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Scaling of pressure fluctuations in compressible
turbulent plane channel flow
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The purpose of the paper is to identify Mach-number effects on pressure fluctuations
p′ in compressible turbulent plane channel flow. We use data from a specifically
constructed (Reτ�, M̄CLx)-matrix direct numerical simulation (DNS) database, with
systematic variation of the centreline streamwise Mach number 0.32 � M̄CLx � 2.49
and of the HCB (Huang et al., J. Fluid Mech., vol. 305, 1995, pp. 185–218) friction
Reynolds number 66 � Reτ� � 1000. Strong M̄CLx effects (enhanced by the increasingly
cold-wall condition) appear for M̄CLx � 2, for all Reτ� , very close to the wall (y� � 15).
Compared with incompressible flow at the same Reτ� , the wall root-mean-square [p′

rms]
+
w

(in wall-units, i.e. scaled by the average wall shear stress τ̄w) strongly increases with
M̄CLx . In contrast, the peak level across the channel, [p′

rms]
+
PEAK , slightly decreases

with increasing M̄CLx . In order to study the near-wall coherent structures we introduce
a new wall-distance-independent non-local system of units, based for all y on wall
friction and the extreme values of density and dynamic viscosity, namely, for cold walls
{τ̄w, miny ρ̄, maxy μ̄}. The average spanwise distance between streaks, scaled by this
length-unit, is nearly independent of M̄CLx at constant Reτ� . Using the in-plane (parallel to
the wall) Laplacian ∇2

xzp
′ we find that the (+/−)-p′ wave-packet-like structures appearing

inside the low-speed streaks (y� � 15) with increasing M̄CLx � 2 are part of a more
complex wave system with spanwise extent over several streaks, whose spatial density
decreases rapidly with decreasing M̄CLx or increasing y�. These p′ wave packets appear
to be collocated with strong (+/−)-v′ events and could be responsible for compensating
towards 0 the negative incompressible-flow correlation coefficient cp′v′ , with increasing
M̄CLx very near the wall.
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1. Introduction

Substantial effort has been devoted to the study of pressure fluctuations in incompressible
wall turbulence using theoretical approaches (Panton & Linebarger 1974), direct numerical
simulation (DNS) (Kim 1989) and experiments in wind tunnels (Tsuji et al. 2007) or in
the atmospheric boundary-layer (Klewicki, Priyadarshana & Metzger 2008). DNS is still
limited in the high-Reynolds-number range by available computer resources, the highest
reported friction Reynolds number being Reτw = 10 045 (Hoyas et al. 2022), whereas
experiments are confronted with the difficult problem of filtering out parasite wind-tunnel
noise (Tsuji et al. 2012) and the frequency response of the transducers (Tsuji et al.
2007). Regarding the scaling of the wall fluctuation level (p′p′)+w in incompressible flow,
Panton, Lee & Moser (2017) used inner/outer matched asymptotic expansions to justify
(ln Reτw)-scaling which suggests unbounded growth of inner-scaled [p′

rms]
+
w with Reτw , but

a finite limit when using mixed scaling ρuτ ūCL = τ̄w
√

2/cf for p′ instead. However, recent
work by Chen & Sreenivasan (2022) argues that a Re−1/4

τw -scaling (yielding a finite limit in
wall-units as Reτw → ∞) is more consistent with data, in line with the matched asymptotic
analysis of Monkewitz (2022) for the streamwise velocity covariance u′2. Standard notation
(Smits & Dussauge 2006, pp. 61–65), (·) = (·) + (·)′ = (̃·) + (·)′′, for Reynolds or Favre
averages and fluctuations, is used throughout the paper.

Incompressible flow data, both for channels (Lee & Moser 2015) and zero-pressure-
gradient (ZPG) boundary layers (Schlatter et al. 2010), reveal (Panton et al. 2017) a
reasonably robust inner law (near-wall behaviour) for the p′+

rms( y+) profiles, with a peak
(local maximum) [p′

rms]
+
PEAK around 28 � y+

p′
PEAK

� 32 (depending on Reτw), and a lower

level [p′
rms]

+
w at the wall (p′

rms is nearly constant very near the wall, for y+ � 5). It is
believed (Kim & Hussain 1993) that very near the wall (y+ � 5) turbulent perturbations
essentially propagate with y-independent velocity, and frozen-wave estimates (del Álamo
& Jiménez 2009) in compressible turbulent boundary layers (TBLs) (Zhang, Duan &
Choudhari 2017) suggest that this is also the case in compressible wall turbulence.

The detailed investigation by Bernardini & Pirozzoli (2011) of 2 � M∞ � 4 ZPG TBLs
over an adiabatic wall (more precisely an isothermal wall at the adiabatic-wall recovery
temperature Tw = Tr) does not indicate substantial changes in the near-wall p′+

rms( y+)

profiles. Nonetheless, careful examination of the data indicates that small changes do
occur, both [p′

rms]
+
w and [p′

rms]
+
PEAK slightly increasing with M̄δx . This very-near-wall

behaviour is also observed in compressible turbulent plane channel (TPC) flow, already at
much lower M̄CLx (Gerolymos & Vallet 2014; Modesti & Pirozzoli 2016; Tang et al. 2020).
At (Reτ�, M̄CLx) = (113, 2.49), [p′

rms]
+
w is already higher than [p′

rms]
+
PEAK (Gerolymos &

Vallet 2014; Tang et al. 2020). In contrary to adiabatic-wall ZPG TBL studies (Bernardini
& Pirozzoli 2011) the wall is increasingly colder with increasing M̄CLx in TPC flows
(Coleman, Kim & Moser 1995; Gerolymos & Vallet 2014), resulting in lower sound-speed
near the wall compared with the centreline, and consequently to higher M̄x/M̄CLx near
the wall compared with adiabatic-wall ZPG TBLs. This effect of wall temperature was
demonstrated by Zhang et al. (2017) who studied the effect of T̄w/Tr ∈ {1, 0.76, 0.25}
in a M∞ = 5.86 ZPG TBL. As T̄w/Tr decreases (colder wall) the wall-to-peak ratio
[p′

rms]w/[p′
rms]PEAK increases to reach ∼3

2 at T̄w/Tr = 0.25 (Zhang et al. 2017). The major
influence of T̄w/Tr at constant M̄CLx has also been demonstrated for TPC flow by Yu &
Xu (2021) who added an artificial sink term (cooling) in the energy equation (Yu, Xu &
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Pressure fluctuations in compressible wall turbulence

Pirozzoli 2020), thus controlling the ratio T̄w/Tr, following the approach used by Coleman
et al. (1995) to create an equivalent artificial flow without temperature stratification.

These important changes of the p′
rms( y) profiles very near the wall, with increasing

Mach number (M̄CLx or M̄δx) and/or decreasing T̄w/Tr (colder wall) are obviously
the footprint of changes in the very-near-wall turbulence structure. Coleman et al.
(1995) who were the first to study the canonical compressible TPC flow, observed
increased streamwise coherence of the near-wall streaks with increasing M̄CLx , inducing
increased mean shear ∂yū because of stronger {ρ, T}-stratification of the near-wall region
(demonstrated by simulating an artificial flow without the viscous heating term τijSij
in the static temperature equation thus recovering the incompressible flow spanwise
coherence and changing the near-wall sign of correlation coefficient cρ′T ′ < 0 back
to cρ′T ′ > 0). They also discussed the possibility to consider the (high/low)-speed
regions of the near-wall flow as ‘variable density mixing layer(s) at the edge of a
cold low-speed streak . . . governed by the same dynamics responsible for the reduced
spreading rate of compressible mixing layers (Papamoschou & Roshko 1988) . . . for
convective Mach number Mc > 0.5’. Coleman et al. (1995) considered that observed
Mc were too weak to induce such compressibility effects, without however detailing
how Mc is defined with respect to the observed coherent structures and the wall
proximity.

Tang et al. (2020) compared two TPC flows, at (Reτ�, M̄CLx) ∈ {(110, 2.39), (340, 1.50)},
to investigate compressibility effects on p′. Following Sarkar (1992) they used the
compressible Poisson equation for p′ (Sarkar 1992; Foysi, Sarkar & Friedrich 2004;
Gerolymos, Sénéchal & Vallet 2013) to split p′ = p′

(r) + p′
(s) + p′

(τ )inc + p′
(c) into slow

(p′
(s)), rapid (p′

(r)), incompressible Stokes (p′
(τ )inc) and the remainder identified as the

compressible contribution p′
(c) (Sarkar 1992). In compressible flow the source term

for the Stokes term Q′
(τ ) /= 0 (Foysi et al. 2004; Gerolymos et al. 2013), in contrast

to the calculated p′
(τ )inc. There was therefore a part of Stokes p′

(τ ) included in the
compressible p′

(c). The instantaneous p′-fields revealed fundamental changes between the
M̄CLx = 1.50 case and the higher M̄CLx = 2.39 flow, with the appearance at M̄CLx = 2.39
of alternating (+/−)-p′ structures, essentially located inside the low-speed streaks. These
(+/−)-p′ structures were further identified (Tang et al. 2020) in linearised mode analyses,
were associated to the observed differences (with increasing M̄CLx) in wavenumber and
frequency spectra, and were shown to be the result of the compressible mechanism
p′
(c) which increased substantially compared with the other mechanisms (Tang et al.

