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PARTITIONING THE REAL LINE INTO BOREL SETS

WILL BRIAN

Abstract. For which infinite cardinals κ is there a partition of the real line R into precisely κ Borel
sets? Work of Lusin, Souslin, and Hausdorff shows that R can be partitioned into ℵ1 Borel sets. But
other than this, we show that the spectrum of possible sizes of partitions of R into Borel sets can be
fairly arbitrary. For example, given any A ⊆ � with 0, 1 ∈ A, there is a forcing extension in which
A = {n : there is a partition of R into ℵn Borel sets}. We also look at the corresponding question for
partitions of R into closed sets. We show that, like with partitions into Borel sets, the set of all uncountable
κ such that there is a partition of R into precisely κ closed sets can be fairly arbitrary.

§1. Introduction. By work of Lusin and Sierpiński in [16], there is an analytic,
non-Borel subset of R, and every analytic and every coanalytic set is the union of
ℵ1 Borel sets. It follows that R can be partitioned into ℵ1 Borel sets. Hausdorff later
sharpened this in [10], showing that R, or any other uncountable Polish space, can
be written as an increasing union of ℵ1G� sets, and therefore can be partitioned into
ℵ1F�� sets. This raises the question:

(Q1) For which uncountable cardinals κ is there a partition of R into κ nonempty
Borel sets?

Let us define the Borel partition spectrum, denoted sp(Borel), to be the answer to this
question:

sp(Borel) = {|P| : P is a partition of R into uncountably many Borel sets}.
The main result of this paper shows that the Borel partition spectrum can be fairly
arbitrary. (A precise statement of the result can be found in Corollary 3.3.) For
example, given any set A of positive integers, there is a forcing extension in which
sp(Borel) = {ℵn : n ∈ A} ∪ {ℵ1,ℵ�,ℵ�+1}.

A related question can be asked for any given class of subsets of R. As R is
connected, there is no partition of R into two or more open sets. So the descriptively
simplest sets one can ask this for are the closed sets.

(Q2) For which cardinals κ is there a partition of R into κ closed sets?

Making use of the Baire Category Theorem, Sierpiński proved in [23] that any
partition of R into at least two nonempty closed sets is uncountable. (Using the
modern vocabulary, his proof actually shows that any partition of R into closed sets
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2 WILL BRIAN

has size ≥cov(M).) Let us define the closed partition spectrum, denoted sp(closed),
to be the answer to (Q2):

sp(closed) = {|P| : P is a partition of R into at least two closed sets}.

We show that, like the Borel partition spectrum, sp(closed) can be fairly arbitrary—
even more so, in fact, since the closed partition spectrum need not contain ℵ1. For
example, given any nonempty A ⊆ � \ {0}, there is a forcing extension in which
sp(closed) = {ℵn : n ∈ A} ∪ {ℵ�,ℵ�+1}.

These results about sp(Borel) and sp(closed) are encompassed in a single theorem,
Theorem 3.2. The proof identifies a notion of forcing that adds partitions of R into
closed sets having certain prescribed sizes, while avoiding partitions of R into Borel
sets with other sizes. The second of these tasks is the more difficult. It is accomplished
via an isomorphism-of-names argument, similar to the folklore proof (found, e.g.,
in [3, Theorem 3.1]) that, after many mutually generic Cohen reals are added to a
model of CH, there are no MAD families of size strictly between ℵ1 and c.

Let us point out that analogues of (Q1) and (Q2) have been asked and answered
(or partly answered) concerning other extremal families. For example, consider
sp(MAD) = {κ ≥ ℵ0 : there is a MAD family of size κ}. Hechler showed in [11] that
sp(MAD) can include any prescribed set of cardinals, and Blass showed in [2] how
to exclude certain cardinals from sp(MAD). Shelah and Spinas proved the strongest
results in [22], showing that sp(MAD) can be rather arbitrary, especially on the
regular cardinals. Similarly, the spectrum of possible sizes of maximal independent
families, sp(mif), was investigated recently by Fischer and Shelah in [7, 8]. Like
with sp(MAD), they proved that sp(mif) can be fairly arbitrary, especially on the
regular cardinals. Similar work concerning maximal cofinitary groups was done by
Fischer in [6]. Ultimately, all these proofs share the same core idea: variations on
the isomorphism-of-names argument mentioned above. In every case, the key to
making this kind of argument work is to find an automorphism-rich poset that can
be used to add extremal families of prescribed sizes. One notable exception to this
rule is Shelah’s analysis of the set of possible sizes of ultrafilter bases in [21], where he
proves, from large cardinal hypotheses, that this spectrum can exhibit fairly chaotic
behavior.

§2. sp(Borel) and sp(closed) do not depend on R. We begin this section by observing
that the definition of sp(Borel) does not depend on R, and remains unchanged when
R is replaced by any other uncountable Polish space:

Theorem 2.1. If X is any uncountable Polish space, then

sp(Borel) = {κ > ℵ0 : there is a partition of X into κ Borel sets} .

Proof. By a theorem of Kuratowski (see [14, Theorem 15.6]), any two
uncountable Polish spaces are Borel isomorphic: in other words, there is a bijection
f : R → X such that A ⊆ R is Borel if and only if f[A] is Borel. Thus if P is any
partition ofR into Borel sets, then {f[B] : B ∈ P} is a partition of X into Borel sets,
and if Q is any partition of X into Borel sets, then

{
f–1[B] : B ∈ Q

}
is a partition

of R into Borel sets. �
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PARTITIONING THE REAL LINE INTO BOREL SETS 3

It turns out that the same is true for sp(closed): if X is any uncountable Polish
space, then

sp(closed) = {κ > ℵ0 : there is a partition of X into κ closed sets} .
A related theorem is proved by Miller in [17, Theorem 3]: R can be partitioned into
ℵ1 closed sets if and only if some uncountable Polish space can be, if and only if every
uncountable Polish space can be. We wish to prove the same, but with an arbitrary
uncountable cardinal κ in place of ℵ1. Miller’s proof does not readily adapt to this
task, because it uses in an essential way the fact that ℵ1 is the smallest uncountable
cardinal. So we take a different approach. First we need a few lemmas.

Lemma 2.2. For any uncountable cardinal κ, the following are equivalent:
(1) There is a partition of 2� into κ closed sets.
(2) There is a partition of �� into κ compact sets.
(3) For every uncountable Polish space X, there is a partition of X into κ compact

sets.
(4) For some uncountable compact Polish space X, there is a partition of X into κF�

sets.

Proof. Throughout the proof, if X ⊆ Y and P is a partition of Y, then P �X =
{K ∩ X : K ∈ P} denotes the restriction of P to X. We prove that (1) ⇒ (2) ⇒
(3) ⇒ (4) ⇒ (1).

(1) ⇒ (2): Suppose P is a partition of 2� into κ closed sets. We claim first that
there is a closed X ⊆ 2� such that P �X is a partition of X into κ nowhere dense
closed sets (nowhere dense in X, that is).

To see this, we define a descending transfinite sequence of closed subsets of 2� .
Let X0 = 2� , and if α is a limit ordinal, take Xα =

⋂
�<α X� . At stage α, given

Xα , form Xα+1 by removing any open subset of Xα contained in a single member
of P : Xα+1 = Xα \

⋃ {
U : U is open in Xα and

∣∣P �U
∣∣ = 1

}
. Because 2� is second

countable, there is some � < �1 such that X� = X	 for all 	 ≥ � . Let X = X� .
Clearly, P �X is a partition of X into compact nowhere dense sets. Furthermore,
at any stage α < � of our recursion, {K ∈ P : K ∩ Xα �= K ∩ Xα+1} is countable.
Thus {K ∈ P : K ∩ X �= K} is countable. It follows that

∣∣P �X
∣∣ = |P| = κ.

Now, we claim there is a subspace Y of X such that Y ≈ �� and P �Y is a
partition of Y into κ compact sets. Fix a countable basis B for X, and for every
U ∈ B fix some KU ∈ P such that KU ∩U �= ∅. Let Y = X \

⋃
{KU : U ∈ B}.

