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FLUCTUATION LIMIT OF
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Abstract

We investigate a sequence of Galton–Watson branching processes with immigration,
where the offspring mean tends to its critical value 1 and the offspring variance tends
to 0. It is shown that the fluctuation limit is an Ornstein–Uhlenbeck-type process. As a
consequence, in contrast to the case in which the offspring variance tends to a positive
limit, it transpires that the conditional least-squares estimator of the offspring mean is
asymptotically normal. The norming factor is n3/2, in contrast to both the subcritical case,
in which it is n1/2, and the nearly critical case with positive limiting offspring variance,
in which it is n.
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1. Introduction

Let {ξk,j , εk : k, j ∈ N} be independent, nonnegative integer-valued random variables such
that {ξk,j : k, j ∈ N} and {εk : k ∈ N} are identically distributed. Recursively define

Xk =
Xk−1∑
j=1

ξk,j + εk for k ∈ N, X0 = 0. (1.1)

The sequence (Xk)k∈Z+ is called a branching process with immigration. We can interpret Xk

as the size of the kth generation of a population, where ξk,j is the number of offspring of the
j th individual in the (k − 1)th generation and εk is the number of immigrants contributing to
the kth generation. Assume that m := E ξ1,1, λ := E ε1, σ 2 := var ξ1,1, and b2 := var ε1 are
finite. The cases m < 1, m = 1, and m > 1 are referred to respectively as subcritical, critical,
and supercritical. For k ∈ Z+, let Fk denote the σ -algebra generated by {X0, X1, . . . , Xk}.
Then, by (1.1),

E(Xk | Fk−1) = mXk−1 + λ, k ∈ N.
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Clearly,
Mk := Xk − E(Xk | Fk−1) = Xk − mXk−1 − λ, k ∈ N,

defines a martingale difference sequence (Mk)k∈N with respect to the filtration (Fk)k∈Z+ .
Moreover, we obtain the recursion

Xk = mXk−1 + λ + Mk for k ∈ N. (1.2)

In the critical case m = 1, Wei and Winnicki [16] considered the random step functions

X(n)(t) := X�nt�, t ∈ R+, n ∈ N,

as random elements in the Skorokhod space D(R+, R+), where �·� denotes the lower integer
part, and proved the weak convergence

1

n
X(n) d−→ X, as n → ∞, (1.3)

in D(R+, R+), where (X(t))t∈R+ is a (nonnegative) diffusion process with generator A such
that

Af (x) = λf ′(x) + 1
2σ 2xf ′′(x), f ∈ C∞

c (R+),

and X(0) = 0. Here C∞
c (R+) is the space of infinitely differentiable functions on R+ that have

compact support. The process (X(t))t∈R+ can also be characterized as the (unique) solution
to the stochastic differential equation

dX(t) = λ dt + σ
√

X(t) dW(t), t ∈ R+,

with initial condition X(0) = 0, where (W(t))t∈R+ is a standard Wiener process.

For each n ∈ N, let {ξ (n)
k,j , ε

(n)
k : k, j ∈ N} be independent, nonnegative integer-valued

random variables such that {ξ (n)
k,j : k, j ∈ N} and {ε(n)

k : k, j ∈ N} are identically distributed. In
this paper, we consider a sequence of branching processes with immigration (X

(n)
k )k∈Z+ , n ∈ N,

given by the recursion

X
(n)
k =

X
(n)
k−1∑

j=1

ξ
(n)
k,j + ε

(n)
k for k, n ∈ N, X

(n)
0 = 0. (1.4)

Assume that mn := E ξ
(n)
1,1 , λn := E ε

(n)
1 , σ 2

n := var ξ
(n)
1,1 , and b2

n := var ε
(n)
1 are finite for all

n ∈ N. The sequence (1.4) is said to be nearly critical if mn → 1 as n → ∞. Now introduce
the random step functions

X(n)(t) := X
(n)
�nt�, t ∈ R+, n ∈ N.

Under the assumptions that

(i) mn = 1 + αn−1 + o(n−1) as n → ∞, for some α ∈ R;

(ii) σ 2
n → σ 2 > 0 as n → ∞;

(iii) E
(
|ξ (n)

1,1 − mn|2 1{|ξ (n)
1,1 −mn|≥θ

√
n}
)

→ 0 as n → ∞, for all θ > 0; and

(iv) λn → λ > 0 and b2
n → b2 > 0 as n → ∞,

https://doi.org/10.1239/aap/1118858637 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1118858637


Fluctuation limit of branching processes 525

Sriram [15] proved that
1

n
X(n) d−→ Xα as n → ∞, (1.5)

where (Xα(t))t∈R+ is a (nonnegative) diffusion process with generator Aα such that

Aαf (x) = (λ + αx)f ′(x) + 1
2σ 2xf ′′(x), f ∈ C∞

c (R+),

and Xα(0) = 0. The process (Xα(t))t∈R+ is the (unique) solution of the stochastic differential
equation

dXα(t) = (λ + αXα(t)) dt + σ
√

Xα(t) dW(t), t ∈ R+,

with initial condition Xα(0) = 0. In Theorem 2.1, below, we show that Sriram’s result (1.5)
is also valid if σ 2

n → 0 (in which case condition (iii) is not needed). In this case, the limit
process Xα is a deterministic function Xα(t) = µX(t) := λ

∫ t

0 eαs ds, t ∈ R+, satisfying the
(nonrandom) differential equation dµX(t) = (λ + αµX(t)) dt , t ∈ R+. In fact, this function
can be considered to be a degenerate, i.e. deterministic, diffusion process with generator Aα such
that Aαf (x) = (λ+αx)f ′(x), f ∈ C∞

c (R+). Note that the convergence of finite-dimensional
distributions of a sequence of branching processes with immigration has been investigated by
Kawazu and Watanabe [10] and Aliev [1].