2020). These (+/−)-p′ structures are related with the significant dilatational perturbations
focused along the cold slow-sound-velocity low-speed streaks possibly acting as acoustic
waveguides (Coleman et al. 1995).

Yu, Xu & Pirozzoli (2019) opted for the kinematic decomposition of the velocity field
ui = uωi + uΘi , into a solenoidal part induced by the instantaneous vorticity distribution
ωi := εijk∂xjuk and an irrotational part induced by the instantaneous dilatation distribution
Θ := ∂xk uk (Batchelor 1967, pp. 84–87), to study the effects of 0 < M̄CLx � 6.97
(including an incompressible DNS) and of the wall-to-recovery temperature ratio
T̄w/Tr, where Tr is the adiabatic wall recovery temperature (van Driest 1951). The
ratio T̄w/Tr was adjusted (Yu et al. 2019) by an artificial sink term (cooling) in the
energy equation, in line with the study on temperature stratification effects in Coleman
et al. (1995). Instantaneous X-rays, at y+ = 15, of the fluctuating velocity fields, at
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(M̄CLx, Reτw, T̄w/Tr) � (3.48, 494, 0.5), revealed the presence of alternating (+/−)-u′′
Θ

patterns along the near-wall streaks, ‘probably interpretable as traveling wave packets’ (Yu
et al. 2019). Yu et al. (2020) combined the p′ = p′

(r) + p′
(s) + p′

(τ ) + p′
(c) splitting (using

the compressible Q′
(τ ) /= 0) with the ui = uωi + uΘi splitting of the velocity field, showing

that the increase in p′
rms near the wall is associated with similar increases in [p′

(c)]rms

and [p′
(τ )]rms, whereas the rapid [p′

(r)]rms and slow [p′
(s)]rms profiles remained practically

unaffected by compressiblity effects.
These studies (Tang et al. 2020; Yu et al. 2019, 2020; Yu & Xu 2021) clearly correlate the

modification, under the synergetic effect of increasing M̄CLx (M̄δx) and decreasing T̄w/Tr,
of the near-wall p′

rms profile, to the increase of p′
(c). Another indication of the inception of

compressibility effects in the near-wall region is the breakdown (or rather the increasing
approximation error) of the linear approximations of thermodynamic correlations obtained
by truncating the exact expressions implied by the fluctuating equation-of-state (EoS)
(Gerolymos & Vallet 2018).

In previous work (Gerolymos & Vallet 2014, 2018) the simultaneous variation of both
(Reτ�, M̄CLx) in the database hindered the unambiguous identification of the effect of
each parameter. For this reason we constructed a (Reτ�, M̄CLx)-matrix database. The
other important parameter in wall turbulence, namely T̄w/Tr, is not controlled in the
present simulations of canonical compressible TPC flow (Coleman et al. 1995), but
depends on (Reτ�, M̄CLx), because there is no artificial source term in the energy equation.
The wall gets increasingly colder with increasing M̄CLx . Although closer-to-adiabatic
wall-temperature conditions are relevant in practical high-Mach-number applications
(Zhang et al. 2017) TPC flow data are particularly useful for the study of thermodynamic
turbulence structure (Gerolymos & Vallet 2018) and the transport of thermodynamic
quantities in the inner layer (Gerolymos & Vallet 2014) including temperature
(Bowersox 2009), especially as the exact streamwise invariance of the flow allows,
via streamwise averaging, for much larger statistical samples in a given observation
time.

The purpose of the paper is to study the effects of (Reτ�, M̄CLx) on the fluctuating
pressure field p′, and to identify similarities and differences with incompressible
flow data. We use the term compressible in a generic sense, making no distinction
between mean flow stratification effects (Morkovin 1962) or compressible turbulence
effects directly related to the fluctuating density ρ′ (Gerolymos & Vallet 2014, 2018)
either via the compressible terms in the Poisson equation for fluctuating pressure p′
(Pantano & Sarkar 2002; Foysi et al. 2004; Tang et al. 2020) or identified in relation
to the dilatation-induced velocity (Yu et al. 2019). In § 2, we briefly describe the
construction of the database, summarize available data and introduce the three systems
of units (defining the non-dimensionalisation scales) used in the paper. In § 3, we
study the root-mean-square (r.m.s.) level of the fluctuating pressure, p′

rms := √
(p′p′)

and pressure–velocity correlation coefficient {cp′u′, cp′v′ }, clearly identifying the near-wall
region (roughly y� � 15) as the principal location of strong (M̄CLx � 2) effects. We also
determine an empirical correlation highlighting the dependence of [p′

rms]w on the three
parameters (Reτ ‡, M̄CLx, Tr/T̄w). In § 4, we investigate coherent structures in the near-wall
region, focussing first (§ 4.1) on the M̄CLx-scaling of the average spanwise distance between
streaks (more precisely of its surrogate defined by the spanwise correlations of the
streamwise velocity), leading to the choice of the appropriate non-dimensionalisation.
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Pressure fluctuations in compressible wall turbulence

These new length-units correct the deficiency of HCB-length-units near the wall and
are nearly identical to HCB-length-units further away from the wall. In § 4.2, we use the
in-plane Laplacian ∇2

xzp
′ to identify (+/−)-p′ fronts (∇2

xzp
′ = 0) and in § 4.3, we discuss

the collocation of these fronts with the extrema of wall-normal velocity fluctuation v′ (or,
equivalently, of wall-normal Mach number M′

y := (v/a)′) and the structural modifications
observed, with increasing M̄CLx , in the joint probability density functions (p.d.f.s) of p′
versus the fluctuating velocity components u′

i (which explain the very strong near-wall
M̄CLx effect on the correlation coefficient cp′v′). Finally, in § 5, we present the conclusions
of the present work and discuss directions for future research.

2. (Reτ�, M̄CLx)-scalings and database

Compressible TPC flow between two isothermal walls (Coleman et al. 1995) is
characterised by mean temperature stratification, which strongly increases with increasing
Mach number (figure 1), because of viscous heating Sijτij, especially near the wall
(Coleman et al. 1995). Mean pressure p̄( y) = p̄w − ρv′′v′′ (under the condition of
streamwise invariance in the mean of plane compressible turbulent channel flow) varies
little across the channel (increasingly so with increasing M̄CLx , but never exceeding
3 %; figure 1). Therefore, because of the perfect gas EoS p = ρRgT =⇒ p̄ = ρ̄RgT̃ ,
density ρ̄( y) varies almost inversely proportionally to temperature T̃( y). Finally, dynamic
viscosity μ̄( y), being a function of temperature (Gerolymos & Vallet 2014, (2.1), p. 706),
varies in the same way as T̃( y) but with a lower exponent (figure 1).

