaces hn by 0, and leaves invariant the last n — j columns 
of IIand any row which consists entirely of 0's, is that hjjhhhhhh . . . hhh = 0. 

The most general sequence of elementary operations that could be performed 
on the rows of H and leave the necessary things invariant is: the addition of 
an arbitrary multiple, say xjr, of the elements of the jth row to the correspond
ing elements of jrth row, for r = 1 , 2 , . . . , / ; then the addition of say y^h'^ir, 
where yjr is arbitrary, times the elements of the j r t h row to the correspond
ing elements of the j th row, for r = 1 , 2 , . . . , / . This replaces h3j by 

t 

h J J + X) yjrKr.ir(hjrj + Xjrh„), 

which is simply 
t 

hjj + hjj^yjrXjrh'jrjr, 

since 
hjrjrh1rj = 0. 

In order to be able to replace hôj by 0, under the required conditions it is then 
necessary tha t there exist 

xjr and y:ir, r = 1 , 2 , . . . , / , 

such tha t 
t 

hjj + hjjj^ yJrXMrJr = 0 ' 

By adding /z7? to both sides we obtain the equivalent condition 
t 

Since 
t 

yjrxjrh
fjrjr V Vuu = yjrxirh

f
jrjr 

by (2.6), we have 
t 

hjj V h'jsh = \hjjT,yJrXjrh'jrJr) V VJaU 
\ r=l / s=l 

= hjjj^ [yjrXjrKrJr V h'jaja) 
r=l \ .«=1 / 

= hjj 2s yjrXJrhjr.7r 

= A„. 
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But this last relation implies, by (2.9), (2.7), and (2.4), t ha t 

ri'3j'l'Ji.1l't/32 32 ' ' ' ri/3t3t U* 

Hence the condition is necessary. 
Conversely, suppose 

ftjjftjiji ' • • "/3th ~ ' ' • 

Then 
t 

ftjj • M3s 3s = ft J3i 
8=1 

and the aforementioned sequence of operations with 

xJr = 1, (r = 1 , 2 , . . . , 0 , 

Jn = ±> y.ir = hjlhhj2j2 . . . hjr_ljr_x (r = 2, 3, . . . , t), 

replaces hjj by 
t t 

k33 + hjùYj yirXirKrJT = hJ3 + h33 V Vjrjr = kjj + tljj = 0 
r = l r = l 

and leaves the necessary things invariant . Thus the condition is sufficient and 
the lemma is proved. 

Let us now determine precisely what happens to the elements in the first j 
columns of H when h3j is replaced by 0 in the manner described in Lemma 3.2. 
Since 

h'- • h- = 0 

hJq for g = 1, 2, . . . ,j — 1, is replaced by 
t 

ft id + ft.w V h'JrJr. 
r = l 

I t is necessary tha t 

ftjjftjiJL • • • ft Hit = = " » 

so tha t 
z 

^ J ' i • ftjrjr ^.7'i* 

Using this and the fact tha t hjq = hjqhj:j, we have 

^j<7 "I ^ i # V ^ ; r y r
 = ftjq T ftjqftjj V #/ r J r 

= ^ . / ç ~T~ ftjqftjj ^ j t f I ^ i < 7 

= 0. 

Thus replacing hu by 0 replaces hj<n îor g = 1, 2, . . . , j — 1, by 0 also. For 
r = 1 , 2 , . . . , / and ^ = 1, 2, . . . , j , hjrq is replaced by 

(ljr(/
 = = ^y(7 r ftjfQ' 
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We observe tha t 

so t ha t the proper ty of II t ha t the product of an element with the diagonal 
element above it be 0 is preserved. Although 

djrdhjrir ** & j r Q 

in general, we note tha t 

djrqQijjV hjrjr) = (hJq + hjrQ)(hjjV hjrjr) 

= hjaihjjVhjrj,) + hjrgihjjVhjrj,) 

= hjqhjjihjj v hjrjr) + hjrqhjrjr(hjj v hjrjr) 

= hjqkjj + hjrQhjrjr = / ^ + fejf(/ 

We also see that , for q = 1, 2, . . . ,7, 

Hence ///M/ is replaced by an element 

such that 

djrqïlqq = O, rljqrljj ;=: " j , / , 'ljq'ljij\ • • • "''j131 ~ U, 

djrgihjjVhjrJ,) = dJr9. 

