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Abstract

Fix a prime number p. Let G be a p-modular Frobenius group with kernel N which is the minimal
normal subgroup of G. We give the complete classification of G when N has three, four or five p-regular
conjugacy classes. We also determine the structure of G when N has more than five p-regular conjugacy
classes.
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1. Introduction

Finite Frobenius groups have played a major role in many areas of group theory,
notably in the analysis of doubly transitive groups and finite simple groups. There
are many generalizations of finite Frobenius groups. We study the characteristic p
analogue of finite Frobenius groups, the so-called p-modular Frobenius groups which
were introduced by Kuisch and van der Waall in [7] and which they defined as follows.

D 1.1. Let 1 < N CG. Suppose that F is a splitting field for F[N] with
char(F) = p > 0. We say that G is a p-modular Frobenius group if G satisfies one
of the following equivalent conditions:

(i) every nontrivial irreducible F[N]-module V has the property that VG is
irreducible;

(ii) CG(x) ≤ N for every nontrivial p-regular element x of N.

A normal subgroup N, as in Definition 1.1, is called a p-modular Frobenius kernel.
It is trivially true that a normal p-subgroup of G (having no nontrivial p-regular

elements) is necessarily a p-modular Frobenius kernel. So in this paper, we deal
exclusively with p-modular Frobenius kernels that are not p-groups.
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Let G be a finite group and fix a prime number p. Let F be an algebraically closed
field of characteristic p. It follows that F is a splitting field for every group by [6,
Corollary 9.4]. We know that there is a natural one-to-one correspondence between
isomorphism classes of FG-modules and similarity classes of representations of FG. If
ϕ ∈ IBr(G), then ϕ uniquely determines (and is uniquely determined by) an irreducible
F-representation X up to similarity. Therefore we have the following definition which
is equivalent to Definition 1.1.

D 1.2. A group G is a p-modular Frobenius group with kernel N if every
nonprincipal irreducible Brauer character of N induces irreducibly to G.

As one knows, conjugacy class lengths impose great influences on the structure of
finite groups. Alemany et al. determined the structure of G when the set of p-regular
conjugacy class sizes of G is {1, m} for an arbitrary integer m > 1 in [1]. Let N be
a normal subgroup of G. The relationship between the number of conjugacy classes
of N and that of G was discussed in [3]. Since Brauer characters are only defined on
p-regular elements, we will focus on the number of p-regular conjugacy classes of the
p-modular Frobenius kernel.

In this paper, we give the classification of p-modular Frobenius groups according
to the number of p-regular conjugacy classes of modular Frobenius kernels which are
the minimal normal subgroups.

There is a reason why we consider the case where the p-modular Frobenius kernel is
a minimal normal subgroup of G. Let G be a p-modular Frobenius group with kernel
N and H be a minimal normal subgroup of G. It follows that H ∩ N = 1 or H ≤ N
by the minimality of H. If H ∩ N = 1, then H ≤CG(x) for each element x of N. By
Definition 1.1, we have H ≤ N, and hence H = 1. This is not possible because H is
nontrivial. So H ≤ N. If H < N, it follows that G/H is a p-modular Frobenius group
with kernel N/H by [7, Lemma 2.3]. Suppose that H1/H is a minimal normal subgroup
of G/H. Then it follows that H1/H is contained in N/H by the above argument. If
H1/H < N/H, then G/H1 is a p-modular Frobenius group with kernel N/H1 by [7,
Lemma 2.3]. We can repeat the process and find M CG with M < N such that G/M
is a p-modular Frobenius group with kernel N/M, where N/M is a minimal normal
subgroup of G/M. So we consider the case where the p-modular Frobenius kernel is a
minimal normal subgroup of G.