Based on Sriram’s result (1.5), we can easily obtain the asymptotic behaviour of the least-
squares estimators of mn and λn (see Section 3). (Note that these statistics have also been
investigated in the subcritical and supercritical cases; see also Section 3.) We are interested
in the asymptotic behaviour of these estimators in a nearly critical case in which the offspring
variance σ 2

n tends to 0. For this purpose, the limit theorem (1.5) of Sriram does not suffice, as will
be explained in Remark 3.3. Instead, we have to go one step further in the investigation of the
asymptotic behaviour of the sequence X(n). In Section 2, we prove a fluctuation limit theorem
in the case in which σ 2

n → 0, i.e. we show that the sequence (X(n) − E X(n))/n1/2 has a limit
process X̃ as n → ∞. The process (X̃(t))t∈R+ turns out to be an Ornstein–Uhlenbeck-type
process driven by a Wiener process in the sense of Definition I.4.9 of [9].

We remark that Li [13] proved a similar result for sequences of continuous-time discrete-
state branching processes with immigration. He started the nth process from an appropriate
nondegenerate initial distribution in such a way that its mean function became a constantan, with
a > 0. After centring by subtracting an, and normalizing by dividing by n1/2, he also obtained
an Ornstein–Uhlenbeck-type limit process, but driven by a spectrally positive Lévy process.
The basic difference comes from the fact that Li did not assume finite second moments of the
offspring distributions. The method of proof is also different: Li applied Laplace transforms,
while we have chosen another approach. To explain our method, let F (n)

k denote the σ -algebra
generated by {X(n)

0 , X
(n)
1 , . . . , X

(n)
k }, for n ∈ N and k ∈ Z+. Let

M
(n)
k := X

(n)
k − E(X

(n)
k | F (n)

k−1) = X
(n)
k − mnX

(n)
k−1 − λn, k, n ∈ N,

and introduce the random step functions

M(n)(t) :=
�nt�∑
k=1

M
(n)
k , t ∈ R+, n ∈ N.

In order to prove convergence of the sequence (X(n) − E X(n))/n1/2 as n → ∞, we first show,
using the martingale central limit theorem, that M(n)/n1/2 has a limit process M̃ as n → ∞,
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where (M̃(t))t∈R+ is a Wiener process. Then we show that (X(n) − E X(n))/n1/2 is a function
of M(n)/n1/2, and use a continuous-mapping-type argument to derive its convergence.

Grimvall [4] proved a fluctuation-type limit theorem for a sequence of branching processes
without immigration. (See also Lamperti [12].) In this case, the processes (X

(n)
k )k∈Z+ cannot

start from 0, and the process X
(n)
�nt� can be centred by subtracting the initial value X

(n)
0 , as in

[13]. With suitable normalization, the limiting process will be a Wiener process, and its drift
and variance depend on the limiting behaviour of the offspring mean and variance, respectively;
see [4, Theorem 4.4]. In our case, the (deterministic) time change concerning the limit process
(M̃(t))t∈R+ is usually not linear, which is an effect of the immigration part. Grimvall not only
gave sufficient conditions for the convergence of a suitable normalized sequence X

(n)
�nt� − X

(n)
0 ,

but also proved that the Lindeberg-type condition on the offspring distribution is necessary
and sufficient for the convergence. This suggests that our Lindeberg-type conditions on the
offspring and immigration distributions are close to being optimal.

Based on the result of Section 2, we prove in Section 3 that the least-squares estimators of mn

and λn are asymptotically normal, in contrast to the case in which the offspring variance tends
to a positive limit. The norming factor for the offspring mean is n3/2, in contrast to both the
subcritical case, in which it is n1/2, and the nearly critical case with positive limiting offspring
variance, in which it is n. We remark that the results of the present paper are generalizations of
those of [7] and [8], where a Bernoulli offspring distribution was assumed.

2. Fluctuation limit theorem

Consider the sequence of branching processes with immigration given in (1.4). We first
investigate the asymptotic behaviour of the sequence X(n)/n in the case that σ 2

n → 0. We
prove the following analogue of Sriram’s result (1.5).

Theorem 2.1. Suppose that

(i) mn = 1 + αn−1 + o(n−1) as n → ∞, for some α ∈ R;

(ii) σ 2
n → 0 as n → ∞; and

(iii) λn → λ and b2
n → b2 as n → ∞, for some λ ≥ 0 and b2 ≥ 0.

Then, weakly in the Skorokhod space D(R+, R+),

n−1X(n) d−→ µX as n → ∞,

where

µX(t) := λ

∫ t

0
eαs ds, t ∈ R+.

Remark 2.1. Note that, in the case in which σ 2
n → 0, no Lindeberg condition (such as condition

(iii) of Sriram [15] or condition (iii) or (v) of our Theorem 2.2, below) is needed on the random
variables {ξ (n)

k,j : n ∈ N, 1 ≤ k, j ≤ n} or {ε(n)
j : n ∈ N, 1 ≤ j ≤ n}.

Proof of Theorem 2.1. The theorem can be proved by an argument similar to that of
[3, Chapter 9, Theorem 1.3], where it was applied to a branching process without immigration;
see also [16] in the case of a single branching process with immigration, and [15] in the case
of a sequence of branching processes with immigration when σ 2

n → σ 2 > 0.
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Observe that (X
(n)
k /n)k∈Z+ is a Markov chain with values in En := {�/n : � ∈ Z+}. For

each f ∈ C∞
c (R+), define

Tnf (x) := E f

(
n−1

( nx∑
j=1

ξ
(n)
1,j + ε

(n)
1

))
, x ∈ En.