Now let Hi denote the matr ix resulting from replacing /? ; / by 0 according 
to the procedure just described. We want to consider the problem of replacing 
a diagonal element, say hiu of Hi by 0 using e lementary operat ions t h a t leave 
invariant the last n — i columns and any row whose elements are all O's. 
Let 

hhh, hi2h, . . . , hiviv, i < ii < H < . . . < iv < j , 

denote the diagonal elements of II\ between 

h a and hJlJl 

which are not 0. When we a t t e m p t to parallel the discussion of Lemma 3.2 we 
find tha t , al though we can add 

Jirh'irin where yir is arbi trary, 

times the elements of the / r th row to the corresponding elements of the i th 
row, we can ' t add 

y.irh'jrjr, where yjr is arbitrary, 

t imes the elements of the 7 r th row to the corresponding elements of the it h 
row. In order to leave invariant the last n — i columns of II\ we must add 
instead 
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yjrh'jjhjrJn where yjr is arbitrary, 

times the elements of the jrth row to the corresponding elements of the ith 
row. With only this change, however, we obtain the following result. A 
necessary and sufficient condition tha t hu can be replaced by 0, by means of 
elementary operations t ha t leave invariant the last n — i columns and any 
row consisting of 0's, is t ha t 

huhilh . . . hiviv{hjih v hj^ihjste v hjj) . . . (hUh v h») = 0. 

If this condition is satisfied, to replace hit by 0 we choose 

xir = xjs = 1, r = 1, 2, . . . , v, s = 1 , 2 , . . . , / . 

T h a t is, we first add the ith row to each succeeding row which does not consist 
entirely of 0's. Then a multiple of the elements of each of these rows is added 
to the corresponding elements of the ith row. Choosing the y's appropriately, 
this replaces hiq(q = 1, 2, . . . , i), by 

j V t \ 
hi(J + hig\ V h'irirv V (h'jrjrh'}j)( = hig + hiQ = 0. 

We note that 

is replaced by 

and 

is replaced by 

hirQt q = 1, 2, . . . , i, r = 1, 2, . . . , v, 

dJsQ, q = 1,2, . . . , i, s = 1,2, . . . , /, 

dj8q I hig — hjag + hjg + hig. 

Denote this matr ix by H^ 
We are now able to describe the procedure for obtaining from the first 

canonical form H the second canonical form, which we shall call C. Consider 
successively the products 

of the diagonal elements of II which are different from 0. If none of these are 0, 
then C = II. Otherwise, there is a first one, say 

^jj^jiji • • • "'ûtiii 

which is 0. \\\ this case replace hjj by 0 according to the procedure described 
in Lemma 3.2. Let 

Z* = Ohih v hjj)(hj2ji v hjj) . . . {hjtjt v A„), 

and consider successively the products 

Zjhiviv1 . . . , Zjhiviv . . . hu, . . . , 
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If all of these are 0, then C = II\. Otherwise, there is a first one, say 

h • h • • h • • 7 • 

which is 0. In this case, replace h a by 0 as before. Let 

Zi,j = (hi^vhu) . . . (hivivv hi^ihj.j.v hjjV hu) . . . {fiuu vhjjvhu), 

and let 

hkikl, • • • , hkwkw, ki < k2 < • • • < kw, 

denote the diagonal elements in the first i — 1 columns of Hi which are not 0. 
Consider successively the products 

Zi.jhkwkw' * ' * ' ^i,jhkwkw • • • hklki. 