2.1. Wall-units and mixed scalings

Because of this {ρ̄, T̃, μ̄}-stratification (figure 1), Huang, Coleman & Bradshaw (1995)
realised that the standard wall-units inherited by incompressible flow analyses

(·)+ units: {τ̄w, μ̄w, ρ̄w} =⇒ y+ := ρ̄w

μ̄w

√
τ̄w

ρ̄w
( y − yw); Reτw := δ+ (2.1a)

fail to correctly represent the major part of the flow, and suggested an alternative y-variable
scaling which replaces {μ̄w, ρ̄w} by their local values

(·)� units: {τ̄w, μ̄( y), ρ̄( y)} =⇒ y� := ρ̄( y)
μ̄( y)

√
τ̄w

ρ̄( y)
( y − yw); Reτ� := δ�. (2.1b)

This HCB friction Reynolds number Reτ� (2.1b) is the appropriate parameter determining
the peak value of the shear Reynolds stress −ρu′′v′′ (Huang et al. 1995) and is
generally accepted as the representative Reynolds number for compressible TPC flow
(Trettel & Larsson 2016). However, both scalings (2.1a), (2.1b) become identical at
the wall and, in general, neither is well adapted in the near-wall region y� � 10. In
that region, (·)�-units vary rapidly in the wall-normal direction because of the strong
temperature gradient (figure 1). The drawback of this rapid variation was particularly
felt in the present work while studying the near-wall pressure field in relation with the
near-wall low-speed streaks (§ 4.1). It is shown that, for a given flow defined by the
couple (Reτ�, M̄CLx), the average spanwise distance between streaks Λ

(z)
S is practically
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Figure 1. Wall-normal variation of mean thermodynamic variables {p̄, ρ̄, T̃, μ̄} with respect to their wall
values, plotted against the HCB-scaled non-dimensional distance from the wall y� (2.1b), for varying centreline
Mach number (2.4) 0.32 � M̄CLx � 2.49 (M̄CLx -based line types are used for p̄( y)) and HCB friction Reynolds
number (2.1b) 73 � Reτ� � 983 (Reτ� -based line types are used for {ρ̄( y), T̃( y), μ̄( y)}), from the present
database (table 1).

y-independent in the near-wall region y� � 10, so that studying the velocity and pressure
fields in (x�, z�) planes would misleadingly suggest strong y-normal variations in (·)�-units
(2.1b). On the other hand, it was also found that standard (·)+-units (2.1a) are completely
inadequate in comparing results for different M̄CLx at constant Reτ� . Noting that the strong
variation of mean-flow properties essentially occurs in the region y� � 15, we found
that an alternative y-constant scaling which uses centreline thermodynamic properties
{μ̄CL, ρCL} everywhere performed better. In the TPC case, maxy T̄ = T̄CL occurs at the
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Pressure fluctuations in compressible wall turbulence

centreline, with monotonic decrease towards the wall (figure 1). On the other hand,
in the case of adiabatic-wall ZPG TBLs, where maxy T̄ = T̄w occurs at the wall, with
monotonic decrease towards the boundary-layer edge, standard wall-units (2.1a) perform
quite well (Bernardini & Pirozzoli 2011; Zhang et al. 2017). Both these choices can be
accommodated, for the entire cold-wall range T̄w/Tr � 1, by

(·)‡ units:
{
τ̄w, max

y
μ̄, min

y
ρ̄

}
=⇒ y‡ := miny ρ̄

maxy μ̄

√
τ̄w

miny ρ̄
( y − yw); Reτ ‡ := δ‡.

(2.1c)
Obviously, for TPC (2.2a) or adiabatic-wall conditions (2.2b)(

max
y

μ̄, min
y

ρ̄

)
= (μ̄CL, ρ̄CL)

(2.1b), (2.1c)=⇒ δ‡ = δ� ⇐⇒ Reτ ‡ = Reτ�, (2.2a)

(
max

y
μ̄, min

y
ρ̄

)
= (μ̄w, ρ̄w)

(2.1a), (2.1c)=⇒ δ‡ = δ+ ⇐⇒ Reτ ‡ = Reτw . (2.2b)

Therefore, this y-independent system of mixed (friction/thermodynamics) scaling (2.1c)
(·)‡-units retains (Reτ�, M̄CLx) as global flow parameters in canonical compressible TPC
flow (2.2a). This point is discussed further in (§ 4).

Note that the unit for p is τ̄w in all of these systems (2.1), i.e.

(2.1) =⇒ p‡ ≡ p� ≡ p+ := p
τ̄w

. (2.3)

2.2. Computational method and statistics
The computations were run using a very-high-order O(��17) upwind-biased scheme
(Gerolymos, Sénéchal & Vallet 2009), implemented in a DNS solver (Gerolymos,
Sénéchal & Vallet 2010) which has been validated extensively in previous compressible
(Gerolymos & Vallet 2014, 2018) and low-M̄CLx (Gerolymos et al. 2013; Gerolymos
& Vallet 2016, 2019) work, by comparison with standard DNS data (Coleman et al.
1995; Moser, Kim & Mansour 1999; Foysi et al. 2004; Vreman & Kuerten 2014),
including spectra (Gerolymos et al. 2010) and higher-order-derivatives dissipation
statistics (Gerolymos & Vallet 2016).

The computational box was Lx = 8πδ long in the streamwise direction and Lz = 4πδ

wide in the spanwise direction (δ is the channel half-height), which is in the upper range
of DNS computational domains for channel flow both compressible (Modesti & Pirozzoli
2016; Trettel & Larsson 2016; Tang et al. 2020; Yu et al. 2019, 2020; Yu & Xu 2021)
and incompressible (Kim, Moin & Moser 1987; Moser et al. 1999; Hu & Sandham 2001;
Hoyas & Jiménez 2006; Lee & Moser 2015; Hoyas et al. 2022). Computational resolution
in wall-units (table 1) is typical of compressible TPC flow DNS computations, in line
with grid-resolution studies (Gerolymos et al. 2010; Modesti & Pirozzoli 2016; Trettel &
Larsson 2016).

Some early computations in the database (Gerolymos & Vallet 2014, 2018) were
initialised following the procedure described in Gerolymos et al. (2010, (44), p. 790).
However, most of the computations were initialised by thermodynamic rescaling and linear
interpolation of an instantaneous turbulent flow field at different (Reτ�, M̄CLx)-conditions.

Computational experience shows that p′
rms reaches statistical convergence much slower

than velocity covariances and other statistics. For this reason we were particularly
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Lx × Ly × Lz = 8πδ × 2δ × 4πδ; Tw = 298 K = const.

Reτ � M̄CLx Reτw MBw Nx × Ny × Nz �x+ �y+
w Ny+�10 �y+

CL �z+ �t+ = �t+s t+OBS

66 1.63 102 1.51 137 × 113 × 201 18.8 0.18 22 3.2 6.4 0.012211 17 901
74 0.33 75 0.27 201 × 121 × 321 9.4 0.12 27 2.2 2.9 0.003432 8356
74 0.81 82 0.67 201 × 121 × 321 10.3 0.13 26 2.4 3.2 0.005122 9683
77 1.49 112 1.40 201 × 121 × 321 14.1 0.17 23 3.3 4.4 0.008526 11 455
75 2.05 166 2.26 321 × 145 × 505 13.0 0.20 23 4.1 4.1 0.011309 11 011
103 1.51 153 1.47 401 × 169 × 557 9.6 0.12 29 3.1 3.5 0.005365 7391
100 1.82 186 1.93 401 × 169 × 557 11.7 0.15 26 3.7 4.2 0.008541 7646
100 1.92 203 2.11 401 × 169 × 557 12.8 0.17 25 4.1 4.6 0.009865 9294
99 2.01 219 2.30 401 × 169 × 557 13.7 0.18 24 4.4 4.9 0.011064 6555
97 2.11 238 2.50 401 × 169 × 557 14.9 0.19 23 4.8 5.4 0.012502 9586
98 2.22 276 2.79 401 × 169 × 557 17.3 0.22 22 5.5 6.2 0.015354 8107
105 0.32 107 0.27 257 × 129 × 385 10.5 0.17 23 2.7 3.5 0.005187 7785
106 0.79 117 0.69 257 × 129 × 385 11.5 0.18 22 3.0 3.8 0.013823 9095
114 1.51 170 1.49 257 × 129 × 385 16.7 0.22 21 4.7 5.6 0.015161 10 494
112 2.02 252 2.35 457 × 177 × 633 13.9 0.18 24 4.9 5.0 0.010082 6326
113 2.49 491 3.84 801 × 241 × 1201 15.4 0.18 21 5.4 5.1 0.004418 6627
143 0.32 145 0.28 257 × 129 × 385 14.3 0.19 22 4.0 4.8 0.005032 7789
134 1.99 298 2.33 481 × 181 × 745 15.6 0.18 23 5.1 5.0 0.010065 7601
151 0.79 168 0.70 421 × 149 × 801 10.0 0.17 23 3.7 2.6 0.011671 7060
151 1.50 228 1.51 345 × 137 × 529 16.6 0.23 19 5.7 5.4 0.016631 9564
169 0.79 187 0.71 421 × 149 × 801 11.2 0.19 22 4.1 2.9 0.012918 7673
177 0.35 180 0.30 257 × 129 × 385 17.7 0.23 20 5.0 5.9 0.006551 9695
251 0.83 282 0.75 633 × 177 × 1201 11.2 0.18 24 5.3 2.9 0.011526 5902
254 1.47 377 1.49 585 × 209 × 881 16.2 0.20 20 4.8 5.4 0.012121 6121
245 1.99 555 2.39 1201 × 281 × 1601 11.6 0.19 23 5.2 4.4 0.010531 7373
340 0.80 378 0.72 593 × 233 × 889 16.0 0.19 22 4.3 5.3 0.011236 7285
342 1.51 523 1.56 801 × 241 × 1201 16.4 0.20 21 5.7 5.5 0.010854 6558
341 1.98 768 2.39 1441 × 281 × 2001 13.4 0.20 22 7.3 4.8 0.009052 4973
983 0.81 1099 0.74 2145 × 481 × 2689 12.9 0.20 28 6.2 5.1 0.009005 2923
965 1.51 1478 1.57 2849 × 641 × 3473 13.0 0.21 30 6.1 5.4 0.012139 5346