Since X(n)(0) = 0, n ∈ N, from the results of [3, Chapter 1, Theorem 6.5 and Chapter 4,
Corollary 8.9] it is sufficient to show that

lim
n→∞ sup

x∈En

|�f
n (x)| = 0 for all f ∈ C∞

c (R+), (2.1)

where �
f
n (x) := n(Tnf (x)−f (x))−(λ+αx)f ′(x) for x ∈ En and f ∈ C∞

c (R+). Introducing

S̃(n)
k :=

k∑
j=1

(ξ
(n)
1,j − 1) + ε

(n)
1 , k ∈ Z+, n ∈ N,

we have Tnf (x) = E f (x + n−1S̃(n)
nx ). By Taylor’s formula,

Tnf (x) − f (x) = f ′(x)n−1 E S̃(n)
nx + n−2 E

(
(S̃(n)

nx )2
∫ 1

0
(1 − v)f ′′(x + vn−1S̃(n)

nx ) dv

)
.

Since, for x ∈ En,

E S̃(n)
nx = n(mn − 1)x + λn,

E(S̃(n)
nx )2 = nσ 2

n x + b2
n + λ2

n + n2(mn − 1)2x2 + 2n(mn − 1)xλn, (2.2)

we have �
f
n (x) = �

f
n,1(x) + �

f
n,2(x) + �

f
n,3(x), where

�
f
n,1(x) := f ′(x)((n(mn − 1) − α)x + (λn − λ)),

�
f
n,2(x) := n−1 E

(
(S̃(n)

nx )2
∫ 1

0
(1 − v)(f ′′(x + vn−1S̃(n)

nx ) − f ′′(x)) dv

)
,

�
f
n,3(x) := 1

2
xf ′′(x)σ 2

n + 1

2n
f ′′(x)(b2

n + λ2
n + n2(mn − 1)2x2 + 2n(mn − 1)xλn).

To prove (2.1), it suffices to show that limn→∞ �
f
n (xn) = 0 for every sequence (xn)n∈N, with

xn ∈ En and n ∈ N, such that xn → x ∈ [0, ∞]. Assumptions (i)–(iii) clearly imply that
limn→∞ �

f
n,i(xn) = 0 for i = 1, 3 and for all such sequences xn → x ∈ [0, ∞]. In order to

handle �
f
n,2(xn), suppose that the support of f is contained in [0, c]. Since

x + vn−1S̃(n)
nx = x + vn−1

( nx∑
j=1

(ξ
(n)
1,j − 1) + ε

(n)
1

)
≥ x(1 − v),

the first term of the integrand in �
f
n,2(x) is 0 if v < 1 − c/x. Consequently,

|�f
n,2(xn)| ≤ n−1(‖f ′′‖∞((c/xn) ∧ 1)2 + |f ′′(xn)|) E(S̃(n)

nxn
)2, (2.3)

where ‖ · ‖∞ denotes the supremum norm. Using (2.2), we can easily check that the right-
hand side of (2.3) tends to 0 for all sequences xn → x ∈ [0, ∞]. Thus, we conclude that
limn→∞ �

f
n,2(xn) = 0 and, hence, obtain (2.1).
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The main result of the paper is the following fluctuation limit theorem.

Theorem 2.2. Suppose that

(i) mn = 1 + αn−1 + o(n−1) as n → ∞, for some α ∈ R;

(ii) σ 2
n = βn−1 + o(n−1) as n → ∞, for some β ≥ 0;

(iii) n E
(
|ξ (n)

1,1 − mn|2 1{|ξ (n)
1,1 −mn|>θn1/2}

)
→ 0 as n → ∞, for all θ > 0;

(iv) λn → λ and b2
n → b2 as n → ∞, for some λ ≥ 0 and b2 ≥ 0; and

(v) E
(
|ε(n)

1 − λn|2 1{|ε(n)
1 −λn|>θn1/2}

)
→ 0 as n → ∞, for all θ > 0.

Then, weakly in the Skorokhod space D(R+, R
2),

n−1/2(X(n) − E X(n), M(n))
d−→ (X̃, M̃) as n → ∞,

where (M̃(t))t∈R+ is a Wiener process M̃(t) = W(T (t)), t ∈ R+, with

T (t) :=
∫ t

0

(s) ds, 
(t) := b2 + βλ

∫ t

0
eαs ds, t ∈ R+;

(W(t))t∈R+ is a standard Wiener process; and

X̃(t) :=
∫ t

0
eα(t−s) dM̃(s), t ∈ R+,

is an Ornstein–Uhlenbeck-type process driven by (M̃(t))t∈R+ .

Remark 2.2. Conditions (iii) and (v) are, in fact, the Lindeberg conditions for the triangular sys-
tems {ξ (n)

k,j /n1/2 : n ∈ N, 1 ≤ k, j ≤ n} and {ε(n)
j /n1/2 : n ∈ N, 1 ≤ j ≤ n}, respectively; see

also Grimvall [4], who investigated fluctuation theorems for sequences of branching processes
without immigration, and the remarks in the introduction. Clearly, conditions (iii) and (v) hold
if the offspring and immigration distributions satisfy Lyapunov-type conditions, i.e. if there
exists a γ > 0 such that n1−γ /2 E |ξ (n)

1,1 − mn|2+γ → 0 and n−γ /2 E |ε(n)
1 − λn|2+γ → 0 as

n → ∞.