Before stating our results, we introduce some notation. Let G be always a finite
group. We write IBr(G) for the set of irreducible Brauer characters of G at the given
fixed prime p. Let G0 be the set of p-regular elements of G (that is, the set of elements
g ∈G such that the order of g is not divisible by p). We write cl(G0) for the set of
conjugacy classes of G which consist of p-regular elements. Also, we shall write 1G0

for the principal Brauer character of G. Denote Zm and (Zr)n to be a cyclic group of
order m and an elementary abelian r-group of order rn, respectively. Let π(n) be the set
of all prime divisors of the positive integer n. Let D10 be the dihedral group of order
10 and M10 be the stabilizer of a point in the Mathieu group M11 (see [2]). For other
notation and terminology, one can refer to [8, 9].
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2. Preliminaries

In this section, we list some basic properties of modular Frobenius groups and
primary lemmas for the proofs of our theorems. The next few results, which are crucial
to our investigation, are due to Kuisch and van der Waall [7].

L 2.1. Suppose that G is a p-modular Frobenius group with kernel N and N is a
nonabelian simple group. Then p = 2 and N � A6.

L 2.2. Suppose that G is a 2-modular Frobenius group with nonsolvable
kernel N. Then G/N is a 2-group.

L 2.3. Suppose that G is a p-modular Frobenius group, p odd with kernel N.
Then N is solvable.

For the proofs, see [7, Corollary 3.8, Theorems 3.10 and 4.1].
The next result is general in the modular representation theory of finite groups.

L 2.4. Suppose that 1 < N CG and let θ ∈ IBr(N). Then θG ∈ IBr(G) if and only
if IG(θ) = N, where IG(θ) is the inertia group of θ in G.

P. This is a direct consequence of [9, Problem 8.3] and [5, Theorem 2.2]. �

The following corollary is immediate by Definition 1.2 and Lemma 2.4.

C 2.5. Suppose that G is a p-modular Frobenius group with kernel N. Then
IG(θ) = N for each nonprincipal irreducible Brauer character θ of N.

C 2.6. Suppose that G is a p-modular Frobenius group with kernel N. Let G
act on IBr(N) naturally. Namely, if θ ∈ IBr(N) and g ∈G, then θg(n) = θ(ng−1

) for each
n ∈ N0. Write ∆θ for the orbit of θ for each element θ in IBr(N). Then |∆θ| = |G : N| for
each nonprincipal irreducible Brauer character θ of N. Furthermore, |G : N| divides
|cl(N0)| − 1.

P. Using Corollary 2.5 and the fact that |G : IG(θ)| is the number of distinct
G-conjugates of θ, it follows that |∆θ| = |G : N| for each nonprincipal irreducible Brauer
character θ of N, and hence |G : N| divides |IBr(N)| − 1. The second part follows since
|IBr(N)| is the number of p-regular conjugacy classes of N. �

C 2.7. Suppose that G is a p-modular Frobenius group with kernel N.
Then each irreducible Brauer character in IBr(G) \ IBr(G/N) is induced from a
nonprincipal irreducible Brauer character of N, where

IBr(G) \ IBr(G/N) = {ϕ ∈ IBr(G) : N � ker ϕ}.

Also, if the number of G-orbits on IBr(N) is k + 1, then |IBr(G) \ IBr(G/N)| = k.

P. Let ϕ ∈ IBr(G) \ IBr(G/N). By Clifford’s theorem, ϕN = e
∑t

i=1 θi, where
θ1 = θ, θ2, . . . , θt are the distinct conjugates of θ in G. We have θ , 1N0 . Otherwise,
it will contradict the fact that N = ker ϕ. By Definition 1.2, we obtain θG = ϕ and the
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first part follows. Applying the first part and Definition 1.2, we have a one-to-one
correspondence between the set of G-orbits on IBr(N) \ {1N0} and IBr(G) \ IBr(G/N),
where IBr(N) \ {1N0} is the set of nonprincipal irreducible Brauer characters of N.
Hence the proof of the second part is complete. �

Our next objective is to prove that every minimal normal subgroup of a modular
Frobenius group is contained in a modular Frobenius kernel.