Clearly P �Y = P \ {KU : U ∈ B}, so P partitions Y into κ compact sets. The set
{KU : U ∈ B} is both dense and meager in X. It follows that no relatively (cl)open
subset of Y is closed in X, and therefore no (cl)open subset of Y is compact.
Furthermore Y is G� in X, and therefore Polish. That Y ≈ �� now follows from
the Alexander–Urysohn characterization of �� as the unique nowhere compact,
zero-dimensional Polish space (see [14, Theorem 7.7]).

(2) ⇒ (3): Suppose P is a partition of �� into κ compact sets, and let X be any
uncountable Polish space. Decompose X into its scattered part and perfect part:
i.e., let X = Y ∪ Z, where Y is countable and Z is closed in X (hence still Polish)
and Z has no isolated points. By [14, Exercise 7.15], there is a continuous bijection
f : �� → Z. But then {f[K ] : K ∈ P} ∪ {{y} : y ∈ Y} is a partition of X into κ
compact sets.
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4 WILL BRIAN

(3) ⇒ (4): This implication is obvious, since “every uncountable Polish space”
includes some compact spaces, and compact sets are F� .

(4) ⇒ (1): Suppose X is an uncountable compact Polish space. By [14, Theorem
7.4], there is a continuous surjection f : 2� → X . If P is any partition of X into
κF� sets, then Q =

{
f–1[K ] : K ∈ P

}
is a partition of 2� into κF� sets. But every F�

subset of 2� can be partitioned into countably many closed sets. (This observation
is attributed to Luzin in [17, Theorem 2].) Thus, by breaking up any non-closed
members of Q into countably many closed pieces, we can refine Q to obtain a
partition of 2� into κ closed sets. �

Define the Sierpiński cardinal ń to be the minimum size of a cardinal satisfying
the equivalent statements in Lemma 2.2: that is,

ń = min {|P| : P is a partition of 2� into uncountably many closed sets}
= min {|P| : P is a partition of �� into compact sets} .

Recall that the dominating number d is equal to the smallest covering of �� by
compact sets. Hence d ≤ ń. And clearly ń ≤ c, because �� can be partitioned into
singletons. Thus we may consider ń to be a cardinal characteristic of the continuum.
Quite a bit is known already about this cardinal. The main results are due to
Stern [25], Miller [17], Newelski [19], and Spinas [24], who studied this cardinal
implicitly without giving it a name, and Hrušak [12, 13], who denotes it aT . The
name “Sierpiński cardinal” and the notation ń were suggested by Banakh in [1].

A set S of cardinals is closed under singular limits if for every singular cardinal κ,
if S ∩ κ is unbounded in κ, then κ ∈ S.

Lemma 2.3. The set S = {κ : there is a partition of 2� into κ closed sets} is closed
under singular limits.

Proof. Suppose κ is a singular cardinal and S ∩ κ is unbounded in κ. Let

 = cf(κ) < κ, and let 〈α� : � < 
〉 be a sequence of cardinals in S increasing up to
κ. Fix some � ∈ S with 
 ≤ � < κ.

Let {K� : � < �} be a partition of 2� into closed sets. Observe that
{2� ×K� : � < �} is a partition of 2� × 2� ≈ 2� into � copies of 2� . Thus we may
(and do) assume thatK� ≈ 2� for each � < �. For each � < 
, letP� be a partition of
K� intoα� closed sets (using the fact thatα� ∈ S). Then

⋃
�<
 P� ∪ {K� : 
 ≤ � < �}

is a partition of 2� into κ closed sets. �

Theorem 2.4. Let κ be an uncountable cardinal. Then all six statements of the
following form are equivalent:

Some/every uncountable Polish space can be partitioned into κ compact/closed/
F� sets.

Proof. It is clear that (every-compact)⇒ (every-closed)⇒ (every-F�), and
that (some-compact)⇒ (some-closed)⇒ (some-F�). Also, Lemma 2.2 implies that
(every-F�)⇒ (some-compact): because if every uncountable Polish space can be
partitioned into κF� sets, then in particular some uncountable compact Polish
space can be, and by Lemma 2.2 this implies �� can be partitioned into κ compact
sets. Thus, to prove the theorem, we need to show (some-F�)⇒ (every-compact).
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So let X be some uncountable Polish space, and suppose P is a partition of X
into κF� sets. If κ = ń, then by definition, there is a partition of �� into ń compact
sets, and by Lemma 2.2 every uncountable Polish space can be partitioned into κ
compact sets, and we are done. So let us suppose κ > ń. We consider two cases.

For the first case, suppose κ is regular. By the definition of ń and Lemma 2.2,
there is a partition Q of X into ń compact sets. Because |P| = κ > ń and κ is
regular, there is some K ∈ Q such that

∣∣P �K
∣∣ = κ. Thus P �K is a partition of K

into κ compact subsets. But K is a compact Polish space, and uncountable because
|K | ≥

∣∣P �K
∣∣ = κ. Thus some compact uncountable Polish space can be partitioned

intoκF� sets. Invoking Lemma 2.2 again, this implies every uncountable Polish space
can be partitioned into κ compact sets.

For the second case, suppose κ is singular. As in the first case, there is a
partition Q of X into ń compact sets. If

∣∣P �K
∣∣ = κ for some K ∈ Q, then we

may argue as in the first case and conclude that every uncountable Polish space
can be partitioned into κ compact sets, and we are done. So let us suppose
instead that

∣∣P �K
∣∣ < κ for every K ∈ Q. Let � be any cardinal with ń < � < κ.

Because |P| = κ > � > ń = |Q|, there is some K ∈ Q such that
∣∣P �K

∣∣ ≥ �. Let
� =

∣∣P �K
∣∣, and note that � < κ (by the third sentence of this paragraph). Now,

as in the previous paragraph, K is a compact uncountable Polish space that can be
partitioned into �F� sets. By Lemma 2.2, this implies 2� can be partitioned into �
closed sets. Because � was an arbitrary cardinal below κ and � ≤ � < κ, this shows
thatS = {� : there is a partition of 2� into � closed sets} is unbounded belowκ. By
Lemma 2.3, κ ∈ S. By Lemma 2.2, this implies every uncountable Polish space can
be partitioned into κ compact sets. �

Corollary 2.5. For any uncountable Polish space X,

sp(closed) = {κ > ℵ0 : there is a partition of X into κ compact sets}
= {κ > ℵ0 : there is a partition of X into κ closed sets}
= {κ > ℵ0 : there is a partition of X into κ F� sets} .

Corollary 2.6. min
(
sp(closed)

)
= ń ≥ d.

We note that the inequality ń ≥ d has been observed before, and can be considered
folklore. It is (arguably) implicit in [17], and was observed explicitly by Hrušak in
[13] and later by Banakh in [1]. Anticipating the main theorem in Section 3, note
that this inequality gives us an easy way of excluding an initial segment of the
uncountable cardinals from sp(closed): simply make d big.

Corollary 2.7. sp(closed) is closed under singular limits.

Proof. This follows from Corollary 2.5 and Lemma 2.3. �

It is worth pointing out that the same result holds for sp(Borel), by a very similar
argument. The analogous result also holds for the set sp(MAD) mentioned in the
introduction [11, Theorem 3.1], again by a similar argument.

Theorem 2.8. sp(Borel) is closed under singular limits.
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6 WILL BRIAN

Proof. Suppose κ is a singular cardinal and sp(Borel) ∩ κ is unbounded in κ. Let

 = cf(κ) < κ, and let 〈α� : � < 
〉 be a sequence of cardinals in sp(Borel) increasing
up to κ. Fix some � ∈ sp(Borel) with 
 ≤ � < κ.

Let {B� : � < �} be a partition of 2� into � Borel sets. Observe that
{2� × B� : � < �} is a partition of 2� × 2� ≈ 2� into � uncountable Borel sets.
Thus we may (and do) assume that B� is uncountable for each � < �. Every
uncountable Borel set contains a closed subspace homeomorphic to 2� . For each
� < 
, fix C� ⊆ B� with C� ≈ 2� , and let P� be a partition of C� into α� Borel
sets. Then

⋃
�<
 P� ∪ {B� \ C� : � < 
} ∪ {B� : 
 ≤ � < �} is a partition of 2� into

κ Borel sets. �

We end this section with some terminology regarding trees, and two open
questions regarding the Sierpiński cardinal ń.