Example 2.1. If ξ
(n)
1,1 has a Bernoulli distribution with mean 1 − an−1, where a ≥ 0, then

mn = 1 − an−1 and σ 2
n = an−1 + o(n−1) as n → ∞; that is, we have α = −a and β = a.

This special case was investigated in [7] and [8]. If the offspring distributions are geometric
distributions with parameter pn = 1 − an−1, where a ≥ 0, i.e. P(ξ

(n)
1,1 = �) = pn(1 − pn)

�−1,
� = 1, 2, . . . , then mn = p−1

n = 1 +an−1 +o(n−1) and σ 2
n = (1 −pn)p

−2
n = an−1 +o(n−1)

as n → ∞. In this case, α = a and β = a. Finally, suppose that the offspring distributions have
a common range {0, 1, 2}, such that P(ξ

(n)
1,1 = 0) = an−1, P(ξ

(n)
1,1 = 1) = 1 − (a + b)n−1, and

P(ξ
(n)
1,1 = 2) = bn−1, where a, b ≥ 0. Then mn = 1+(b−a)n−1 and σ 2

n = (a+b)n−1+o(n−1)

as n → ∞, i.e. α = b − a and β = a + b.
We note that condition (iii) is trivially satisfied in the first and third cases. In the second

case, the centred fourth moment of the geometric distribution with the above parametrization
tends to 0 as n → ∞ and, thus, by Remark 2.2, condition (iii) holds.
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Remark 2.3. We remark that (M̃(t))t∈R+ is a continuous zero-mean Gaussian process with
independent (but not necessarily stationary) increments. It has stationary increments if and
only if βλ = 0, when M̃(t) = W(b2t), t ∈ R+, is a Wiener process with variance b2. The
process (M̃(t))t∈R+ is always a martingale, meaning that we can define stochastic integrals
with respect to it. Its covariance function has the form

cov(M̃(s), M̃(t)) = T (s ∧ t) for s, t ∈ R+.

By comparing the covariance structures, we obtain another representation of the process, of the
form

M̃(t) =
∫ t

0

√

(s) dW(s), t ∈ R+.

Consequently, the process (M̃(t))t∈R+ is the unique solution of the stochastic differential
equation

dM̃(t) = √

(t) dW(t), t ∈ R+,

with initial condition M̃(0) = 0. The process (X̃(t))t∈R+ is a continuous zero-mean Gaussian
martingale with covariance function

cov(X̃(s), X̃(t)) =
∫ s∧t

0
eα(s+t−2u)
(u) du for s, t ∈ R+.

We remark that the process (X̃(t))t∈R+ has independent increments if and only if α = 0, when
X̃ = M̃. By comparing the covariance structures, we have the representation

X̃(t) = eαt

∫ t

0
e−αs

√

(s) dW(s) for t ∈ R+.

Hence, for the process Ỹ(t) := e−αtX̃(t), t ∈ R+, we have dỸ(t) = e−αt (
(t))1/2 dW(t).
From Itô’s formula, we find that the process X̃(t) = eαt Ỹ(t) is the unique solution of the
stochastic differential equation

dX̃(t) = αX̃(t) dt +√

(t) dW(t), t ∈ R+, X̃(0) = 0.

In order to prove Theorem 2.2, we need the following lemma.

Lemma 2.1. Let (Xk)k∈Z+ be the branching processes with immigration given in (1.1). Then,
for all k ∈ Z+ and m = 1, we have

E Xk = mk − 1

m − 1
λ, var Xk = m2k − 1

m2 − 1
b2 + (mk − 1)(mk−1 − 1)

(m − 1)(m2 − 1)
λσ 2,

and, if m = 1, we have E Xk = kλ and var Xk = kb2 + 1
2k(k − 1)λσ 2. Moreover,

cov(Xk, X�) = m|k−�| var Xk∧�, E(M2
k | Fk−1) = σ 2Xk−1 + b2

for all k, � ∈ Z+.
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Proof. The formulae for E Xk , var Xk , and cov(Xk, X�) are direct consequences of the
recursive relationships

E Xk = m E Xk−1 + λ for k ∈ N, (2.4)

var Xk = m2 var Xk−1 + σ 2 E Xk−1 + b2 for k ∈ N,

cov(Xk, X�) = m cov(Xk, X�−1) for 0 ≤ k < �,

which follow from calculating the conditional expectation with respect to Xk−1 in the first two
cases, with respect to the σ -algebra F�−1 in the third case, and then taking the expectation. The
final assertion of the theorem is obvious.

Proof of Theorem 2.2. We will make the following steps.

(A) We prove that M̃(n) := M(n)/n1/2 d−→ M̃, using the martingale central limit theorem.

(B) We show that X̃(n) := (X(n) −E X(n))/n1/2 = �n(M̃
(n)), where �n, � : D(R+, R) →

D(R+, R) are measurable mappings such that �n → � in an appropriate sense, implying

that (X̃(n), M̃(n))
d−→ (�(M̃), M̃).

(C) We prove that �(M̃) = X̃.