If all of these are 0, then C = H2. Otherwise, there is a first one, say 

%i, jhkwkw ' • • hkfk/j 

which is different from 0. Replace hkfkf by 0 in, wrhat should be by now, the 
obvious manner . Continuing this procedure yields the desired matr ix C. 
Obviously each one of these steps can be accomplished by multiplying the 
part icular Ht on the left by a unimodular matr ix V t. Hence there is a unimodu-
lar matr ix V such tha t VH = C. 

Xote t ha t replacing htt by 0 affects the element in the (p, <7)-position of 
II t only if g < t < p. Then , for cpp ^ 0, if we let 

denote the diagonal elements of C between cq-itQ-.i and cpp which are 0, we 
see tha t 

(Although the c(lrQr
}s include any diagonal element t ha t was originally 0 in II, 

say 

MQSQS CqsQsi 

this does not affect the representat ion of cpq since the corresponding h(/s(/ = 0.) 
We summarize all this in the following theorem. 

T H E O R E M 3.2. Let A be any matrix of 90c and UA — II its first canonical 
form. Then there exists a unimodular matrix V such that WA = VU A = VII = C, 
where W = VU, has the following form: cpq = 0 for g > p; if cpp = 0, then 
cpq = 0 for g = 1, 2, . . . , n; cpqcqq = 0; if cpp ^ 0 and 

CQIQH £<72<72> • • • » C<rtp</ip 

denote the diagonal elements of C between ce_iiV_i and cpp which are 0, then 

Cpq r1PQ -f~ tlqm \ "q-iq \ • • • I <^(iivQ' 

Furthermore, it is impossible to replace a diagonal element of C by 0 using element
ary operations that leave invariant the succeeding columns and any row which 
consists entirely of Q's. This form C is unique. 
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The proof tha t C is unique proceeds along the same lines as the prooi ot 
the uniqueness of H, and will be omitted. We wish to emphasize, however, 
t ha t to ensure uniqueness it is absolutely necessary to add the elements of 
the &th row to the corresponding elements of each succeeding row whose 
elements are not all O's, as the first s tep in replacing any diagonal element 
h,ck by 0. 

T H E O R E M 3.3. A necessary and sufficient condition that two matrices A and B 
of 2JÎ be left-associates is that they have the same canonical form H {or C). 

If PB = A, where P is unimodular, let U be a unimodular matr ix such t ha t 
UA = H is the first canonical form of A. Then H = UPB = VB, where 
V = UP is unimodular, so tha t H is the first canonical form of B also. 
Conversely, suppose tha t E and F are unimodular matrices such tha t EA = 
FB = H is the first canonical form of A and of B. Then QB = A, where 
Q = E~lF is unimodular, and A and B are left-associates. 

4. M u t u a l le f t -div is ib i l i ty , g .c .r .d . , a n d l . c . l . m . Two matrices A and B 
of Wfl are said to be mutually left-divisible if and only if there exist matrices 
R and T of 9ft such t ha t RA = B and TB = A. I t is well known tha t the 
concepts of mutual left-divisibility and left-associativity are equivalent for 
matrices with elements in a principal ideal ring. Steinitz (5) has shown their 
equivalence for matrices with elements in an algebraic domain. Kaplansky 
(3) considered this problem and obtained some results based on the radical 
of a ring. We now show tha t the two concepts are equivalent for matrices of 9M. 
If A and B are left-associates so tha t PA = B, where P is unimodular, then 
P~]B = A and A and B are mutual ly left-divisible. Conversely, suppose 
RA = B and TB = A. Let UA = H and VB = G be the first canonical forms 
of A and 5 , respectively. Then A = U~lH and B = V~lG imply RU~1H = V~lG 
and TV~lG = U~lH. Whence, PH = G and QG = H, where P = VRU~l 

and Q — UTV~l\ t ha t is, H and G are mutual ly left-divisible. In proving the 
uniqueness of the first canonical form H, we showed tha t PH = G and 
QG = H, where P and Q are unimodular, imply H = G. However, the uni-
modular i ty of P and Q was not used anywhere in this proof. Hence, we estab
lished a t tha t point also tha t if H and G are mutual ly left-divisible, then 
H = G. This enables us to s ta te the following result. 