Recall that a subtree of 2<� is a subset of 2<� that is closed under taking initial
segments. A subtree T of 2<� is pruned if every node of T has a successor in T. A
branch through T means a function b ∈ 2� such that b �n ∈ T for all n < �. If T
is a subtree of 2<� , we denote by [[T ]] the set of all branches through T. It is not
difficult to see that [[T ]] is closed in 2� for any subtree T of 2<� ; and conversely, for
every closed C ⊆ 2� there is a subtree T of 2<� with C = [[T ]] (for details, see [14,
Chapter 2]). Similar terminology is used for subtrees of �<� or of 2<k .

Representing closed sets with trees in this way, Theorem 2.4 states that κ ∈
sp(closed) if and only if κ > ℵ0 and there is a MAD family of κ subtrees of 2<� .
Similarly, κ ∈ sp(closed) if and only if there is a MAD family of κ finitely branching,
pruned subtrees of �<� . These characterizations of sp(closed) explain Hrušák’s
notation, writing aT for min

(
sp(closed)

)
. This relationship between ń and a raises the

following questions.

Question 2.9. Is it consistent that ń has countable cofinality?

The corresponding question for a was solved by Brendle in [4], where he used
Shelah’s template forcing technique to obtain a model of a = ℵ� . It is relatively easy
to make ń singular of uncountable cofinality: e.g., by adding ℵ�1 Cohen reals to a
model of CH, we get a model where d = ń = c = ℵ�1 .

It is also simple to prove the consistency of a < ń. This holds, for example, in the
Cohen model, where ℵ1 = a < d = ń = c.

Question 2.10. Is a ≤ ń?

We note that if ń < a is consistent, then proving it is likely very difficult. This
is because ń < a implies d < a. The consistency of d < a was an open question for
a long time, solved by Shelah in [20]. Shelah’s technique will not work, however,
for obtaining a model of ń < a: his technique makes ń large for the same reasons
it makes a large. (Roughly, by an “averaging of names” argument, an ultrapower
Pκ/U forces that if ń ≥ κ then ń = c.)

§3. Forcing an (almost) arbitrary spectrum. Every κ ∈ sp(Borel) is an example
what Blass calls a “Δ1

1 characteristic” in [2]. Blass proves [2, Theorems 8 and 9]
that there can be many cardinals between ℵ1 and c that are not Δ1

1 characteristics,
and therefore are not in sp(Borel). For example, it is consistent to have the set of Δ1

1
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characteristics be equal to precisely {ℵn : n is a power of 17} ∪ {ℵ�,ℵ�+1}. Blass’
method does not guarantee that any of these Δ1

1 characteristics will be in sp(Borel),
except of course for ℵ1 and c. But his results do show at least that sp(Borel) can
contain large gaps, and that it is possible to surgically exclude specific cardinals
from sp(Borel). (We should mention that the consistency of having ℵ2 /∈ sp(Borel)
predates Blass’ work, and is due to Miller [18].)

In the other direction, extending a prior result of Miller’s [17, Theorem 4], Miller
and the author showed in [5, Theorem 3.12] that:

Theorem 3.1. For any κ ≥ c with cf(κ) > �, there is a ccc forcing extension in
which c = κ and sp(closed) = [ℵ1, κ].

In particular, for any set C of cardinals, there is a ccc forcing extension in which
C ⊆ sp(closed). We now sketch a proof of this theorem, in order to introduce some
of the ideas used in the proof of the main theorem below, but in a simpler context.
This sketch can be skipped by the reader requiring no such introduction.

Proof sketch of Theorem 3.1. Given some X ⊆ 2� with empty interior, let TX
be the poset whose conditions are pairs (t, B), where

◦ There is some k ∈ � such that t is a subtree of 2<k , and t is pruned: i.e., if � ∈ t
with |�| < k, then � has a proper extension in t.

◦ B is a finite subset of 2� \ X , and b �k is a branch of t for each b ∈ B .

The ordering on TX is defined by: (t′, B ′) extends (t, B) if and only if B ′ ⊇ B and t′

is an end extension of t (meaning that t = t′ ∩ 2<k for some k).
Roughly, a condition (t, B) can be thought of as a finite approximation t to a

subtree T of 2<� that we are trying to build generically, and a promise that some
finite set B of reals will be branches of T.

For any X ⊆ 2� , TX is �-centered. The poset TX generically adds an infinite
pruned subtree T of 2<� , defined from a generic filter G on TX as T =⋃

{t : (t, B) ∈ G for some B}. (Equivalently, T is the evaluation in V [G ] of the
name Ṫ = {〈�, q〉 : q = (t, B) for some B , and � ∈ t} .) In the extension, [[T ]] is a
closed subset of 2� disjoint from X.

Let T�X denote the finite support product of countably many copies of TX . For any
X ⊆ 2� , T�X is �-centered. The poset T�X generically adds countably many infinite
pruned subtrees T0, T1, T2, ... of 2<� , and in the extension,

(2�)V ∩
⋃
n<�[[Tn]] = (2�)V \ X.

In other words, T�X generically adds an F� subset of 2� that intersects the ground
model reals in precisely the complement of X. (Note: this poset may look familiar:
it is the one usually used for showing that Martin’s Axiom implies every <c-sized
subset of 2� is a Q-set.)

Let C denote the set of cardinals in [ℵ1, κ]. We now define a finite support iteration
of length �1 as follows. At stage 0, force with the poset Q0 = Cκ of finite partial
functions κ → 2, in order to add a set of κ mutually generic Cohen reals. Let
{c� : � < κ} be an enumeration of these Cohen reals in V Q0 , and for each � ∈ C ,
let P�0 = {{c�} : � < �}. Note that P�0 is a �-sized collection of disjoint subsets of
R: we think of P�0 as a first approximation to a �-sized partition we are trying to
build. At a later stage α of the iteration, suppose we have already obtained, for each
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� ∈ C , a �-sized collection P�α of disjoint subsets of R. In V Qα , define X�α =
⋃

P�α
for each � ∈ C , and then obtain V Qα+1 from V Qα by forcing with

∏
�∈C T�

X
�
α

. This

adds countably many generic trees T�α,0, T
�
α,1, T

�
α,2, ... for each � ∈ C , and in V Qα+1

we define P�α+1 = P�α ∪ {
⋃
n∈�[[T�α,n]]}.

At the end of the iteration, in V Q�1 , let P� =
⋃
α<�1

P�α . This is a �-sized

collection of disjoint F� subsets of R. Furthermore, if x is a real in V Q�1 , then
there is some α < �1 with x ∈ V Qα . At that stage of the iteration, either x ∈

⋃
P�α ,

or if not, then x ∈
⋃
n∈�[[Tα�,n]] because (2�)V

Pα ∩
⋃
n<�[[Tα�,n]] = (2�)V

Pα \ X�α .
Either way, x ∈

⋃
P�α+1 ⊆

⋃
P�. Thus P� is a partition of 2� into F� sets in V Q�1 ,

and this means � ∈ sp(closed) by Corollary 2.5. �
The main theorem is proved with a modification of this poset, with two major

changes. First, the set C will not necessarily be an interval of cardinals, but will
consist only of those cardinals we wish to add to sp(closed). Second, instead of a
true iteration, we use a streamlined modification. This modified iteration has actual
finite sequences (rather than names for them) for the working parts of the TX�α

,
which is helpful for proving that certain permutations of the Cohen reals extend
to automorphisms of the entire poset. (And these automorphisms are essential for
excluding cardinals /∈C from sp(Borel).) The definition of this modified iteration is
reminiscent of the template forcing notions in [3], but with a well-ordered template,
so that it is essentially an iteration.

Theorem 3.2. Let C be a set of uncountable cardinals such that:
◦ min(C ) is regular,
◦ |C | < min(C ),
◦ C has a maximum with cf(max(C )) > �,
◦ C is closed under singular limits, and
◦ if � is singular and � ∈ C , then �+ ∈ C .