Step (A). By the martingale central limit theorem (see, e.g. [9, TheoremVIII.3.33]), it suffices
to prove that, for all t ∈ R+,

1

n

�nt�∑
k=1

E((M
(n)
k )2 | F (n)

k−1)
p−→ T (t) as n → ∞, (2.5)

where ‘
p−→’ denotes convergence in probability, and that, for all θ > 0 and t ∈ R+,

1

n

�nt�∑
k=1

E
(
(M

(n)
k )2 1{|M(n)

k |>θ
√

n}
∣∣∣ F (n)

k−1

)
p−→ 0 as n → ∞. (2.6)

By Lemma 2.1, E((M
(n)
k )2 | F (n)

k−1) = σ 2
n X

(n)
k−1 + b2

n. Thus, in order to prove (2.5), we have to
show that

σ 2
n

n

�nt�∑
k=1

X
(n)
k−1

p−→ βλ

∫ t

0

(∫ v

0
eαu du

)
dv as n → ∞. (2.7)

This statement will clearly hold once we have proved that

E

(
σ 2

n

n

�nt�∑
k=1

X
(n)
k−1

)
→ βλ

∫ t

0

(∫ v

0
eαu du

)
dv as n → ∞, (2.8)

var

(
σ 2

n

n

�nt�∑
k=1

X
(n)
k−1

)
→ 0 as n → ∞. (2.9)

By Lemma 2.1, along a subsequence with mn = 1, we have

σ 2
n

n

�nt�∑
k=1

E X
(n)
k−1 = nσ 2

n λn

�nt�(�nt� − 1)

2n2 → 1

2
βλt2 as n → ∞. (2.10)
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Assumption (i) of Theorem 2.2 implies that

n(mn − 1) → α as n → ∞. (2.11)

For sufficiently large n ∈ N, we have mn = eαn/n, where

αn = n log mn = log

(
1 + α + o(1)

n

)n

→ α as n → ∞.

Thus,
m�nt�

n = eαn�nt�/n → eαt as n → ∞. (2.12)

Consequently, along a subsequence with mn = 1, we find that

σ 2
n

n

�nt�∑
k=1

E X
(n)
k−1 = nσ 2

n λn

n(mn − 1)

(
m

�nt�
n − 1

n(mn − 1)
− �nt�

n

)
→ βλ

α

(
eαt − 1

α
− t

)
if α = 0; otherwise, the limit is 1

2βλt2. Taking this convergence and (2.10) into account, we
recover (2.8).

In order to prove (2.9), we first note that, by Lemma 2.1,

var

(
σ 2

n

n

�nt�∑
k=1

X
(n)
k−1

)
= (Un(t)b

2
n + Vn(t)λnσ

2
n )

σ 4
n

n2 , (2.13)

where

Un(t) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�nt�∑
k=1

m2k−2
n − 1

m2
n − 1

(
2
m

�nt�−k+1
n − 1

mn − 1
− 1

)
if mn = 1,

�nt�∑
k=1

(k − 1)(2(�nt� − k + 1) − 1) if mn = 1,

Vn(t) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�nt�∑
k=1

(mk−1
n − 1)(mk−2

n − 1)

(mn − 1)(m2
n − 1)

(
2
m

�nt�−k+1
n − 1

mn − 1
− 1

)
if mn = 1,

�nt�∑
k=1

1
2 (k − 1)(k − 2)(2(�nt� − k + 1) − 1) if mn = 1.

If mn = 1 then limn→∞ Un(t)/n3 = 1
3 t3 for all t ∈ R+ and limn→∞ Vn(t)/n4 = 1

12 t4 for all
t ∈ R+. Thus, taking into account assumptions (ii) and (iv), along a subsequence with mn = 1,
we have

(Un(t)b
2
n + Vn(t)λnσ

2
n )

σ 4
n

n2 = n2σ 4
n b2

n

n

Un(t)

n3 + n3σ 6
n λn

n

Vn(t)

n4 → 0 as n → ∞, (2.14)

for all t ∈ R+. If mn = 1 then, using (2.11) and (2.12) in the case of α = 0, we have

lim
n→∞

Un(t)

n3 = e2αt − 4eαt + 2αt + 3

2α3 ,

lim
n→∞

Vn(t)

n4 = e2αt − 4(αt − 1)eαt − 2αt − 5

2α4 ;
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otherwise, the limits are 1
3 t3 and 1

12 t4, respectively. Hence, for all t ∈ R+, along a subsequence
with mn = 1 we again obtain (2.14). From (2.13), we recover (2.9) and, finally, (2.5).

To prove the conditional Lindeberg condition (2.6), we consider the decomposition M
(n)
k =

N
(1)
n,k + N

(2)
n,k , where

N
(1)
n,k :=

X
(n)
k−1∑

j=1

(ξ
(n)
k,j − mn), N

(2)
n,k := ε

(n)
k − λn.

Note that, for any pair of random variables, Y and Z, and for any θ > 0, we have

1{|Y+Z|>θ} ≤ 1{|Y |>θ/2} + 1{|Z|>θ/2} . (2.15)

Hence, it suffices to show that

L
(n)
i,j (t) := 1

n

�nt�∑
k=1

E
(
(N

(i)
n,k)

2 1{|N(j)
n,k |>θ

√
n}
∣∣∣ F (n)

k−1

)
p−→ 0 as n → ∞, (2.16)

for i, j = 1, 2, all θ > 0, and all t ∈ R+. To prove (2.16) for i = j = 1, we introduce the
random step functions

Sn(t) :=
�nt�∑
j=1

(ξ
(n)
1,j − mn), t ∈ R+, n ∈ N.

We note that E Sn(t) = 0, while condition (ii) implies that var Sn(t) = �nt�σ 2
n → βt .