Table 1. Parameters of the DNS computations: Lx, Ly, Lz (Nx, Ny, Nz) are the dimensions (number of grid
points) of the computational domain (x = homogeneous streamwise, y = wall-normal, z = homogeneous
spanwise direction); u, v, w are the velocity components along x, y, z; δ is the channel half-height; �x+,
�y+

w , �y+
CL, �z+ are the mesh sizes in wall-units (2.1a); (·)w denotes wall and (·)CL centreline values; Ny+�10

is the number of grid points between the wall and y+ = 10; Reτ� is the friction Reynolds number in HCB
scaling (2.1b); M̄CLx is the centreline Mach number (2.4); Reτw is the friction Reynolds number (2.1a); MBw is
the bulk Mach number at wall sound speed (§ 2.3); Δt+ is the computational time step in wall-units; t+OBS is the
observation interval in wall-units over which single-point statistics were computed; �t+s is the sampling time
step for the single-point statistics in wall-units.

careful to allow for a sufficiently long transient tCNVRG. Upon reaching a statistically
converged state, after the initial transient, single-point statistics were acquired at each
time step and sampled over several thousands of time wall-units (table 1). For the
(Reτ�, M̄CLx) = (965, 1.50) flow, initialised from a statistically converged coarse-grid flow
field, after a transient of t+CNVRG = 9853 (tCNVRGũCL/δ = 180), statistics were acquired for
an additional t+OBS = 5346 (tOBSũCL/δ = 98).
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Air thermodynamics were approximated by a perfect gas EoS with Sutherland laws
for viscosity and heat conductivity (Gerolymos & Vallet 2014, (2.1), p. 706). van Driest
(1951, figure 17, p. 157) highlights the overestimation of dynamic viscosity at high
temperatures when using a power law in lieu of the more accurate Sutherland’s law. Since
temperature stratification is induced by viscous heating Sijτij (Coleman et al. 1995) there
are small differences at high M̄CLx in centreline-to-wall temperature ratio T̃CL/Tw and in
the MBw(Reτ�, M̄CLx) relation between DNS data using different laws for viscosity. This
observation not withstanding, the present results using Sutherland’s law are in very good
agreement with the p′

rms data of Modesti & Pirozzoli (2016) who used a power law, for
flows at similar (Reτ�, M̄CLx) conditions.

2.3. Database
The target during the construction of the database was to obtain a matrix of (Reτ�, M̄CLx)

values, where Reτ� is the HCB friction Reynolds number (2.1b) and

M̄CLx :=
(

uCL

aCL

)
(2.4)

is the average streamwise centreline Mach number. Note that the often used
approximations M̄CL � M̄CLx � ũCL/a(T̃CL) are confirmed by the data with good accuracy
because vCL � uCL  wCL and (T ′

rms/T̄)CL ≪ 1. We use the exact average (2.4) in our
work.

In general, Reτ� is adopted by workers in the field (§ 2.1), because it is the proper
parameter for the scaling of the Reynolds shear stress −ρu′′v′′ and, hence, controls the
mean velocity ũ profile (Trettel & Larsson 2016). We chose the centreline Mach number
M̄CLx for the matrix construction because it allows comparison with boundary-layer data
which are always referenced to the external flow Mach number, and because its physical
significance is clear. Furthermore the coefficients of variation CV(·)′ := (·)′rms/(·) of the
thermodynamic fluctuations {p′, ρ′, T ′, s′} scale with M̄2

CLx
(Gerolymos & Vallet 2014,

2018).
Neither Reτ� nor M̄CLx are fixed in the computations, the flow conditions being

determined by the set {ρB, ṁB, T̄w} (Gerolymos et al. 2010), where ρB := ρ̄xyzt is the
bulk density, ṁB := LyLzρBuB := LyLzρuxyzt is the mass flow, and Tw = const. is the wall
temperature (as a consequence the bulk-wall Mach number MBw := uB/āw is fixed).

However, we took particular care in the construction of the database to obtain the closest
possible target M̄CLx ∈ {0.33, 0.80, 1.50, 2.00} and Reτ� ∈ {75, 100, 110, 250, 340, 1000}
(table 1). The cost of the computations strongly increases with M̄CLx if nearly constant
resolution in standard wall-units is sought (this is the most stringent resolution
assessment), as a result of the rapid increase of the ratio Reτw/Reτ� with increasing
M̄CLx . This new database (table 1) extends available data at M̄CLx ∈ {0.8, 1.5} to higher
Reτ� � 1000, which to the best of the authors’ knowledge is the highest reported Reτ� for
compressible TPC flow.

3. p′+
rms scaling

It is well established that [p′
rms]

+
w := √

(p′p′)+w increases with Reτw both for incompressible
(Panton et al. 2017; Chen & Sreenivasan 2022) and supersonic (Bernardini &
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Pirozzoli 2011) wall turbulence. On the other hand, at constant Reτ� , the coefficient
of variation (CVp′)w := ( p′

rms/p̄)w scales approximately with M̄2
CLx

in compressible
TPC flow (Gerolymos & Vallet 2014, 2018). We concentrate in § 3 on the combined
(Reτ�, M̄CLx) effect on p′, and in § 3.4 we attempt to identify independently the relative
importance of Mach number M̄CLx and wall cooling Tr/T̄w.

3.1. Wall-pressure-fluctuation amplitude
When plotting (figure 2) the compressible data vs Reτw (2.1a) we observe similar curves for
different M̄CLx , shifted towards lower levels of [p′

rms]
+
w with increasing M̄CLx , highlighting

a distinct M̄CLx-dependence. Using instead the HCB friction Reynolds number Reτ� (2.1b)
clusters the data much closer together (figure 2). Nonetheless, careful observation shows
that there remains a weak M̄CLx-dependence, which appears clearly when plotting the data
for different nearly constant Reτ� versus M̄CLx (figure 2). At constant Reτ� , [p′

rms]
+
w slightly

increases with increasing M̄CLx , relative to the incompressible flow limit (M̄CLx → 0) level
(figure 2).

Carefully choosing the appropriate Reynolds and Mach number definitions, can only
diminish the influence of one of the two parameters, but not altogether remove it:
compressible TPC flow is biparametric.

3.2. p′+
rms profiles

The profiles of p′
rms at nearly constant M̄CLx ∈ {0.33, 0.80, 1.50, 2.00} (figure 3) show an

increase in the level of p′ with increasing Reτ� , quite similar to the incompressible flow
behaviour (Panton et al. 2017; Chen & Sreenivasan 2022). However, considering the effect
of M̄CLx at nearly constant Reτ� ∈ {100, 110, 250, 340} shows that in the near-wall region,
which can be defined as y� � 15, the level of p′ is strongly dependent on the Mach number.

At the incompressible flow limit, the maximal value of p′
rms is located in the range

29 � y� � 32 (depending on the Reynolds number). We can define this peak value as a
local maximum of the p′

rms profile

[p′
rms]

+
PEAK := local max

y>0
p′+

rms. (3.1)

With increasing M̄CLx the wall level [p′
rms]w increases relative to the peak [p′

rms]PEAK .
The data for Reτ� � 100 show (figure 3) that at M̄CLx � 1.9 the decrease from [p′

rms]PEAK
to the wall ceases to be monotonic, but instead the profile forms a local minimum
before increasing again towards the wall. This increase becomes more pronounced
with increasing M̄CLx and, at M̄CLx � 2.3, [p′

rms]w rises slightly higher than [p′
rms]PEAK

(figure 3). For the case (Reτ�, M̄CLx) = (113, 2.49) (figure 3) the wall level is clearly
higher than the local maximum [p′

rms]PEAK (3.1). This M̄CLx effect is confirmed by the
higher Reτ� ∈ {250, 341} data (figure 3) which follow the same trend. The p′

rms profiles
are better understood by non-dimensionalising by the peak value [p′

rms]PEAK (3.1), thereby
correcting for the slight scatter imparted to the data by the small variations of Reτ� around
the nominal target values of {100, 110, 250, 341} (figure 3).