T H E O R E M 4.1. A necessary and sufficient condition that two matrices A and B 
of 9M be mutually left-divisible is that they be left-associates. 

Let us now consider the matrix 

\A Ol 

of order 2n. Then there exists a unimodular matrix X of order 2n, which we 
write in the form of n X n blocks, such tha t 
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A',, A'12p 
X-n XrtJU 

A 0 ~D 0 
B 0 0 0 

is the first canonical form of the above matrix. Thus 

XUA + Xl2B = D 

so that every c.r.d. of A and B is a right divisor of D. Since X is unimodular 
there exists a matrix Y = X - 1 such that 

A 0 Fu F12 \ D 0 
B 0_ _ F 2 i Yn_ Lo 0 

whence A = \\iD, B = Y2iD, so that D is a c.r.d. of A and B. Hence D is a 
g.c.r.d. of 4̂ and B. 

The matrix M = X2\A = X22-£ is a c.l.m. of A and B. Using an argument 
due to Stewart (6), we are able to show that M is the 1.c.l.m. of A and B 
when D = I. To do this, let Mi = UA = FJ3 be any other c.l.m. of A and 
B. We can then write the following equations: 

Xi i X\ 
U V 

YisT.4 0"1 TZ? 0" 
V j_B o j LO 0. 

A',, A', F, , 
F 2 1 

F12 

F2 2 

/J» 

0 0 

z1 2] [P 0" ~D 0 
Z22_ Lo o_ _0 0_ 

Consider the most general solution of the equation 

Z21 

Here Z i 2 and Z22 are arbitrary, but Zn and Z2i must be chosen so that 

Zn£> = A Z-nD = 0. 

Subject to these conditions the following equations must hold : 

[Xu xvr \Y ! Yli~ "Zn z12 
l u 
~Xu 

V 

xvf\ 
\_Y ii F , 2 _ 

"Zn Z »T 
_Z2 1 

' I n 
z22 

^U v J _Z-n Z « 1 .X, i X->, 

In particular, it appears that /7 has the form 

U = ZJ2\X\\ -J- Z'22^21-

Hut \i D = I the only solution of Z2iD = 0 is Z2i = 0. Hence it follows in 
this case that U = Z22X2i; then from Mi = UA = Z22X2i,4 = Z22M it 
follows that i f = X2i^4 = X22B is indeed a 1.c.l.m. of A and 5 . These results 
are stated in the following theorem. 

THEOREM 4.2. In the mairie equation 

I n 
X21 i 0 

0 
D 
0 
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written in the form of n X n blocks, where X is unimodular, the matrix D is in 
all cases a g.c.r.d. of A and B; if D = I, then the matrix M = X2iA = XViB 
is a l.c.l.m. of A and B. 

THEOREM 4.3. The g.c.r.d. D and the l.c.l.m. M of two matrices A and B 
are uniquely determined up to unimodular left factors. 

If D and D\ are two g.c.r.d.'s of A and B, then each is a c.l.m. of the other, 
say D = UDl and Dx = VD. Then by theorem 4.1, Z) and Dx are left-
associates. 

If M and M\ are two l.c.l.m.'s of A and B, then each is a common right 
divisor of the other, say Mi = UM and M = VM\. Then by Theorem 4.1, 
M and M\ are left-associates. 

5. Conclusion. The analogy of our results to the corresponding ones for 
the classical case seems remarkable when one considers that a principal ideal 
ring contains no proper divisors of 0, whereas every element of a Boolean 
ring except 1 and 0 is a proper divisor of 0. Finally we mention that the restric
tion to square matrices was inessential. 
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