Denote by D([0, t], R+) the Skorokhod space of nonnegative, càdlàg functions on [0, t], and
let C([0, t], R+) be the closed convex cone of nonnegative, continuous functions on [0, t]. For
fixed θ > 0 and t ∈ R+, we have

L
(n)
1,1(t) = 1

n

�nt�∑
k=1

E

(
Sn

(
�

n

)2

1{|Sn(�/n)|>θ
√

n}
)∣∣∣∣

�=X
(n)
k−1

= Fn

(
1

n
X(n)

)
,

where the measurable mapping Fn : D([0, t], R+) → R is defined by

Fn(x) := 1

n

�nt�∑
k=1

E

(
Sn

(
x

(
k − 1

n

))2

1{|Sn(x((k−1)/n))|>θ
√

n}
)

for x ∈ D([0, t], R+).

By Theorem 2.1, we have n−1X(n) d−→ µX as n → ∞, where µX is a continuous,
nonnegative, monotone-increasing function. In view of the continuous-mapping theorem
(see [2, Theorem 5.5]), in order to prove (2.16) it suffices to show that Fn(xn) → 0 if
x ∈ C([0, t], R+) and xn ∈ D([0, t], R+), with ‖xn − x‖∞ → 0 as n → ∞. (We
use the fact that, in this case, xn → x in D([0, t], R+) if and only if ‖xn − x‖∞ → 0;
see [9, Proposition VI.1.17].) Note that, in fact, we may restrict ourselves to just the function
x = µX 1[0,t] since the limit process concentrates on the point µX ∈ C(R+, R+), but the proof
is the same for a general function x. We can see that Fn(xn) = An + Bn, n ∈ N, where

An := 1

n

�nt�∑
k=1

�nxn((k−1)/n)�∑
j=1

E
(
|ξ (n)

1,j − mn|2 1{|Sn(xn((k−1)/n))|>θ
√

n}
)
,

Bn := 2

n

�nt�∑
k=1

�nxn((k−1)/n)�∑
i=2

i−1∑
j=1

E
(
(ξ

(n)
1,i − mn)(ξ

(n)
1,j − mn) 1{|Sn(xn((k−1)/n))|>θ

√
n}
)
.
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Define the random step functions Sn,j (u) := Sn(u) − (ξ
(n)
1,j − mn) 1{j≤nu} for u ∈ R+,

j, n ∈ N. Using (2.15) we obtain, for any u ∈ R+,

E
(
|ξ (n)

1,j − mn|2 1{|Sn(u)|>θ
√

n}
)

≤ E
(
|ξ (n)

1,j − mn|2
(

1{|ξ (n)
1,j −mn|>θ

√
n/2} + 1{|Sn,j (u)|>θ

√
n/2}

))
.

The random variable ξ
(n)
1,j and the random step function (Sn,j (u))u∈R+ are independent for all

j, n ∈ N so, using the Markov inequality, we have

E
(
|ξ (n)

1,j − mn|2 1{|Sn,j (u)|>θ
√

n/2}
)

≤ 4θ−2n−1σ 4
n (�nu� − 1).

Since xn tends to a continuous function in the uniform topology, there exists N ∈ N such that
xn((k − 1)/n) ≤ ‖x‖∞ + 1 for all k ∈ N, if n > N . Thus,

An ≤ (‖x‖∞ + 1)tn E
(
|ξ (n)

1,1 − mn|2 1{|ξ (n)
1,1 −mn|>θ

√
n}
)

+ 4θ−2(‖x‖∞ + 1)2tnσ 4
n

if n > N . The first term on the right-hand side tends to 0 by assumption (iii), and the second
term is O(n−1) by assumption (ii). Thus, we find that An → 0 as n → ∞. To estimate Bn,
introduce the random step functions

Vn(u) = 2
�nu�∑
i=2

i−1∑
j=1

(ξ
(n)
1,i − mn)(ξ

(n)
1,j − mn), u ∈ R+, n ∈ N.

Using the Cauchy–Schwarz and Markov inequalities, we obtain

E
(
|Vn(u)| 1{|Sn(u)|>θ

√
n}
)

≤ θ−1n−1/2(E V2
n(u) E S2

n(u))1/2

for all u ∈ R+ and n ∈ N. Since the random variables ξ
(n)
1,i and ξ

(n)
1,j , n ∈ N, are independent if

i = j , we see that

E V2
n(u) = 2�nu�(�nu� − 1)σ 4

n for all u ∈ R+ and n ∈ N.

Thus, for n > N , we have

|Bn| ≤ Cn−3/2σ 3
n

�nt�∑
k=1

⌊
nxn

(
k − 1

n

)⌋(⌊
nxn

(
k − 1

n

)⌋
− 1

)1/2

≤ Ct(‖x‖∞ + 1)3/2nσ 3
n ,

where C := 21/2θ−1. Clearly, the right-hand side tends to 0 since nσ 3
n → 0 as n → ∞, by

assumption (ii). Thus, we find that Bn → 0 as n → ∞. Consequently, we conclude that
Fn(xn) → 0 and, finally, we recover (2.16).

In the case that i = 1 and j = 2, we note that

E
(
(N

(1)
n,k)

2 1{|N(2)
n,k |>θ

√
n}
∣∣∣ F (n)

k−1

)
= σ 2

n X
(n)
k−1 P(|ε(n)

1 − λn| > θ
√

n)

and, moreover,

P(|ε(n)
1 − λn| > θ

√
n) ≤ θ−2n−1 E

(
(ε

(n)
1 − λn)

2 1{|ε(n)
1 −λn|>θ

√
n}
)
;
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hence, (2.16) is a consequence of (2.7) and assumptions (ii) and (v). In order to establish (2.16)
for i = 2 and j = 1, we use the estimate

E
(
(N

(2)
n,k)

2 1{|N(1)
n,k |>θ

√
n}
∣∣∣ F (n)

k−1

)
≤ θ−2n−1 E((N

(2)
n,k)

2(N
(1)
n,k)

2 | F (n)
k−1)

= θ−2n−1 E

(
(ε

(n)
k − λn)

2
(X

(n)
k−1∑

j=1

(ξk,j − mn)

)2 ∣∣∣∣ F (n)
k−1

)
= θ−2n−1b2

nσ
2
n X

(n)
k−1.