Note that the centreline region (figure 3) shows a consistent M̄CLx-effect, the centreline
level [p′

rms]
+
CL increasing with increasing M̄CLx , at constant Reτ� .
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Figure 2. Wall pressure fluctuation r.m.s. [p′
rms]

+
w , in wall-units (2.3), plotted against the friction Reynolds

numbers Reτw (2.1a) and Reτ� (2.1b), for varying Mach numbers 0.32 � M̄CLx � 2.49, and against the
centreline Mach number M̄CLx (2.4), for varying Reynolds numbers 66 � Reτ� � 983, from the present
database (table 1); also included are incompressible DNS data (Kim et al. 1987; Moser et al. 1999; Hu &
Sandham 2001; Hoyas & Jiménez 2006; Lee & Moser 2015; Hoyas et al. 2022) and incompressible-flow
correlation (Chen & Sreenivasan 2022) using Reτ� (CS, 2022).
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Figure 3. Profiles of pressure-fluctuation r.m.s. p′
rms, in wall-units (2.3), plotted against the HCB-scaled

(2.1b) non-dimensional distance from the wall y� (logscale), for varying 73 � Reτ� � 965 at
nearly constant M̄CLx ∈ {0.33, 0.80, 1.50, 2.00} and for varying 0.32 � M̄CLx � 2.49 at nearly constant
Reτ� ∈ {100, 110, 250, 340} (also scaled by its peak value, [p′

rms]PEAK (3.1), for the different nearly constant
Reτ� ), from the present DNS database (table 1).
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Figure 4. Peak value of pressure-fluctuation r.m.s. [p′
rms]

+
PEAK (3.1), in wall-units (2.3), plotted against Reτ�

(2.1b), for varying 0.32 � M̄CLx � 2.49, and against M̄CLx (2.4), for varying 66 � Reτ� � 983, from the
present database (table 1); also included are incompressible DNS data (Kim et al. 1987; Moser et al. 1999;
Hu & Sandham 2001; Hoyas & Jiménez 2006; Lee & Moser 2015) and incompressible-flow correlation (Chen
& Sreenivasan 2022) using Reτ� (CS, 2022).

3.3. p′
rms peak

The data for [p′
rms]

+
PEAK (figure 4), with varying Reτ� at different M̄CLx , are quite close

to the incompressible DNS data (indeed closer compared with [p′
rms]

+
w ; figure 2). There

is, at constant Reτ� , a small decrease with M̄CLx (figure 4), but notably smaller than the
M̄CLx-dependence of the wall value [p′

rms]
+
w (figure 2).

The location of the peak
y�

p′
PEAK

:= y�
∣∣
[p′

rms]PEAK
(3.2)

was obtained by interpolating the discrete on-grid data by a degree-four polynomial in the
neighbourhood of the discrete maximum, to avoid grid-dependent scatter ([p′

rms]
+
PEAK is

the value of the interpolating polynomial at y�
p′PEAK).

The location of the peak y�
p′PEAK (3.2) varies both with Reτ� and M̄CLx (figure 5).

The dependence on Reτ� is similar to that observed in the incompressible flow data
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Figure 5. HCB-scaled (2.1b) non-dimensional distance from the wall of the p′
rms peak (3.1) location, y�

p′PEAK

(3.2), plotted against Reτ� (2.1b), for varying Mach numbers 0.32 � M̄CLx � 2.49 and against M̄CLx (2.4), for
varying 66 � Reτ� � 983, from the present database (table 1); also included are incompressible DNS data
(Kim et al. 1987; Moser et al. 1999; Hu & Sandham 2001; Hoyas & Jiménez 2006; Lee & Moser 2015).

(figure 5). In the transitional flow range Reτ� � 100 the peak moves away from the wall
with increasing Reτ� , reaching a local maximum around 100 � Reτ� � 110, i.e. at the
Reτ�-range which marks the end of transition. At higher Reτ� , y�

p′PEAK initially decreases
towards a local minimum around Reτ� � 400, to slowly increase again, possibly towards
an asymptotic value (figure 5). The variation of y�

p′PEAK vs Reτ� appears to be quite similar
for different M̄CLx but shifted towards higher values with increasing M̄CLx (figure 5). The
location of the peak y�

p′PEAK (3.2) is much more sensitive to variations of M̄CLx than of
Reτ� (figure 5). Note, however, that the p′

rms profiles are quite flat in the neighbourhood of
the peak (figure 3).

3.4. Relative importance of Tr/T̄w and M̄CLx on the near-wall field

The data for the M̄CLx-dependance of [p′
rms]

+
w (figure 2) reflect the combined influence of

increasing Mach number M̄CLx and wall cooling Tr/T̄w, which increases very rapidly with
M̄CLx in TPC where frictional heating can only be evacuated through the walls (figure 6).
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Figure 6. Variation of wall-cooling ratio 1 < Tr/T̄w � 7.35 (0.136 � T̄w/Tr < 1) and centreline Mach
number 0.32 � M̄CLx � 6.97 for the present data (table 1) and for the Yu et al. (2019, 2020) DNS data (YXP,
2020), for varying 66 � Reτ ‡ � 983.

The data of Yu et al. (2020) with an artificial sink term in the energy equation extend the
M̄CLx range with weakly cooled walls (figure 6).

A working correlation should be a function of the three parameters {Reτ ‡, M̄CLx, Tr/T̄w}.
The correlation (figure 7)

[p′
rms]

+
w =

(
4.4 − 10.5Re−1/4

τ ‡

)
︸ ︷︷ ︸

[p′
rms]+w,INC(Re

τ‡ )

(
1 + 0.020M̄2

CLx

1 + 0.011M̄2
CLx

)(
1 + 0.020

(
Tr

T̄w
− 1

))
︸ ︷︷ ︸

gp′
w
(M̄CLx ,Tr/T̄w)

(3.3)

scales the incompressible-flow correlation of Chen & Sreenivasan (2022) [p′
rms]

+
w,INC(Reτ ‡)

with a separable function gp′
w
(M̄CLx, Tr/T̄w) = gM,p′

w
(M̄CLx)gT,p′

w
(Tr/T̄w). The choice

of Reτ ‡ (2.1c) is made to bridge the present very-cold-wall TPC data with the
mildly-cold-wall data of Yu et al. (2020), maxy T̄ progressively moving from the
centreline towards the wall as adiabatic conditions are approached. The pure Mach-number
effect gM,p′

w
(M̄CLx) cannot be isolated from the available TPC data, and was instead

evaluated from adiabatic TBL data (Bernardini & Pirozzoli 2011), the rational function
ensuring M̄2

CLx
-dependence at low-Mach conditions while avoiding unbounded increase

at high-Mach conditions. Dividing the TPC data by gM,p′
w
(M̄CLx) indicated a nearly

linear trend with increasing wall cooling (with ±5 % scatter), suggesting the form of
gT,p′

w
(Tr/T̄w). The final correlation (3.3) fits the available data reasonably well (figure 7).

Although available data are limited regarding the independent effects of Mach number
and wall cooling, the satisfactory collapse of the compressible data on the incompressible
correlation supports the view that both effects are important, and both tend to increase
[p′

rms]
+
w relative to its incompressible-isothermal level at the same Reτ ‡ .

Regarding the data of Yu et al. (2020) the actual Tr := T̄CL(1 + rf ((γ − 1)/2)M̄2
CLx

) of
the statistically converged flow was used (the tabulated data refer to Tr of a virtual flow
used for the initialisation and boundary conditions).
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Figure 7. Wall-pressure-fluctuation r.m.s. [p′
rms]

+
w , in wall-units (2.3) and scaled by gp′

w
(M̄CLx , Tr/T̄w)

(3.3), plotted against the modified friction Reynolds number 66 � Reτ� � 983 (2.1c), for varying Mach
numbers 0.32 � M̄CLx � 6.97 and wall-cooling ratio 1 < Tr/T̄w � 7.35 (0.136 � T̄w/Tr < 1), from the
present database (table 1) and for the Yu et al. (2019, 2020) DNS data (YXP, 2020); also included is
incompressible-flow correlation (Chen & Sreenivasan 2022) using Reτ ‡ (CS, 2022).

3.5. Pressure–velocity correlations
Modifications of near-wall turbulence structure (Bradshaw 1977) associated with these
M̄CLx-effects on p′

rms (§ 3) can be assessed by considering correlation coefficients between
fluctuating pressure and velocity components

cp′u′ := p′u′√
p′2
√

u′2
≡ p′u′

p′
rmsu′

rms
; cp′v′ := p′v′√

p′2
√

v′2
≡ p′v′

p′
rmsv

′
rms

. (3.4a,b)

In general, for all of the (Reτ�, M̄CLx) flow conditions in the database (table 1),
cp′u′ > 0 for all y� ∈]0, δ�] (figure 8), whereas cp′v′ < 0 for all y� ∈]0, δ�[ (figure 9), with
[cp′v′]CL = 0 because of symmetry.