Assuming GCH holds up to max(C ), there is a ccc forcing extension in which c =
max(C ), sp(closed) = C , and if min(C ) < � /∈ C then � /∈ sp(Borel).

Before proving this theorem, let us deduce some relatively easy corollaries from
it, including the results mentioned in the introduction.

Corollary 3.3. Let C be a set of uncountable cardinals such that:
◦ ℵ1 ∈ C ,
◦ C is at most countable,
◦ C has a maximum with cf(max(C )) > �,
◦ C is closed under singular limits, and
◦ if � is singular and � ∈ C , then �+ ∈ C .

Assuming GCH holds up to max(C ), there is a ccc forcing extension in which c =
max(C ) and sp(Borel) = sp(closed) = C .

Proof. This follows immediately from the previous theorem. �
Corollary 3.4. Given any A ⊆ � \ {0}, there is a forcing extension in which

sp(Borel) = {ℵn : n ∈ A} ∪ {ℵ1,ℵ�,ℵ�+1}, and if A �= ∅ there is a forcing extension
in which sp(closed) = {ℵn : n ∈ A} ∪ {ℵ�,ℵ�+1}.
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Proof. Fix some A ⊆ � \ {0}. First pass to a forcing extension in which GCH
holds up to ℵ�+1. Then, for the result about sp(closed), apply Theorem 3.2 with
C = {ℵn : n ∈ A} ∪ {ℵ�,ℵ�+1}. Or, for the result about sp(Borel), apply Corollary
3.3 with C = {ℵn : n ∈ A} ∪ {ℵ1,ℵ�,ℵ�+1}. �

Corollary 3.5. Given any finite nonempty A ⊆ � \ {0}, there is a forcing
extension in which sp(Borel) = {ℵn : n ∈ A} ∪ {ℵ1}, and there is a forcing extension in
which sp(closed) = {ℵn : n ∈ A}.

Proof. This is proved in exactly the same way as the previous corollary, but
without ℵ� and ℵ�+1 put into C. �

Proof of Theorem 3.2. Let C be a set of uncountable cardinals satisfying the
hypotheses listed in the statement of the theorem, and assume GCH holds up to
max(C ). Let κ = min(C ) and let  = max(C ).

For each � ∈ C , let I� = �× {�, +}. (These are merely indexing sets, and for all
practical purposes one may think of each I� as a set of atoms, or urelements, in the
set-theoretic universe. The relevant properties of these I�’s are that they are pairwise
disjoint, each I� has size �, and the I� do not “interact” in any accidental way with
any other sets in the proof.)

Let I =
⋃
�∈C I�, and let P0 denote the poset of finite partial functions from

I × � to 2. Note that this is equivalent to the standard poset C for adding 
mutually generic Cohen reals. For each i ∈ I , let ci denote in V P0 the Cohen real
added by P0 in coordinate i. More formally, ci denotes in V P0 the evaluation of the
name ċi = {〈(n, j), p〉 : p(i, n) = j} .

Next we define, recursively, a poset 〈Pα,≤Pα 〉 for each α ≤ κ with α > 0. At
every stage of the recursion, Pα is defined so that P� is a sub-poset of Pα for each
� < α. Conditions in Pα are finite partial functions on (I × �) ∪ (α × C × �), and
the Pα are defined so that for any � < α, the restriction of a condition in Pα to
(I × �) ∪ (� × C × �) is a condition in P� .

At limit stages, we take Pα =
⋃
�<α P� and ≤Pα=

⋃
�<α ≤P�

. In other words,

〈Pα,≤Pα 〉 is the direct limit of
〈
〈P�,≤P�

〉 : � < α
〉

for limit α.

At successor stages, suppose P� is given for every � ≤ � , and P� ⊇ P� whenever
� ≤ � ≤ � . Let α = � + 1. Conditions in Pα are finite partial functions p on (I ×
�) ∪ (α × C × �) such that:

◦ If (i, n) ∈ (I × �) ∩ dom(p), then p(i, n) ∈ {0, 1}.
◦ If (	, �, n) ∈ dom(p) for some 	 ≤ � , � ∈ C , and n ∈ �, then p(	, �, n) =

(t, B), where:
◦ t is a pruned subtree of 2<k for some k ∈ � (in this context, “pruned” means

that if � ∈ t and |�| < k, then � has an extension in t).
◦ B is a finite set of nice P	 -names for members of 2� such that for every ḃ ∈ B ,

p �((I × �) ∪ (	 × C × �)) �P	 ḃ �j ∈ t for every j < k,

ḃ �= ċi for every i ∈ I�, and

ḃ is not a branch of Ṫ ��,m
for any � < 	 and m ∈ �,
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10 WILL BRIAN

where ċi is the P0-name described above, but interpreted as a P	 -name, and
where for every � < 	 and m ∈ �, Ṫ ��,m is the P	 -name for a subtree of 2<�

defined as follows:

Ṫ ��,m = {〈�, q〉 : q(�, �,m) = (t′, B ′) for some B ′, and � ∈ t′} .

The extension relation ≤Pα on Pα is defined as follows: given p, q ∈ Pα , we write
q ≤Pα p (meaning that q extends p) if and only if:

◦ dom(q) ⊇ dom(p),
◦ q �(I × �) ⊇ p �(I × �), and
◦ if (	, �, n) ∈ dom(p) for some 	 ≤ � , � ∈ C , and n ∈ �, and if p(	, �, n) =

(t, B) and q(	, �, n) = (t′, B ′), then B ′ ⊇ B and t′ is an end extension of t
(meaning that t = t′ ∩ 2<k for some k).

Naturally, we abbreviate “≤Pα” with “≤” in situations where this creates no
ambiguity. We also write p �α as an abbreviation for p �((I × �) ∪ (α × C × �))
where doing so creates no ambiguity.

This completes the recursive definition of the Pα and ≤Pα . It is easy to see that
≤Pα is a partial order on Pα for all α ≤ κ, and that P� is a sub-poset of Pα whenever
� ≤ α ≤ κ.

Lemma 3.6. P� is a complete sub-poset of Pα for all � ≤ α ≤ κ.

Proof. Fix � ≤ α ≤ κ. By definition, the ordering ≤� on P� is equal to the
ordering ≤α on Pα restricted to P� . So to prove the lemma, it suffices to show
that every maximal antichain in P� is also a maximal antichain in Pα . Suppose
A is a maximal antichain in P� , and let p ∈ Pα . By the maximality of A, there is
some q ∈ A such that q is compatible with p �� in P� . Let r ∈ P� be a common
extension of q and p �� . Define a function s on (I × �) ∪ (α × C × �) by setting
s = r on (I × �) ∪ (� × C × �) and setting s = p on (I × �) ∪ ((α \ �) × C × �).
Then s ∈ Pα , and s is a common extension of p and q in Pα . As p was arbitrary, this
shows A is a maximal antichain in Pα . �

Lemma 3.7. Pκ has the ccc.

Proof. Let A0 be an uncountable subset of Pκ. By the Δ-system lemma, there is
an uncountable A1 ⊆ A0 and a finiteR ⊆ (I × �) ∪ (κ × C × �) such that for any
p, q ∈ A1, dom(p) ∩ dom(p) = R. If i ∈ R ∩ (I × �), then p(i) ∈ {0, 1} for every
p ∈ A1. As there are only finitely many functions R ∩ (I × �) → 2, this implies
there is some uncountable A2 ⊆ A1 such that p �(R ∩ (I × �)) = q �(R ∩ (I × �))
for any p, q ∈ A2. For every p ∈ A2, if j ∈ R \ (I × �), then p(j) = (t, B) for some
finite subtree t of 2<� . As there are only countably many finite subtrees of 2<� , there
is some uncountableA3 ⊆ A2 such that for each j ∈ R \ (I × �), there is some fixed
tj such that for any p ∈ A3, p(j) = (tj , B

p
j ) for some Bpj . But any two members of

A3 are compatible: if p, q ∈ A3, then

r(j) =

⎧⎪⎨
⎪⎩
p(j), if j ∈ dom(p) \R,
q(j), if j ∈ dom(q) \R,
(tj , B

p
j ∪ Bqj ), if j ∈ dom(p) ∩ dom(q) = R
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is a common extension of p and q. Thus Pκ has no uncountable antichains, and is
ccc. (In fact we have shown a bit more: Pκ has property K.) �

If � ≤ α, then because P� ⊆ Pα , we may (and do) consider every P� -name to be
a Pα-name as well. Let us also set the convention that in V Pα , the evaluation of a
Pα-name is indicated by removing its dot. So, for example, ci denotes in V Pα (for
any α ≤ κ) the Cohen real added by P0 in coordinate i, and T��,n denotes in V Pα ,
for any α ≥ �, the evaluation of the name Ṫ ��,n.