Thus, (2.16) follows from (2.7) and assumptions (ii) and (iv). Finally, we have

E
(
(N

(2)
n,k)

2 1{|N(2)
n,k |>θ

√
n}
∣∣∣ F (n)

k−1

)
= E

(
(ε

(n)
1 − λn)

2 1{|ε(n)
1 −λn|>θ

√
n}
)

and, hence, the case i = j = 2 follows from assumption (v). Having thus proved (2.16), we
conclude step (A).

Step (B). By the difference equation (1.2) and the recursion (2.4), we obtain the recursion

X
(n)
k − E X

(n)
k = mn(X

(n)
k−1 − E X

(n)
k−1) + M

(n)
k ,

with solution X
(n)
k − E X

(n)
k = ∑k

j=1 m
k−j
n M

(n)
j . Hence,

X̃(n)(t) = 1√
n

�nt�∑
j=1

m
�nt�−j
n M

(n)
j =

�nt�∑
j=1

m
�nt�−j
n

(
M̃(n)

(
j

n

)
− M̃(n)

(
j − 1

n

))
.

Again writing mn = eαn/n, where αn → α, we have

X̃(n)(t) =
∫ �nt�/n

0
eαn(�nt�/n−s) dM̃(n)(s),

which suggests that X̃(n) d−→ ∫ t

0 eα(t−s) dM̃(s). We prove this weak convergence in the
following way: we rearrange the sum, then use the continuous-mapping theorem, and, finally,
rearrange the result using Itô’s formula. Thus, we write

X̃(n)(t) = M̃(n)

(�nt�
n

)
+ αn

∫ �nt�/n

0
eαn(�nt�/n−s)M̃(n)(s) ds.

This implies that (X̃(n), M̃(n)) = n(M̃
(n)), with the mapping n : D(R+, R) → D(R+, R

2)

defined by

n(x)(t) =
(

x

(�nt�
n

)
+ αn

∫ �nt�/n

0
eαn(�nt�/n−s)x(s) ds, x(t)

)
for x ∈ D(R+, R).

We want to show that n(M̃
(n))

d−→ (M̃), where the mapping  : D(R+, R) → D(R+, R
2)

is defined by

(x)(t) =
(

x(t) + α

∫ t

0
eα(t−s)x(s) ds, x(t)

)
for x ∈ D(R+, R).
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Since almost all trajectories of the limit process are continuous, in view of the continuous-
mapping theorem, it suffices to check that n(xn) → (x) if x ∈ C([0, t], R) and xn ∈
D([0, t], R), with xn → x as n → ∞. (Note that the mappings �n and � can be defined as
the first coordinates of the mappings n and , respectively.)

Step (C). Itô’s formula yields

X̃(t) =
∫ t

0
eα(t−s) dM̃(s) = M̃(t) + α

∫ t

0
eα(t−s)M̃(s) ds,

whence (M̃) = (X̃, M̃). This completes the proof of Theorem 2.2.

3. Asymptotics of the least-squares estimators

Consider the branching process with immigration given in (1.1). If the immigration mean
λ is known, then the conditional least-squares estimator m̂n, based on the regression equation
(1.2), can be obtained by minimizing the sum of squares

n∑
k=1

(Xk − mXk−1 − λ)2 (3.1)

with respect to m. It takes the form

m̂n =
∑n

k=1 Xk−1(Xk − λ)∑n
k=1 X2

k−1

.

If the immigration mean λ is unknown, then the joint conditional least-squares estimator
(m̃n, λ̃n) of the vector (m, λ) can be obtained by minimizing the sum of squares (3.1) with
respect to m and λ. The components of this estimator take the form

m̃n =
∑n

k=1 Xk−1(Xk − X)∑n
k=1(Xk−1 − X∗)2

, λ̃n = X − m̃nX∗,

where

X := 1

n

n∑
k=1

Xk, X∗ := 1

n

n∑
k=1

Xk−1.

In the subcritical case (m < 1), under the assumptions that E ξ3
1,1 < ∞ and E ε3

1 < ∞, the
estimators m̂n and (m̃n, λ̃n) are asymptotically normal:

n1/2(m̂n − m)
d−→ N (0, c2) as n → ∞,(

n1/2(m̃n − m)

n1/2(̃λn − λ)

)
d−→ N (0, �) as n → ∞,

where the variance c2 and the covariance matrix � can be respectively expressed in terms of
the moments, up to the third order, of the offspring and immigration distributions (see Klimko
and Nelson [11]); closely related estimators were proposed and studied by Heyde and Seneta
[5], [6] and Quine [14].
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In the critical case (m = 1), the estimators m̂n and (m̃n, λ̃n) are not asymptotically normal,
but

n(m̂n − 1)
d−→

1
2X(1)2 − (λ + 1

2σ 2)
∫ 1

0 X(t) dt∫ 1
0 X(t)2 dt

as n → ∞, (3.2)

and

n(m̃n − 1)
d−→

1
2X(1)2 − (X(1) + 1

2σ 2)
∫ 1

0 X(t) dt∫ 1
0 X(t)2 dt − (

∫ 1
0 X(t) dt)2

as n → ∞; (3.3)

see [17]. The proof is based on the convergence result (1.3). Wei and Winnicki [17] also proved
that λ̃n is not a consistent estimator of λ.