L 2.8. Suppose that G is a p-modular Frobenius group with kernel N. Let M
be a nontrivial normal subgroup of G. Then N ∩ M > 1. In particular, every minimal
normal subgroup of G is contained in N. When p is odd, all minimal normal subgroups
of G are elementary abelian.

P. Assume that N ∩ M = 1. It follows that M ≤CG(N). By Definition 1.1, there
exists a nontrivial p-regular element x in N such that CG(x) ≤ N. Hence M ≤ N.
It follows that M = 1, and this contradicts the fact that M is nontrivial. So N ∩ M > 1.
In particular, if H is a minimal normal subgroup of G, then H ≤ N. When p is odd, by
Lemma 2.3, H is elementary abelian. �

Next, we show that a modular Frobenius kernel is not necessarily a Hall subgroup.

L 2.9. Suppose that G is a p-modular Frobenius group with kernel N. Then
(|G/N|, |N|) = pa with a ∈ N.

P. Assume that there exists a prime q , p such that both |G/N| and |N| are divisible
by q. Let Q be a Sylow q-subgroup of G. Since Q ∩ N is a nontrivial normal subgroup
of Q, it follows that Z(Q) ∩ N > 1. Pick a nontrivial element x in Z(Q) ∩ N. Then
Q ≤CG(x) ≤ N, whence G/N is a q′-group. But this clearly contradicts the assumption
that |G/N| is divisible by q, so the proof is complete. �

C 2.10. Suppose that G is a p-modular Frobenius group with kernel N. Then
G is nonnilpotent.

P. Assume that G is nilpotent. Let P be the Sylow p-subgroup of G. Then
P ≤CG(x) ≤ N for any nontrivial p-regular element x of N. So by Lemma 2.9, we have
(|G/N|, |N|) = 1. Let Q be any Sylow subgroup of N. Then Q is also a Sylow subgroup
of G. Using Definition 1.1 and the fact that a nilpotent group is a direct product of
Sylow subgroups, it follows that N = G, a contradiction. We therefore conclude that G
is nonnilpotent. �

As one knows, a Frobenius group G is a p-modular Frobenius group when
the Frobenius kernel contains a nontrivial p-regular element. By the definition of
p-modular Frobenius groups, we know that a p-modular Frobenius group G with
kernel N is a Frobenius group if either |G| or |N| is coprime to p. It is not generally
true that a p-modular Frobenius group is a Frobenius group. A counterexample
is GL(2, 3). GL(2, 3) is a 2-modular Frobenius group with kernel SL(2, 3),
while GL(2, 3) is not a Frobenius group. So we have a wide class of p-modular
Frobenius groups by the theory of Frobenius groups. Although p-modular Frobenius
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groups need not be Frobenius groups, in the following proposition, we investigate
conditions for p-modular Frobenius groups to be Frobenius groups.

P 2.11. Suppose that G is a p-modular Frobenius group with kernel N and
(|G/N|, |N|) = 1. If N is a minimal normal subgroup of G, then G is a Frobenius group
with elementary abelian kernel N.

P. Assume that p divides |N|. If p is odd, then N is solvable by Lemma 2.3.
It follows that N is an elementary abelian r-group with r , p by the minimality of N.
This contradicts the assumption. Now we have p = 2. When N is solvable, we can
obtain the same contradiction as above. If N is nonsolvable, then G/N is a 2-group by
Lemma 2.2, and hence both |G/N| and |N| are divisible by 2. This is in contradiction to
(|G/N|, |N|) = 1. So p does not divide |N|. It follows that G is a Frobenius group with
kernel N, and we conclude that N is nilpotent. The desired conclusion follows. �

A well-known result about Frobenius group is about the center subgroup. We now
describe the relationship between the center subgroup of a p-modular Frobenius group
and the p-modular Frobenius kernel.

L 2.12. Suppose that G is a p-modular Frobenius group with kernel N. Then
Z(G) < N. Furthermore, Z(G) is a p-group.