In the near-wall region (y� � 15) cp′u′ , at constant M̄CLx , shows weak dependence
on Reτ� (figure 8). On the other hand, as M̄CLx increases above 0.8, at constant Reτ� ,
the near-wall level of cp′u′ also increases indicating that compressibility effects enhance
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Figure 8. Profiles of correlation coefficient cp′u′ of streamwise pressure transport (3.4a,b), plotted against the
HCB-scaled non-dimensional distance from the wall y� (logscale and linear wall-zoom), for varying HCB
Reynolds numbers 73 � Reτ� � 983 at constant centreline Mach numbers M̄CLx ∈ {0.33, 0.80, 1.50, 2.00},
and for varying centreline Mach numbers 0.32 � M̄CLx � 2.49 at constant HCB Reynolds numbers
Reτ� ∈ {100, 110, 250, 340}, from the present DNS database (table 1).
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Figure 9. Profiles of correlation coefficient cp′v′ of wall-normal pressure transport (3.4a,b), plotted against
the HCB-scaled non-dimensional distance from the wall y� (logscale and linear wall-zoom), for varying HCB
Reynolds numbers 73 � Reτ� � 983 at constant centreline Mach-numbers M̄CLx ∈ {0.33, 0.80, 1.50, 2.00},
and for varying centreline Mach numbers 0.32 � M̄CLx � 2.49 at constant HCB Reynolds numbers
Reτ� ∈ {100, 110, 250, 340}, from the present DNS database (table 1).
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the positive correlation of p′ with the streamwise velocity fluctuation u′ near the wall
(figure 8). This region (y� � 15) corresponds precisely to the region where an increase of
p′+

rms was observed with increasing M̄CLx (figure 3).
Regarding cp′v′ (figure 9) we observe near the wall (y� � 15) a very marked influence

of M̄CLx , at constant Reτ� , both in level and slope. For all of the (Reτ�, M̄CLx) flow
conditions in the database (table 1) we have roughly cp′v′( y�

� y�
p′PEAK) � −0.05, which

progressively develops to a plateau with increasing Reτ� . At low M̄CLx � 0.33, cp′v′
decreases monotonically for y� � y�

p′PEAK towards the wall where it reaches a high negative
value −[cp′v′]w � 0.4 (depending on Reτ�), in line with incompressible flow data (Hoyas
& Jiménez 2006; Lee & Moser 2015). At the incompressible flow limit, which is quite
well represented by the M̄CLx � 0.33 data (Gerolymos et al. 2013; Gerolymos & Vallet
2016), the region y� � y�

p′PEAK is dominated by ( p′, v′) events of opposite sign (figure 9),
the more so as the wall is approached. The data at M̄CLx � 0.8 indicate similar behaviour,
up to the deep viscous sublayer, where we observe a very slight decrease of the negative
correlation −cp′v′ = ∣∣cp′v′

∣∣, for y� � 1
2 , at Reτ� � 340 (figure 9). This decrease of −cp′v′

with increasing M̄CLx is an important trend, as confirmed by the data for M̄CLx � 1.5
(figure 9), where it starts at y� � 1.5 reaching wall-values of −[cp′v′]w � 0.1, nearly
four times less than at M̄CLx � 0.33. Note also that the M̄CLx � 1.5 data at constant
Reτ� deviate from the lower M̄CLx � 0.8 data already at y� � 15. For M̄CLx � 2 this
deviation is larger and the negative peak (NP) of cp′v′ occurs at y�

� 2.5, with a very
strong positive slope nearer to the wall, where near-zero values are observed (figure 9).
This compressibility effect becomes more pronounced at higher M̄CLx as shown by the
Reτ� � 100 data at progressively increasing M̄CLx ∈ {1.5, 1.8, 1.9, 2.0, 2.1, 2.2} (figure 9).
For the case (Reτ�, M̄CLx) = (113, 2.49) there is a monotonic increase of cp′v′ towards
[cp′v′]w � 0 in the entire region y� � 15 (figure 9).

There is, nonetheless, a Reτ�-effect as well, the decrease of −cp′v′ becoming weaker and
occurring closer to the wall with increasing Reτ� (figure 9).

This substantial modification in the pressure–velocity correlations suggests a noticeable
modification of the near-wall pressure field by compressibility. With increasing M̄CLx ,
both the extent of the near-wall region impacted by the compressibility effects and the
difference from the incompressible behaviour increase significantly (figures 8, 9). Note
that the region y� � 10 is also the region where both wall-echo effects and the Stokes term
in the ∇2p′ splitting are important (Gerolymos et al. 2013).

Regarding the outer part of the flow, note that cp′v′ profiles (figure 9) have little M̄CLx

influence, whereas there is a weak M̄CLx effect on cp′u′ (figure 8).

4. Near-wall streaks and pressure field

To understand the physical mechanisms behind these near-wall effects we can use
equations (e.g. for ∇2p′ or for Dtp′2) and/or examine the coherent structures in this region.
In the present paper, we concentrate on the coherent structures, in an effort to identify
structural changes in the flow.

In the following, we present results at nearly constant Reτ� � 110 for which the
widest range 0.32 � M̄CLx � 2.49 is available (table 1). These are confirmed at higher
Reτ� ∈ {250, 340} and lower Reτ� � 102, which are not reported, for conciseness.
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Note also that the (Reτ�, M̄CLx) = (113, 2.49) flow (Gerolymos & Vallet 2014, 2018)
corresponds to the same conditions as the flow analysed by Tang et al. (2020) to identify
near-wall compressibility effects.

The previous analysis (§ 3) of p′ variance and correlations highlights the important
effects of varying M̄CLx at constant Reτ� on the near-wall (y� � 15) p′-field. This is in line
with previous work (Yu et al. 2019; Tang et al. 2020), but the availability of the present
(Reτ�, M̄CLx)-matrix database (table 1) allows us to evaluate the influence of each of the
two parameters separately. Far more than the differences in p′

rms (figure 3), the large (with
increasing M̄CLx) modifications in the pressure–velocity correlation coefficients cp′u′ and
cp′v′ near the wall (figures 8, 9) are structural modifications (Bradshaw 1977) suggesting
significant differences in the flow field near the wall.

This region (y� � 15) where p′-statistics are strongly M̄CLx-dependent is precisely
the region where flow structure and dynamics are dominated by the near-wall streaks
(Chernyshenko & Baig 2005a,b; Wang, Pan & Wang 2019) characteristic of buffer-layer
turbulence (Panton 2001; Adrian 2007; Bernard 2019), but which actually extend
also into the viscous sublayer, practically down to the wall. As y → yw approaching
the wall

y+ → 0 =⇒ ρ̄( y) → ρ̄w
μ̄( y) → μ̄w

(2.1a), (2.1c)=⇒
x� → x+
y� → y+
z� → z+

. (4.1)

Hence, for increasing M̄CLx , because of the strong mean-temperature stratification
(figure 1), the wall-normal gradient of the HCB length-unit ∂y�

�
UNIT becomes increasingly

strong. Therefore, any near-wall phenomenon (y� � 15) whose length scale is almost
constant or slowly varying in the wall-normal direction cannot be correctly represented
in HCB-scaled spatial coordinates.

It turns out that the spanwise distance between streaks is precisely such a flow feature.
As we are interested in comparing flow fields near the wall, we need to determine what is
the appropriate length-unit for {x, y, z}.

4.1. Scaling of the spanwise distance between streaks
A good surrogate for this distance in an average sense can be defined via the spanwise
two-point correlation coefficient of the streamwise velocity (Chernyshenko & Baig 2005b)

C(z)
u′u′( y, ξz) := u′(x, y, z, t) u′(x, y, z + ξz, t)

u′2( y)
, (4.2a)

where the footprint of the streaks is the appearance of a strong (∼ −0.2) negative peak
(NP) before the correlation increases again towards 0 (figure 10). This NP is attributed to
the negative correlation between low velocities (u′ < 0) inside the streaks with the high
velocities (u′ > 0) in the adjoining region. It ‘may be used to assign a length scale to the
turbulence’ (Tritton 1988, p. 307), namely, the distance of the first NP from the origin of
ξz (4.2a)

Λ
(z;NP)

u′ := min |ξz|
∣∣∣∣∣∂ξzC

(z)
u′u′( y, ξz) = 0,

C(z)
u′u′( y, ξz) < 0.