Lemma 3.8. C ⊆ sp(closed) in V Pκ .

Proof. Let � ∈ C . We claim that in V Pκ ,

P =
{
{ci} : i ∈ I�

}
∪

{⋃
n∈�[[Tα�,n]] : α < κ

}
is a partition of 2� . Observe that every member of P is an F� subset of 2� , and
|P| = �. (It is clear that each Tα�,n is a subtree of 2<� , which means the sets of
the form

⋃
n∈�[[Tα�,n]] are all F� .) Thus if P is a partition, then � ∈ sp(closed) by

Theorem 2.4.
The members of P come in two types, so in order to show they are pairwise

disjoint, we have three things to prove.
First, if i, i ′ ∈ I� and i �= i ′, then clearly ci �= ci′ , i.e., {ci} ∩ {ci′} = ∅.
Second, fix i ∈ I�, α < κ, and n ∈ �. We claim {ci} ∩ [[Tα�,n]] = ∅, or equivalently,

ci /∈ [[Tα�,n]]. To see this, fix some p ∈ Pκ: we will find an extension r of p forcing
ci /∈ [[Tα�,n]]. Extending p to p ∪ {〈(α, �, n), (∅, ∅)〉}, if necessary, we may (and do)
assume (α, �, n) ∈ dom(p). Let (t, B) = p(α, �, n), with t a pruned subtree of 2<k .
From the definition ofPκ, we knowp �α �Pα ḃ �= ċi for every ḃ ∈ B . Using this, and
the fact that B is finite, there is an extension q of p in Pα , and some finite sequence
� ∈ 2� for some � > k, such that q �Pα “ċi �� = � but ḃ �� �= � for all ḃ ∈ B .” Let
t′ be the largest subtree of 2<�+1 that is an end extension of t and that does not
contain �. (In other words, � ∈ t′ if and only if � ∈ 2<�+1 \ {�} and � �k ∈ t. This is
a subtree of 2<�+1, and it is an end extension of t because � > k and � ∈ 2� .) Define
a function r on (I × �) ∪ (κ × C × �) by setting

r(j) =

⎧⎪⎨
⎪⎩
q(j), if j ∈ (I × �) ∪ (α × C × �),
p(j), if j ∈ (I × �) ∪ ((κ \ α) × C × �) but j �= (α, �, n)),
(t′, B), if j = (α, �, n).

Then r ∈ Pκ, and r � � /∈ Ṫ α�,n and ċi �� = �, which means r � ċi /∈ [[Ṫ α�,n]]. As p
was arbitrary, this shows that ci /∈ [[Tα�,n]] in V Pκ .

Third, fix � < α < κ, and m, n ∈ �. We claim that [[T��,m]] ∩ [[Tα�,n]] = ∅. To see

this, fixp ∈ Pκ: we will find an extension of p forcing [[T��,m]] ∩ [[Tα�,n]] = ∅. Extending
p to p ∪ {〈(�, �,m), (∅, ∅)〉, 〈(α, �, n), (∅, ∅)〉}, if necessary, we may (and do) assume
(�, �,m), (α, �, n) ∈ dom(p). Let (t� , B�) = p(�, �,m), where t� is a pruned subtree
of 2<k� for some k� ∈ �, and let (tα, Bα) = p(α, �, n), where tα is a pruned subtree
of 2<kα for some kα ∈ �. From the definition of Pκ, we know that p �((I × �) ∪
(α × C × �)) �Pα ḃ �= ȧ for every ḃ ∈ B� and ȧ ∈ Bα . Using this, and the fact that
B� andBα are both finite, there is an extension q of p inPα, and some � > k�, kα , such
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that q “decides” all the ḃ and ȧ up to �, and in such a way that witnesses ḃ �= ȧ for
all ḃ ∈ B� and ȧ ∈ Bα . More precisely: for each ḃ ∈ B� , there is a particular branch
c(ḃ) of 2<�+1 such that q �Pα “ḃ �� = c(ḃ)”; and similarly, for each ȧ ∈ Bα , there is
a particular branch c(ȧ) of 2<�+1 such that q �Pα “ȧ �� = c(ȧ)”; and furthermore,
c(ḃ)�� �= c(ȧ)�� for all ḃ ∈ B� and ȧ ∈ Bα . Let t′� be the largest end extension of
t� that is a pruned subtree of 2<� , and let t′′� be the end extension of t′� to a pruned
subtree of 2<�+1 containing on level � the nodes:

��0 if � ∈ t′� , � = c(ȧ) for some ȧ ∈ Bα, and c(ȧ)(�) = 1,

��1 if � ∈ t′� , � = c(ȧ) for some ȧ ∈ Bα, and c(ȧ)(�) = 0,

��0 if � ∈ t′� and � �= c(ȧ) for any ȧ ∈ Bα.

Similarly, let t′α be the largest end extension of tα that is a pruned subtree of 2<� ,
and let t′′α be the end extension of t′α to a pruned subtree of 2<�+1 containing on level
� the nodes:

��0 if � ∈ t′α, � = c(ḃ) for some ḃ ∈ B�, and c(ḃ)(�) = 1,

��1 if � ∈ t′α, � = c(ḃ) for some ḃ ∈ B�, and c(ḃ)(�) = 0,

��1 if � ∈ t′α and � �= c(ḃ) for any ḃ ∈ B�.

Observe that t′′� and t′′α have no common nodes on level �. Define a function r on
(I × �) ∪ (κ × C × �) by setting

r(j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
q(j), if j ∈ (I × �) ∪ (α × C × �) but j �= (�, �,m),
p(j), if j ∈ (I × �) ∪ ((κ \ α) × C × �)) but j �= (α, �, n),
(t′′� , B�), if j = (�, �,m),

(t′′α , Bα), if j = (α, �, n).

Then r ∈ Pκ, and r � t′′� is a subtree of Ṫ ��,m and r � t′′α is a subtree of Ṫ α�,n. Because

t′′� and t′′α share no nodes on level �, r � [[Ṫ ��,m]] ∩ [[Ṫ α�,n]] = ∅. As p was arbitrary,

this shows that [[T��,m]] ∩ [[Tα�,n]] = ∅ in V Pκ .
Thus P is a pairwise disjoint collection of F� subsets of 2� in V Pκ . To finish the

proof, we must show also that
⋃

P = 2� .
Fix x ∈ 2� inV Pκ . Because Pκ has the ccc, and each Pα is a complete sub-poset of

Pκ, there is someα < κ such that x ∈ V Pα . If x = ci for some i ∈ I�, or if x ∈ [[T��,n]]
for some � < α, then we’re done. If not, let ẋ be a nice Pα-name for x, and fix some
p ∈ Pκ such that p � “ẋ �= ċi for all i ∈ I�, and ẋ /∈ [[Ṫ ��,n]] for all � < α and n ∈ �.”
Because p has finite support, there is someN ∈ � such that (α, �,N ) /∈ dom(p). But
then q = p ∪ {〈(α, �,N ), (∅, {ẋ})〉} is in Pα , and q � ẋ ∈ [[Ṫ α�,N ]]. Thus for every

condition p forcing x /∈
⋃
i∈I�{ci} ∪

⋃
�<α

⋃
n∈�[[T��,n]], there is an extension q of

p forcing x ∈
⋃
n∈�[[Tα�,n]]. Hence x ∈

⋃
i∈I�{ci} ∪

⋃
�≤α

⋃
n∈�[[T��,n]] ⊆

⋃
P . As x

was arbitrary,
⋃

P = 2� as claimed. �

Lemma 3.9. c =  = max(C ) in V Pκ .
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Proof. A straightforward transfinite induction on α shows that |Pα | =  for all
α ≤ κ. (For the base case, clearly |P0| = , and the limit case is also clear. For the
successor case, suppose |Pα | = . Because Pα has the ccc, there are ℵ0 =  nice Pα-
names for reals, and it follows that |Pα+1| = .) In particular, |Pκ| = , and because
Pκ has the ccc, it follows that there are ℵ0 =  nice Pκ-names for reals. Hence c ≤ 
in V Pκ .