Now let us consider the sequence of branching processes with immigration given in (1.4).
In the case in which λn is known, the estimator m̂n for mn is given by

m̂n =
∑n

k=1 X
(n)
k−1(X

(n)
k − λn)∑n

k=1(X
(n)
k−1)

2
.

If both mn and λn are unknown, then the components of the joint estimator (m̃n, λ̃n) are given
by

m̃n =
∑n

k=1 X
(n)
k−1(X

(n)
k − X

(n)
)∑n

k=1(X
(n)
k−1 − X

(n)

∗ )2
, λ̃n = X

(n) − m̃nX
(n)

∗ ,

where, now,

X
(n) := 1

n

n∑
k=1

X
(n)
k , X

(n)

∗ := 1

n

n∑
k=1

X
(n)
k−1.

Using the convergence result (1.5), due to Sriram [15], we can easily show that (3.2) and (3.3)
hold with X replaced by Xα in the case that σ 2

n → σ 2 > 0.
By applying the continuous-mapping theorem and using Slutsky’s argument, in the nearly

critical model of Theorem 2.2 we can derive the asymptotic behaviour of the estimators m̂n and
(m̃n, λ̃n) in exactly the same way as was done in the case of a Bernoulli offspring distribution
in [7] and [8].

Theorem 3.1. Suppose that the assumptions of Theorem 2.2 hold, for some λ > 0. Then

n3/2(m̂n − mn)
d−→
∫ 1

0 µX(t) dM̃(t)∫ 1
0 µX(t)2 dt

d= N (0, c2),

where ‘
d=’ denotes equality in distribution, µX(t) = λ

∫ t

0 eαu du, t ∈ R+, and

c2 :=
∫ 1

0 µX(t)2
(t) dt

(
∫ 1

0 µX(t)2 dt)2
,

with 
(t) = b2 + βµX(t), t ∈ R+.
Moreover,

(
n3/2(m̃n − mn)

n1/2(̃λn − λn)

)
d−→

⎛⎜⎜⎜⎜⎝
∫ 1

0 µX(t) dM̃(t) − µXM̃(1)∫ 1
0 (µX(t) − µX)2 dt

M̃(1)
∫ 1

0 µX(t)2 dt − µX

∫ 1
0 µX(t) dM̃(t)∫ 1

0 (µX(t) − µX)2 dt

⎞⎟⎟⎟⎟⎠ d= N (0, �),
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where µX := ∫ 1
0 µX(t) dt and

� := 1

(
∫ 1

0 (µX(t) − µX)2 dt)2
(σi,j )1≤i,j≤2,

with

σ1,1 :=
∫ 1

0
(µX(t) − µX)2
(t) dt,

σ1,2 = σ2,1 :=
∫ 1

0
(µX(t) − µX)

(∫ 1

0
µX(t)2 dt − µXµX(t)

)

(t) dt,

σ2,2 :=
∫ 1

0

(∫ 1

0
µX(t)2 dt − µXµX(t)

)2


(t) dt.

Remark 3.1. We remark that, in this case, λ̃n is again a consistent estimator, in contrast to the
case in which σ 2

n → σ 2 > 0.

Remark 3.2. If b2 = β = 0 then the limiting normal distributions are degenerate, i.e. c2 = 0
and � = 0. Thus, in this case, we find that n3/2(m̂n − mn)

p−→ 0, n3/2(m̃n − mn)
p−→ 0, and

n1/2(̃λn − λn)
p−→ 0 as n → ∞, which means that the norming factors n3/2 and n1/2 are not

appropriate.

Remark 3.3. The result of Sriram’s [15] convergence theorem, i.e. X(n)/n
d−→ µX, implies

only that n(m̂n − mn)
p−→ 0, while, from the convergence X̃(n) = (X(n) − E X(n))/n1/2 d−→ X̃

of Theorem 2.2, we can derive that n3/2(m̂n − mn)
d−→ N (0, c2). A heuristic argument for this

goes as follows. On the one hand, we have

n(m̂n − 1) =
∫ 1

0 X(n)(t) dX(n)(t) − nλn

∫ 1
0 X(n)(t) dt∫ 1

0 X(n)(t)2 dt
.

From Sriram’s result, we find that

n(m̂n − 1)
d−→
∫ 1

0 µX(t) dµX(t) − λ
∫ 1

0 µX(t) dt∫ 1
0 µX(t)2 dt

and, from dµX(t) = (λ + αµX(t)) dt , we conclude that n(m̂n − 1)
d−→ α and, thus,

n(m̂n − mn) = n(m̂n − 1) − n(mn − 1)
p−→ 0.

On the other hand, we have

n3/2(m̂n − mn) =
∫ 1

0 (n−1/2X̃(n)(t) + n−1 E X(n)(t)) dM̃(n)(t)∫ 1
0 (n−1/2X̃(n)(t) + n−1 E X(n)(t))2 dt

.

Theorem 2.2 and the fact that n−1 E X(n)(t) → µX(t) imply that

n3/2(m̂n − mn)
d−→
∫ 1

0 µX(t) dM̃(t)∫ 1
0 µX(t)2 dt

,

as stated. The above considerations show that the ‘main term’ of each integrand becomes the
nonrandom function µX, while the random fluctuation term X̃ disappears as n → ∞; this
results in the asymptotic normality of the estimator m̂n.
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