(4.2b)
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Chernyshenko & Baig (2005b) suggest that twice this length scale is a good estimate for
the average distance between streaks

Λ
(z)
S := 2Λ

(z;NP)

u′ . (4.2c)

Of course there are much more advanced techniques for identifying the streaks as coherent
structures, either on each (xz)-plane (Wang et al. 2019) or as three-dimensional structures
(Bernard 2019; Bae & Lee 2021), allowing a more accurate statistical determination of an
average distance between streaks, but the surrogate (4.2c) is sufficient for the purposes of
the present work.

Plotting the correlation coefficient C(z)
u′u′( y, ξz) (4.2a) against ξ+

z in standard wall-units
(2.1a) at different wall-normal stations y� ∈ {1, 5, 10, 15, 20} (figure 10) clearly shows
little variation with wall distance for given flow conditions (Reτ�, M̄CLx). As in standard
wall-units, the length-unit does not depend on wall distance, this suggests that the spanwise
spacing of the streaks, for given flow conditions (Reτ�, M̄CLx), varies little with y in
the near-wall region (y� � 15). On the other hand, expectedly, standard wall-units (2.1a)
scaling of ξ+

z shows very important differences with increasing M̄CLx at nearly constant
Reτ� , exactly analogous to the strong M̄CLx-dependence of the ratio Reτw/Reτ� (table 1).

Plotting the correlation coefficient C(z)
u′u′( y, ξz) (4.2a) against ξ�

z in HCB-scaled units
(2.1b) illustrates both the successes and shortcomings of this scaling. Sufficiently away
from the wall (y�

� 20) the two-point correlation coefficients C(z)
u′u′ for different M̄CLx

at nearly constant Reτ� practically collapse on a single curve when plotted against
ξ�

x (figure 10). However, closer to the wall, as progressively y → 0 =⇒ ξ�
z → ξ+

z
(4.1), the substantial differences between different M̄CLx are recovered, e.g. at
C(z)

u′u′( y�
� 1, ξ+

z ) � C(z)
u′u′( y�

� 1, ξ�
z ) (figure 10).

This behaviour is better understood by considering the profiles (against y�) of the
distance between streaks (4.2c) in the two scalings, Λ

(z)+
S and Λ

(z)�
S , in the entire buffer

region (figure 11). Data at Reτ� � 110 for different M̄CLx ∈ {0.32, 0.79, 1.51, 2.02, 2.49}
show that the HCB-scaled Λ

(z)�
S is not particularly sensitive to M̄CLx for y� � 15, but

also reveal increasingly large differences (with increasing M̄CLx) when approaching the
wall (figure 11), in line with (4.1). Note, in particular, how, for (Reτ�, M̄CLx) = (113, 249),
Λ

(z)�
S ( y� → 0) increases sharply towards values approaching Λ

(z)+
S at the wall which are

outside of the plot range (figure 11).
As we are interested in examining flow fields in the near-wall region, we need a length

unit that does not vary in the wall-normal direction, to conform with the fact that in
physical space the spanwise distance between streaks (which is a physically relevant length
scale) varies little wall-normal-wise (figures 10, 11). On the other hand, this length-unit
should approach ��

UNIT for y� � 15 where HCB scaling is successful in accounting for
M̄CLx effects. One possible, but rather difficult to use in practice, choice would be to use
��

UNIT( y) for all y� � y�
p′PEAK , and use a constant ��

UNIT( yp′PEAK) for all y� � y�
p′PEAK

from the p′
rms peak (3.2) down to the wall. However, this complexity is not necessary.

The y-dependence of ��
UNIT( y) (2.1b) stems essentially from the mean-temperature

stratification of the flow (figure 1) which induces the variations of μ̄( y) and ρ̄( y)
(§ 2.1). Closer observation of the T̃( y) profiles (figure 1) reveals that strong temperature
variations actually occur only in the near-wall region (y� � 20), for a given (Reτ�, M̄CLx)
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Figure 10. Two-point spanwise correlation coefficient of streamwise velocity fluctuations C(z)
u′u′ ( y; ξz) (4.2a),

at different HCB-scaled non-dimensional distances from the wall y� ∈ {1, 5, 10, 15, 20}, plotted against
different non-dimensionalisations (2.1) of the distance between the two points {ξ+

z , ξ�
z , ξ

‡
z }, for varying

centreline Mach numbers 0.32 � M̄CLx � 2.49 at nearly constant Reτ� � 110 (table 2); the average distance
between streaks surrogate Λ

(z)‡
S (4.2b), (4.2c) is indicated at y�

� 20.
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Figure 11. Different non-dimensionalisations (2.1) {Λ(z)+
S , Λ

(z)�
S , Λ

(z)‡
S } of the surrogate for the average

spanwise distance (4.2b), (4.2c), plotted against the HCB-scaled non-dimensional distance from the wall
y� (2.1b), at nearly constant Reτ� ∈ {110±5, 341±1} for different M̄CLx ∈ {0.32, 0.79, 1.51, 2.00±0.02, 2.49}
(table 2); enlarged view of the region y� ≤ 50.

flow, whereas in the outer region (y� � 20) temperature variations are much smaller
(T̃CL − T̃( y) � T̃CL − T̃w ∀y� � 20). Therefore, a system of units based on τ̄w, which
was found to be an appropriate scale for p′ (§ 3), and centreline thermodynamic quantities
{ρ̄CL, μ̄CL} should be very close to (·)� units for y� � 15, while being y-independent. For
TPC flow (2.2b), these are precisely the (·)‡ units (2.1c) introduced in § 2.1, which retain
with a very good accuracy the advantages of the HCB scaling in the outer part of the flow,
while respecting the very small y variation of the (xz) organisation of the flow very near
the wall. Furthermore, in TPC flow, this system of units also maintains Reτ� = Reτ ‡ (2.2a)
as the relevant Reynolds number.

Plotting the correlation coefficient C(z)
u′u′( y, ξz) (4.2a) against ξ

‡
z practically

collapses the curves for the different M̄CLx ∈ {1.51, 2.02, 2.49} at Reτ� � 110, for all
y� ∈ {1, 5, 10, 15, 20} (figure 10). The applicability of the (·)‡ units (2.1c) is further
confirmed by the profiles of Λ

(z)‡
S ( y) (figure 11) which are clustered closely together for

the different M̄CLx ∈ {0.32, 0.79, 1.51, 2.00 ± 0.02, 2.49} at Reτ� � 110. These profiles
of Λ

(z)‡
S ( y) are very similar with those obtained in incompressible flow (Chernyshenko &

Baig 2005b, figure 1, p. 1100).
The scaling of the streamwise two-point correlation

C(x)
u′u′( y, ξx) := u′(x, y, z, t) u′(x + ξx, y, z, t)

u′2( y)
(4.2d)

with ξ
‡
x (2.1c) is also quite satisfactory, compared with ξ+

x (2.1a) or ξ�
x (2.1b), in that

it very efficiently clusters together the curves for different M̄CLx at nearly constant Reτ�

(figure 10). Nonetheless, there remains, expectedly, a small M̄CLx-dependence which
slightly increases as y decreases towards the wall (figure 10). This observation highlights
the fact that both (·)� units (2.1b) and (·)‡ units (2.1c) may show M̄CLx-dependence very
near the wall, but the latter are less M̄CLx-sensitive and have the advantage of being
y-independent and of not tending to (·)+ units (2.1a) at the wall.
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4.2. Appearance of organised pressure waves with increasing M̄CLx

The low-speed streaks in the near-wall region can be identified (figure 13) using the
conditional average (truncated distribution)

Mx|M′
x<0 :=

∫ M̄x

Mxmin

Mx fMx(Mx) dMx∫ M̄x

Mxmin

fMx(Mx) dMx

, (4.3)

where Mxmin is the minimum observed Mx and fMx the corresponding p.d.f. This simple
parameter-free choice (only requiring sampling the p.d.f. of Mx) performs quite well
(figure 13), thus avoiding user-defined thresholds (Wang et al. 2019) or percolation
techniques (Bae & Lee 2021). Note that the spanwise distance between the instantaneous
streaks in the (x‡, z‡)-plane (figure 13) varies little with M̄CLx , in line with the previous
analysis (§ 4.1) which resulted in the introduction of (·)‡ units (2.1c).

It is not easy to identify structures by simply visualising instantaneous p′-fields
(figure 14). For the higher M̄CLx = 2.49 case, the (+/−)-p′ regions, which were identified
and analysed for the same flow conditions by Tang et al. (2020), are visible inside
the streaks (figure 14). Note also that we can sometimes discern bow-like (+/−)-p′

regions connecting corresponding regions between neighbouring streaks. At M̄CLx = 2.02
the same pattern is observed (figure 14), but with lower spatial density (probability of
occurrence), and at lower M̄CLx = 1.51, (+/−)-p′ regions are visible essentially at the
boundaries of the streaks, with much less and weaker streamwise events or connecting
bow structures (figure 14).