P. Let x be a nontrivial p-regular element of N. Then CG(x) ≤ N.
It follows that Z(G) ≤ N. If Z(G) = N, then G = CG(x) ≤ N. This is impossible.
So Z(G) < N. Suppose that there exists a nontrivial p-regular element y in Z(G).
Then G = CG(y) ≤ N, but N <G, a contradiction. Therefore Z(G) is a p-group. �

3. Main results

Let (∗) be the hypothesis:

(∗) G is a p-modular Frobenius group with kernel N and N is a minimal normal
subgroup of G.

In this section, we will determine the structure of G according to the number of
p-regular conjugacy classes of N under the hypothesis (∗). We begin with a general
result for all modular Frobenius groups.

P 3.1. Suppose that G is a p-modular Frobenius group with kernel N. Then
the number of p-regular conjugacy classes of N is at least three.

P. Since N is not a p-group, by Cauchy’s theorem, there exists a prime divisor r
of |N| such that N contains an element of order r, where r , p. It follows that
|cl(N0)| ≥ 2. Assume |cl(N0)| = 2. Then we can set IBr(N) = {1N0 , θ}. Let G act on
IBr(N) naturally as Corollary 2.6. Then θ is G-invariant. Using Corollary 2.5, we have
a contradiction. �
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Now we give the complete characterization when N contains three, four or five
p-regular conjugacy classes.

T 3.2. Assume (∗). If |cl(N0)| = 3, then G � S 3.

P. We can set IBr(N) = {1N0 , θ1, θ2}. Let G act on IBr(N) naturally as
Corollary 2.6. Then θ1 is G-conjugate to θ2 by Corollary 2.5. This implies that
|G : N| = 2 by Corollary 2.6 and the number of G-orbits on IBr(N) is two. Now we
distinguish two cases: p is even and p is odd.

If p is odd, then N is solvable by Lemma 2.3. By the minimality of N, we have that
N is an elementary abelian r-group with r , p. It follows that p does not divide the
order of N, and so G is a Frobenius group with kernel N. Notice that N is an abelian
p′-group and |cl(N0)| = 3. We can obtain |N| = |cl(N0)| = 3. Hence N � Z3. Since G is
a Frobenius group with kernel N and |G : N| = 2, it follows that G � Z3 o Z2.

If p = 2, then IBr(G/N) = {1G0} follows from |G : N| = 2. Since the number of
G-orbits on IBr(N) is two, it follows from Corollary 2.7 that |IBr(G) \ IBr(G/N)| = 1.
Notice that IBr(G/N) = {1G0}. We see that G has exactly two irreducible Brauer
characters, and hence G has exactly two 2-regular conjugacy classes. As |G : N| = 2,
by Cauchy’s theorem, the order of G has just two different prime divisors, one of
which is 2. Applying the famous solvability criterion of Burnside, we conclude that
G is solvable, and hence N is solvable. The remainder of the proof is similar to the
second paragraph, and hence we also obtain G � S 3. �

T 3.3. Assume (∗). If |cl(N0)| = 4, then G � A4.

P. Let G act on IBr(N) as Corollary 2.6. Since |IBr(N)| = |cl(N0)| = 4, we have
|G : N| = 3 by Corollary 2.6. Assume p = 2. If N is nonsolvable, then G/N is a
2-group by Lemma 2.2. This is in contradiction to |G : N| = 3. If N is solvable, then
N is an elementary abelian r-group with r , 2 by the minimality of N. It follows that
cl(N0) = cl(N) and |N| = 4. But N is an r-group with r , 2, a contradiction. Hence p
is odd, whence N is solvable by Lemma 2.3. The same argument shows that |N| = 4.
So N is isomorphic to the Klein 4-group K4 and G is a Frobenius group with kernel N.
Since |G : N| = 3, we have G � K4 o Z3, so the proof is complete. �

T 3.4. Assume (∗). If |cl(N0)| = 5, then either G � D10, or G � M10, or G �
Z5 o Z4.