On the other hand, it is obvious that c ≥  in V Pκ , because of the Cohen reals
added by P0. �

Lemma 3.10. cov(M) = d = ń = κ = min(C ) in V Pκ .

Proof. By Lemma 3.8 and Corollary 2.6, κ ≥ ń ≥ d ≥ cov(M) in V Pκ . So to
prove the lemma, it suffices to show that 2� cannot be covered with <κ meager sets
in V Pκ .

Suppose � < κ and {C� : � < �} is a collection of closed nowhere dense subsets of
2� in V Pκ . For each C� , let A� be a Borel code that evaluates to C� . Because Pκ has
the ccc and each Pα is a complete sub-poset of Pκ, there is for each � some α < κ
such that A� ∈ V Pα . Because κ is regular and � < κ, there is some particular α < κ
such that A� ∈ V Pα for all � < �. So to prove the lemma, it suffices to show that for
each α < κ there is some c ∈ V Pκ not contained in any closed nowhere dense subset
of 2� coded in V Pα (i.e., we want c to be Cohen-generic over V Pα ).

Fix α < κ, and define c : � → 2 by setting

c(n) = 0 if and only if 〈0〉 ∈ Tακ,n.

We claim that c is Cohen-generic overV Pα . To see this, letU ⊆ 2� be a dense open set
whose Borel code is in V Pα . In particular, Ũ = {� ∈ 2<� : [[�]] ⊆ U} ∈ V Pα (where,
abusing notation slightly, [[�]] denotes all those x in 2� with x �dom(�) = �). Now fix
p ∈ Pκ. We will find an extension r of p forcing that c ∈ U . Extending p if necessary,
we may (and do) assume that there is some N ∈ N such that (α, �, n) ∈ dom(p)
for all n < N , but (α, �, n) /∈ dom(p) for all n ≥ N . For all n < N , let p(α, �, n) =
(tn, Bn). Define � ∈ 2N by setting

�(n) = 0 if and only if 〈0〉 ∈ tn

for all n < N . Because U is dense in 2� , there is some � ∈ Ũ such that � �N = �.
Because Ũ ∈ V Pα , there is some q ∈ Pα with q ≤Pα p �α forcing that � ∈ Ũ . Define
r ∈ Pκ by

r(j) =

⎧⎪⎨
⎪⎩
r(j), if j ∈ (I × �) ∪ (α × C × �),
(〈�(n)〉, ∅), if j = (α, �, n) for some n ∈ dom(�) \ dom(�),
p(j), otherwise.

Then r ∈ Pκ, and r forces c ∈ U . As U was an arbitrary open dense subset of 2�

coded in V Pα , this shows c is Cohen-generic over V Pα . �
From the last two lemmas, it follows that sp(closed) ⊆ [κ, ] in V Pκ , and if � > 

then � /∈ sp(Borel). To finish proving the theorem, it remains only to show that if
� ∈ [κ, ] and � /∈ C , then � /∈ sp(Borel). This is where the isomorphism-of-names
argument comes in. This argument requires a rich supply of automorphisms of Pκ,
which we describe next.
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14 WILL BRIAN

If φ : I → I is a permutation, then for every set x we define φ̄(x) to be the set
obtained from x by replacing every i ∈ I in the transitive closure of x with φ(i).
This is well defined, because if i, j ∈ I then i is not in the transitive closure of j.
(One may think of I as a set of urelements, φ as a permutation of them, and φ̄ as
the automorphism of the universe induced by φ.) Alternatively, φ̄ is described via
well-founded recursion by the relation

φ̄(x) =
{
φ̄(y) : y ∈ x

}
if x /∈ I , and φ̄ �I = φ. In particular, if p ∈ Pκ, dom(φ̄(p)) = φ̄(dom(p)) and

φ̄(p)(j) =

{
p(i), if i ∈ (I × �) ∩ dom(p) and φ̄(i) = j,(
t, {φ̄(ḃ) : ḃ ∈ B}

)
, if j ∈ dom(p) \ (I × �) and p(j) = (t, B),

and this expression can be taken as a recursive definition of φ̄ on Pκ, and the natural
extension of φ̄ to the class of Pκ-names.

Lemma 3.11. Let φ be a permutation of I such that φ �I� is a permutation of I� for
all � ∈ C . Then φ̄ �Pα is an automorphism of Pα for all α ≤ κ.

Proof. First, note that for all p, q ∈ Pα , we have

〈p, q〉 ∈ ≤Pα if and only if φ̄(〈p, q〉) = 〈φ̄(p), φ̄(q)〉 ∈ φ̄(≤Pα ).

Together with the fact that φ̄ is invertible (with inverse φ̄–1 = φ–1), this shows that
the image of Pα under φ̄ is a poset, and is naturally isomorphic to Pα as witnessed
by φ̄. But it is not immediately clear that the image of Pα under φ̄ is equal to Pα ,
which is of course required for our claim that φ̄ �Pα is an automorphism of Pα . (In
fact, one may show that this would not be true for α ≥ 1 if φ were not required to fix
all the I�.) This is proved for φ̄ and its inverse, simultaneously, by induction on α.

The base case α = 0 is clear. And for limit α, if φ̄ �P� is an automorphism of P� ,
for all � < α, then φ̄ �Pα is an automorphism of Pα because 〈Pα,≤Pα 〉 is the direct

limit of
〈
〈P�,≤P�

〉 : � < α
〉
. The same applies to φ̄–1.

For the successor case, fix some � < κ and suppose φ̄ �P� is an automorphism of
P� for all � ≤ � (the inductive hypothesis). Let α = � + 1, and fix p ∈ Pα . We claim
that φ̄(p) ∈ Pα . Recall that

φ̄(p)(j) =

{
p(i), if i ∈ (I × �) ∩ dom(p) and φ̄(i) = j,(
t, {φ̄(ḃ) : ḃ ∈ B}

)
, if j ∈ dom(p) \ (I × �) and p(j) = (t, B).

It is clear that φ̄(p) is a finite partial function on (I × �) ∪ (α × C × �), and
that if i ∈ (I × �) ∩ dom(φ̄(p)), then φ̄(p)(i) = p(φ–1(i)) ∈ {0, 1}. It remains to
check that the last bullet point in the definition of the conditions in Pα is satisfied
by φ̄(p).

Suppose (	, �, n) ∈ dom(φ̄(p)) for some 	 ≤ � , � ∈ C , and n ∈ �. This means
(	, �, n) ∈ dom(p) as well: let us denote p(	, �, n) = (t, B). Then

φ̄(p)(	, �, n) =
(
t, {φ̄(ḃ) : ḃ ∈ B}

)
.
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Because p ∈ Pα , t is a pruned subtree of 2<k for some k ∈ �, and (by the inductive
hypothesis, that φ̄ �P	 is an automorphism of P	), {φ̄(ḃ) : ḃ ∈ B} is a finite set of
nice P	 -names for members of 2� . Furthermore, by applying the automorphism
φ̄ of P	 to the displayed statement in the last bullet point in the definition of the
conditions in Pα , we get that for every ḃ ∈ B ,

φ̄(p) � ((I × �) ∪ (	 × C × �)) �P	 φ̄(ḃ)�j ∈ t for every j < k,

φ̄(ḃ) �= φ̄(ċi) for every i ∈ I�, and

φ̄(ḃ) is not a branch of φ̄(Ṫ ��,m)

for any � < 	 and m ∈ �.

Considering the second of these three statements, note that φ̄(ċi) = ċφ(i) for every
i ∈ I . Because φ �I� is a permutation of I�, this means that the assertion “φ̄(ḃ) �=
φ̄(ċi) for every i ∈ I�” is equivalent to the assertion “φ̄(ḃ) �= ċi for every i ∈ I�.”
Thus

φ̄(p) � ((I × �) ∪ (	 × C × �)) �P	 φ̄(ḃ) �= ċi for every i ∈ I�.

Considering the third of these three statements, observe that

φ̄(Ṫ ��,n) =
{
φ̄(〈�, p〉) : p(�, �,m) = (t, B) for some B , and � ∈ t

}
=

{
〈�, φ̄(p)〉 : p(�, �,m) = (t, B) for some B , and � ∈ t

}
=

{
〈�, φ̄(p)〉 : φ̄(p)(�, �,m) = (t, φ̄(B)) for some B , and � ∈ t

}
=

{
〈�, φ̄(p)〉 : φ̄(p)(�, �,m) = (t, B ′) for some B ′, and � ∈ t

}
= {〈�, q〉 : q(�, �,m) = (t, B ′) for some B ′, and � ∈ t}
= Ṫ ��,n.

The third equality is true because for any condition p, p(�, �,m) = (t, B) if and
only if φ̄(p)(�, �,m) = (t, φ̄(B)). The fourth equality uses the inductive hypothesis,
that φ̄ �P	 is an automorphism: p(�, �,m) = (t, φ̄(B)) for some B if and only if
p(�, �,m) = (t, B ′) for some B ′, specifically for B ′ = φ̄–1(B). The fifth equality
also uses the fact that φ̄ �P	 is an automorphism. Thus

φ̄(p) � ((I × �) ∪ (	 × C × �)) �P	 φ̄(ḃ) is not a branch of Ṫ ��,m
for any � < 	 and m ∈ �.

Putting these together, we obtain

φ̄(p) � ((I × �) ∪ (	 × C × �)) �P	 φ̄(ḃ)�j ∈ t for every j < k,

φ̄(ḃ) �= ci for every i ∈ I�, and

φ̄(ḃ) is not a branch of Ṫ ��,m
for any � < � and m ∈ �.

In other words, φ̄(p) satisfies the final bullet point in the definition of the Pα
conditions. Hence φ̄(p) ∈ Pα , as claimed.
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This shows that (the restriction of) φ̄ is an injective morphism from Pα to Pα . To
get surjectivity, simply note that the same argument applies to φ̄–1 = φ–1 as well. �

From now on, we work in the ground model. Let � be a cardinal such that
� ∈ [κ, ] and � /∈ C . Suppose

{
Ḃα : α < �

}
is a set of nice Pκ-names for Borel

codes for subsets of R. (Any standard method of constructing Borel codes can be
used for the proof, provided only that the codes are hereditarily countable sets. But
for concreteness, let us take a Borel code to be a subset of�.) We let Bα ⊆ � denote
the evaluation of the name Ḃα in V Pκ , and we let B̃α ⊆ R denote the interpretation
of Bα .

We aim to show that
{
B̃α : α < �

}
is not a partition of R in V Pκ . To this end,

suppose q ∈ Pκ and q forces each of the B̃α is nonempty, and B̃α ∩ B̃� = ∅ whenever
α �= � . We will show that q also forces

⋃
α<� B̃α �= R.

Fix a cardinal 
 ≤ � such that αℵ0 < 
 for all cardinals α < 
, and such that C
contains no cardinals in the interval [
, �]. If � is neither singular nor the successor
of a singular cardinal, then we may simply take � = 
. Otherwise, using the last
two bullet points in our description of C, there is an infinite interval of cardinals
below � and disjoint from C, and we may take 
 to be any successor-of-a-successor
cardinal in this interval. In either case, αℵ0 < 
 for all cardinals α < 
 by the
GCH.

Given α ≤ κ and a condition p ∈ Pα , for each � ∈ C define

hdom�(p) = TC(p) ∩ I�,

where TC(p) denotes the transitive closure of p. We think of hdom�(p) as the
“hereditary domain” of p on I�: all those i ∈ I� that are used at any stage in
building the condition p. A straightforward transfinite induction on α shows that
|hdom�(p)| ≤ ℵ0 for every p ∈ Pα and every � ∈ C . (The base case and the limit
case are clear. For the successor case, use the fact that Pα has the ccc.) Similarly, for
each Pκ-name ẋ and each � ∈ C , let hdom�(ẋ) = TC(ẋ) ∩ I�. As before, it is not
difficult to see that if ẋ is a nice Pκ-name for a Borel code (or for any hereditarily
countable set), then hdom�(ẋ) is countable for every � ∈ C .

For each α < � and each � ∈ C , letDα� = hdom�(Ḃα).Note thatDα� is countable
for each α < � and � ∈ C . Expanding some of the Dα� if necessary, we may (and
do) assume each Dα� is countably infinite and includes hdom�(q). For each α < �,
let Dα =

⋃
�∈C D

α
� . We note that |Dα | =

∑
�∈C |Dα� | = |C | · ℵ0 for all α < �, and

|C | · ℵ0 < min(C ) = κ. (Note: the inequality |C | · ℵ0 < min(C ) uses the second
bullet point in our description of C.)

By our choice of 
, together with the aforementioned fact that |Dα | < κ for all
α < �, {Dα : α < 
} meets the conditions of the generalized Δ-system lemma [15,
Lemma III.6.15]. Thus there is some A0 ⊆ 
 with |A0| = 
 such that {Dα : α ∈ A0}
is a Δ-system with root R.

Let A1 =
{
α ∈ A0 : Dα� \R = ∅ for all � ∈ C with � < �

}
. For all � ∈ C ,{

Dα� \R : α ∈ A0
}

is a 
-size collection of pairwise disjoint subsets of I�. If also
� < �, then � < 
 and it follows that Dα� \R = ∅ for all but (at most) � members
of A0. Furthermore, | {� ∈ C : � < �} | ≤ |C | < κ < 
. It follows that |A1| = 
.
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For each α < � and � ∈ C , fix a bijection φα� : Dα� → �, in such a way that φα� �
R = φ�� �R for all α, � < �. For each α, � < � and � ∈ C , let φα,�� be the involution
of I� given by

φα,�� (i) =

⎧⎪⎨
⎪⎩

(φ��)–1 ◦ φα� (i), if i ∈ Dα� ,
(φα� )–1 ◦ φ��(i), if i ∈ D��,
i, otherwise.

(Recall that an “involution” of a set S means a bijectionf : S → S such that� ◦ � =
idS .) This function is well defined, because Dα� ∩D�� = R, and (φ��)–1 ◦ φα� (i) =

i = (φα� )–1 ◦ φ��(i) whenever i ∈ R. This gives us a collection
{
φα,�� : α, � < �

}
of

involutions of I� such that for any α, � < �,

◦ φα,�� maps Dα� onto D�� and D�� onto Dα� , but acts as the identity on the rest of
I�,

◦ φα,�� acts as the identity on R ∩ I�, and
◦ φα,�� = φ	,�� ◦ φα,	� for any 	 < �.

For each α, � < �, let φα,� denote the product map
⊗
�∈C φ

α,�
� (that is, the map

defined by setting φα,�(i) = φα,�� (i) whenever i ∈ I�). This is an involution of I, and
restricts to φα,�� on each I�. In particular, Lemma 3.11 applies, and φ̄α,� �Pκ is an
automorphism of Pκ for each α, � < �.

Lemma 3.12. There are at mostκ nicePκ-names ẋ for subsets of� with the property
that hdom(ẋ) ⊆ D0.

Proof. For each α ≤ κ, let Pα �D0 =
{
p ∈ Pα : hdom(p) ⊆ D0

}
. We prove by

transfinite induction on α that for all α ≤ κ,
∣∣Pα �D0

∣∣ ≤ κ and there are ≤κ nice
Pα �D0-names for subsets of �. Note that a nice Pα �D0-name for a subset of �
is the same thing as a nice Pα-name ẋ for a subset of � with the property that
hdom(ẋ) ⊆ D0.