P. Notice that |cl(N0)| = 5 and N is the minimal normal subgroup of G. Since N
is a direct product of isomorphic simple groups, we can conclude that N is a simple
group. Let G act on IBr(N) as Corollary 2.6. As |IBr(N)| = |cl(N0)| = 5, we can see
that |G : N| = 2 or |G : N| = 4 by Corollary 2.6. So there are two cases to distinguish.

(i) The case when |G : N| = 2.
When p is odd, N is solvable by Lemma 2.3. Since N is simple, it follows that N
is a cyclic group of prime order r which is different from p. So G is a Frobenius
group with kernel N. Notice that |cl(N0)| = 5. We have |N| = |cl(N0)| = 5,
and hence N � Z5. As G is a Frobenius group with kernel N and |G : N| = 2,
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we have G � D10, where p , 5. Now let p = 2. When N is solvable, we repeat
the above process and get G � D10. Suppose that N is nonsolvable. Since N is
simple, it follows that N � A6 by Lemma 2.1. Notice that |G : N| = 2. Using the
small groups library in GAP (see [4]), we can get G � M10.

(ii) The case when |G : N| = 4.
When p is odd, N is solvable by Lemma 2.3. The above argument shows that
N � Z5 and G is a Frobenius group with kernel N. Now, G/N is isomorphic
to an abelian Frobenius complement since |G : N| = 4. By the structure theorem
on Frobenius groups (see [10, Theorem 10.5.6]), the Frobenius complement of
G has to be cyclic. So G � Z5 o Z4 with p , 5. When p is even, IBr(G/N) =

{1G0} follows from |G : N| = 4. Notice that |IBr(N)| = 5 and |G : N| = 4. From
Corollary 2.6 it follows that the number of G-orbits on IBr(N) is two. Conse-
quently |IBr(G)| = 2 by Corollary 2.7. As G has exactly two p-regular conjugacy
classes and |G : N| = 4, by Cauchy’s theorem, we have that |G| has just two prime
divisors, one of which is 2. Applying Burnside’s theorem, we conclude that G
is solvable, and hence N is solvable. Similarly, we obtain that G is a Frobenius
group which is isomorphic to Z5 o Z4. �

In the following, we will consider the case where |cl(N0)| ≥ 6.

T 3.5. Assume (∗). If |cl(N0)| is even, then |cl(N0)| = 2a. Furthermore, G is a
Frobenius group with kernel (Z2)a.

P. Assume that |cl(N0)| = 2ab, where 2 does not divide b. If N is solvable,
then N is an elementary abelian r-group with r , p by the minimality of N. So
|cl(N0)| = |cl(N)| = |N| = 2ab. But this contradicts the fact that N is an r-group. Hence
N is nonsolvable. By Lemma 2.3, p = 2. Then G/N is a 2-group by Lemma 2.2. By
Corollary 2.6, we have a contradiction since |G/N| divides (2ab − 1) which is odd.

Now |cl(N0)| = 2a. We claim that N is solvable. Otherwise, p = 2 by Lemma 2.3.
It follows that G/N is a 2-group by Lemma 2.2. By Corollary 2.6, we have a
contradiction since |G : N| divides (2a − 1) which is odd, as claimed. By the minimality
of N, we obtain N is an elementary abelian r-group with r , p. So |cl(N0)| = |cl(N)| =
|N| = 2a and G is a Frobenius group with kernel N. The result follows. �

T 3.6. Assume (∗). If |cl(N0)| is odd, then either G is a Frobenius group with
elementary abelian kernel N, or N is a direct product of isomorphic PSL(2, 32k

) for
some positive integer k.

P. If N is solvable, then N is an elementary abelian r-group with r , p by the
minimality of N, whence π(|N|) = 1. It follows that G is a Frobenius group with
kernel N. If N is nonsolvable, then p = 2 by Lemma 2.3. We claim that N is nonsimple.
Otherwise, N � A6 by Lemma 2.1. Notice that |cl(N0)| ≥ 6. This contradicts the fact
that the number of 2-regular conjugacy classes of A6 is five, as claimed. As N is a
direct product of isomorphic simple groups, the result follows by [7, Theorem 3.7]. �
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