For the base case, P0 �D0 is just the set of finite partial functions D0 → 2, so∣∣Pα �D0
∣∣ = ℵ0 ≤ κ because D0 is countable. Because P0 �D0 has the ccc, there are

ℵ0 nice P0 �D0-names for subsets of �.
For the other cases, fix α ≤ κ, and suppose

∣∣P� �D0
∣∣ ≤ κ and there are ≤κ nice

P� �D0-names for subsets of �, for all � < α. A condition in Pα �D0 is defined in
the same way as a condition in Pα , except that we restrict the ḃ in that definition
to members of P	 �D0. Using the inductive hypothesis on P	 �D0-names, it follows
that

∣∣Pα �D0
∣∣ ≤ κ. Each nice Pα �D0-name ẋ for a subset of � has the form ẋ =

{〈n, p〉 : p ∈ An}, where each An is an antichain in Pα �D0. Because Pα has the ccc,
each An is countable. Thus there are κℵ0 = κ names ẋ with this form. �

In particular, there are κ nice Pκ-names ẋ for subsets of � having the property
that hdom(ẋ) ⊆ D0. But for each α ∈ A1, φ̄α,0(Ḃα) is just such a name. By the
pigeonhole principle, and the fact that κ < 
, this implies that there is someA2 ⊆ A1

with |A2| = 
 such that φ̄α,0(Ḃα) = φ̄�,0(Ḃ�) whenever α, � ∈ A2. Reindexing the
Ḃα ’s if necessary, we may (and do) assume 0 ∈ A2.

We now proceed to define a new Pκ-name Ḃ� for a subset of �.
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18 WILL BRIAN

First, for all � ∈ C with � < �, let D�� = R ∩ I�. (Recall that Dα� ∩ I� ⊆ R
whenever � ∈ C and � < � and α ∈ A1. Thus, in this case, D�� ∩Dα� = R ∩ I� for
all α ∈ A1 ⊇ A2.) Next, for each � ∈ C with � > �, letD�� be a countable subset of
I� with D�� ∩

⋃ {
Dα� : α < �

}
= R ∩ I�, and with |D�� \R| = |D0

� \R|. Some such
set exists because

∣∣⋃ {
Dα� : α < �

}∣∣ = � < � = |I�|, so we may take D�� to be any
subset (of the appropriate size) of I� \

⋃ {
Dα� : α < �

}
, together with R ∩ I�.

For each � ∈ C , fix a bijection φ�� : D�� → � such that φ�� �R = φ0
� �R. For each

α < � and � ∈ C , let φα,�� and φ�,α� be the involutions of I� defined just like the φα,��
above, but using φ�� in place of φ�� . This naturally extends the system of involutions
described above: for any α, � ≤ �,

◦ φα,�� maps Dα� onto D�� and D�� onto Dα� , but acts as the identity on the rest of
I�,

◦ each φα,�� acts as the identity on R ∩ I�, and
◦ φα,�� = φ	,�� ◦ φα,	� for any 	 ≤ �.

For each α, � ≤ �, let φα,� =
⊗
�∈C φ

α,�
� . By Lemma 3.11, φ̄α,� �Pκ is an automor-

phism of Pκ for each α, � ≤ �.
Because hdom�(q) ⊆ R for all � and φ0,� fixes R, φ̄0,�(q) = q. Recall

q � the evaluation B0 of Ḃ0 codes a nonempty Borel subset of R.

Applying standard facts about automorphisms of forcing posets,

φ̄0,�(q) � the evaluation of φ̄0,�(Ḃ�) codes a nonempty Borel subset of R.

Let B� denote the evaluation of Ḃ� in V Pκ , and let B̃� be the Borel set that it codes.
So, in particular, the displayed statement above implies that q = φ̄0,�(q) � B̃� �= ∅.
To show q �

⋃
α<� B̃α �= R, it now suffices to show q � B̃� ∩ B̃� = ∅ for all � < �.

Fix � < �. By our choice of the setsD��, we haveD�� ∩D
�
� ⊆ R for all � ∈ C , and

thereforeD� ∩D� ⊆ R. Because {Dα : α ∈ A2} is a Δ-system of size 
, and because
|D� | ≤ |C | · ℵ0 < κ < 
, there is some α ∈ A2 with Dα ∩D� ⊆ R (regardless of
whether � ∈ A2). Fix some such α.

Note that φα,� sends Dα to D�, while acting as the identity on D� . And because
0, α ∈ A2, our choice of A2 implies φ̄0,α(Ḃ0) = Ḃα . It follows that

φ̄α,�(Ḃα) = φ̄α,� ◦ φ̄0,α(Ḃ0) = φ̄0,�(Ḃ0) = Ḃ�,

while φ̄α,�(Ḃ�) = Ḃ� . But

q � Bα and B� code disjoint Borel sets.

Applying the automorphism φ̄α,� of Pκ,

φ̄α,�(q) = q � B� and B� code disjoint Borel sets.

Because � was arbitrary, this shows that q � B̃� ∩ B̃� = ∅ for all � < �. In other
words, q �

⋃
α<� B̃α �= R. �

Note that Theorem 3.2 only gives us models in which ń is regular and |sp(closed)| ≤
ń. Both of these are merely artifacts of the proof: neither need be true of sp(closed)

https://doi.org/10.1017/jsl.2023.20 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.20


PARTITIONING THE REAL LINE INTO BOREL SETS 19

in general. As mentioned near the end of Section 2, it is possible that d = c = κ for
some singular cardinal κ of uncountable cofinality, and this makes ń = κ also. And
of course, Theorem 3.1 shows it is possible to have |sp(closed)| > ń.

Theorem 3.2 also cannot produce a model in which sp(closed) ∩ κ is unbounded
for a regular limit cardinal κ. Theorem 3.1 implies that this is possible, but in such
a case automatically gives κ ∈ sp(closed). This suggests the following question:

Question 3.13. Is sp(closed) or sp(Borel) closed under regular limits?

We also do not know whether our final condition on C is an artifact of the proof.

Question 3.14. Is it consistent that ℵ� ∈ sp(closed) but ℵ�+1 /∈ sp(closed)? What
about sp(Borel)?

For any pointclass Γ, define

sp(Γ) =
{
|P| > ℵ0 : P is a partition of R into sets in Γ

}
.

To strengthen Theorem 3.2, we could replace sp(Borel) in the conclusion of the
theorem with sp(Γ) for some pointclass Γ strictly containing the Borel sets. The
ultimate result in this direction would be to take Γ = OD(R), since this is essentially
the largest pointclass of interest from a descriptive point of view.

While we have chosen to focus on sp(Borel) and sp(closed) until now, let us observe
that minor modifications to the proof of Theorem 3.2 will give a proof of the stronger
version, where sp(Borel) is replaced by sp(OD(R)) in the conclusion. Consequently,
Corollaries 3.4 and 3.5 can also be strengthened by replacing sp(Borel) with sp(OD(R)).
This has the interesting consequence that large cardinals do not imply the existence
of a partition of R into ℵ2 projective sets. This consequence is already known, by
the work of Blass [2] mentioned at the start of this section.

We close with three more open questions.

Question 3.15. Is sp(Borel) = sp(OD(R))?

Question 3.16. Given α < �1, is it consistent that sp(Π0
α) �= sp(Π0

α+1)?

The answer to this question is currently known for α = 1, 2. For α = 1, Miller
proved the consistency of sp(Π0

1) �= sp(Π0
2) (i.e., sp(closed) �= sp(G�)) by constructing

a model with ℵ1 = cov(M) < ń [17, Theorem 5]. This shows sp(closed) �= sp(G�),
because if ℵ1 = cov(M), then ℵ1 ∈ sp(G�). (Proof: if {Fα : α < �1} is a collection
of closed nowhere dense sets coveringR, then {Fα \

⋃
�<α : α < �1} is a partition of

R intoG� sets.) Forα = 2, the consistency of sp(Π0
2) �= sp(Π0

3) (i.e., sp(G�) �= sp(F��))
follows from Hausdorff’s theorem thatℵ1 ∈ sp(Π0

3), together with a result of Fremlin
and Shelah [9] stating that min

(
sp(Π0

2)
)
≥ cov(M).

Question 3.17. Is it consistent that sp(closed) �= sp(G�) and cov(M) > ℵ1?
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