To better identify the p′-structures it is preferable to use gradients or Laplacians similarly
to standard optical visualisation techniques (Liepmann & Roshko 1957, pp. 157–163).
After testing different options it appeared that the in-plane Laplacian

∇2
xzp

′ := ∂2p′

∂x2 + ∂2p′

∂z2 (4.4)

is a very good choice. Note that for the present xz-invariant-in-the-mean flow,
∇2

xzp
′ = ∇2

xzp, so that (4.4) can be evaluated without the knowledge of p̄( y). Furthermore,
∇2

xzp
′ only requires in-plane data which allows y-subsampling in data extraction. Following

the previous analysis (§ 4.1) of the two-point correlation coefficients C(z)
u′u′(z; ξz) (figure 10)

and C(x)
u′u′( y; ξx) (figure 12), and of the surrogate distance between streaks Λ

(z)‡
S ( y)

(figure 11), we used (·)‡ units (2.1c) to non-dimensionalise (∇2
xzp

′)‡. Recall that the unit
for p is τ̄w in all systems (2.3).

By analogy with harmonic waves, we may identify very approximately the high negative
values of (∇2

xzp
′)‡ with p′-maxima and the high positive values with p′-minima. The

wavefronts can actually be identified to the contours corresponding to (∇2
xzp

′)‡ = 0 which
separate the (+/−)-p′ regions. The waves, which are very clearly visible for the higher
M̄CLx ∈ {2.02, 2.49} (figure 15), are essentially in the streamwise direction (x-wise), but
the fronts (essentially z-wise for x-wise waves) seem to be faster in the high-Mx regions
between steaks and slower within the low-Mx streaks, taking a bow shape in the high-Mx
regions. More importantly, these bow fronts cross the streaks and seem to have spanwise
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Figure 12. Two-point streamwise correlation coefficient of streamwise velocity fluctuations C(x)
u′u′ ( y; ξx)

(4.2d), at different HCB-scaled non-dimensional distances from the wall y� ∈ {1, 5, 10, 15, 20}, plotted against
different non-dimensionalisations (2.1) of the distance between the two points {ξ+

x , ξ�
x , ξ

‡
x }, for varying

centreline Mach numbers 0.32 � M̄CLx � 2.49 at nearly constant Reτ� � 110 (table 2).
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Figure 13. Instantaneous fluctuating streamwise Mach number M′
x (colourmap −2M′

xrms
� M′

x � +2M′
xrms

),
on (x‡, z‡) planes very near the wall (y�

� 1), for different M̄CLx ∈ {1.51, 2.02, 2.49} at nearly constant
Reτ� � 110 and approximate streak boundaries (black contours Mx = Mx|M′

x<0); also included is the surrogate

of the average spanwise distance between streaks Λ
(z)‡
S (4.2b), (4.2c).
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Figure 14. Instantaneous fluctuating pressure field p′ (X-ray colourmap −3p′
rms � p′ � +3p′

rms), on (x‡, z‡)

planes very near the wall (y�
� 1), for different M̄CLx ∈ {1.51, 2.02, 2.49} at nearly constant Reτ� � 110 and

approximate streak boundaries (cyan contours Mx = Mx|M′
x<0); also included is the surrogate of the average

spanwise distance between streaks Λ
(z)‡
S (4.2b), (4.2c).
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extent over several streaks (figure 15). A more detailed time-dependent analysis would
be necessary to identify precisely the nature and statistics of these coherent structures,
but this is beyond the scope of the paper and should be the subject of future research.
It does seem plausible however that these cross-streak p′ bow waves are related with the
previously observed effects of M̄CLx on p′-statistics and correlations with the velocity field
near the wall.

Note that these bow waves are precisely connected to the (+/−)-p′ structures inside
the streaks (figure 14) which were identified and analysed by Tang et al. (2020).
However, using (∇2

xzp
′)‡ has definite advantages in identifying the spanwise extent and

spanwise coherence of these p′-waves, which is not as obvious by simply considering
p′ X-rays (figure 14) or p′-level plots (Tang et al. 2020). The (+/−)-p′ regions inside
the streaks are possibly the effect of the interaction of these pressure waves with the
three-dimensional vortical structures responsible for the appearance of the streaks. In
three dimensions the streaks are identified by pairs of counter-rotating structures of
wall-normal vorticity ωy which induce highly negative u′ < 0 in the centre region of the
streaks (Adrian 2007; Bernard 2019). Therefore the spanwise cross-streak coherence of
the bow waves observed by studying (∇2

xzp
′)‡ (figure 15) is a feature of the near-wall

p′ field which requires further study. Note that with the hindsight of the detection
of the wavefronts using (∇2

xzp
′)‡ (figure 15), the spanwise persistence of the waves

between streaks is observable in the p′-field as well, especially with increasing M̄CLx
(figure 14).

These waves are essentially present in the near-wall region (y� � 15), and have
substantial amplitude with increasing M̄CLx , so at the higher M̄CLx ∈ {2.02, 2.49} they
are the dominant feature in the (∇2

xzp
′)‡ X-rays (figure 15). At M̄CLx = 1.51 they no

longer dominate the very-near-wall p′-field (figure 15), although a few weak streamwise
events (spanwise fronts) are discernible. However, the fronts between (+/−)-p′ regions
have become mostly parallel to the streaks, implying that with decreasing M̄CLx the
amplitude of streamwise waves decreases, so that they no longer dominate the background
p′-field at the wall, which becomes essentially associated with (induced by) the vortical
structures responsible for the streaks. This is also the case at lower M̄CLx ∈ {0.32, 0.79}.
Although not shown, for conciseness, (∇2

xzp
′)‡ X-rays at different distances from the wall

y� ∈ {3, 5, 10, 15, 20, y�
p′

PEAK
} indicate that the density and intensity of the cross-streak

streamwise bow waves, at constant high M̄CLx ∈ {2.02, 2.49} diminishes with increasing
distance from the wall, and at y�

� 20 they are hardly discernible even for the
highest M̄CLx = 2.49. It is therefore plausible to associate this major modification of
the p′-field, which is strengthened with increasing MCLx and with decreasing distance
from the wall, to near-wall compressibility effects, precisely in the region where
differences were observed in p′

rms (figure 3) and in the correlation coefficients {cp′u′, cp′v′ }
(figures 8 and 9).

4.3. Pressure–velocity correlations near the wall
With the hindsight of the results above (§ 4.2) regarding the effect of M̄CLx on the near-wall
p′-field we reexamine the pressure–velocity correlations cp′u′ and cp′v′ (figures 8 and 9),
by studying (figure 16) the integrands in the evaluation of {cp′u′, cp′v′ } (3.4a,b) from the
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Figure 15. Instantaneous in-plane Laplacian of fluctuating pressure in mixed inner/outer scaling (2.1c)
(∇xzp′)‡ (X-ray colourmap − 1

100 � (∇xzp′)‡ � + 1
100 ), on (x‡, z‡) planes very near the wall (y�

� 1), for
different M̄CLx ∈ {1.51, 2.02, 2.49} at nearly constant Reτ� � 110 and approximate streak boundaries (cyan
contours Mx = Mx|M′

x<0); also included is the surrogate of the average spanwise distance between streaks

Λ
(z)‡
S (4.2b), (4.2c).
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P.d.f.s; �tsq = �t Joint p.d.f.s; �ts2q = �t Two-point

Reτ� M̄CLx t+OBSq
Nbinsq Nsq t+OBS2q

Nbins2q Ns2q �tsR2 t+OBSR2

105 0.32 6531 200 251 × 109 3235 200 × 200 126 × 109 10�t 1702
106 0.79 6828 200 97 × 109 4081 200 × 200 57 × 109 10�t 1719
114 1.51 8014 200 103 × 109 4996 200 × 200 64 × 109 10�t 1773
112 2.02 5098 200 291 × 109 3889 200 × 200 222 × 109 10�t 1735
113 2.49 5166 1000 2245 × 109 5166 200 × 200 2243 × 109 10�t 1659
340 0.80 5766 200 539 × 109 4483 200 × 200 419 × 109 30�t 1762
342 1.51 5383 200 952 × 109 4048 200 × 200 715 × 109 30�t 1663
341 1.98 3854 1000 2452 × 109 3854 200 × 200 2452 × 109 50�t 1645

Table 2. Sampling parameters for p.d.f.s, joint p.d.f.s and two-point correlations: Reτ� is the friction Reynolds
number in HCB-scaling (2.1b); M̄CLz is the centreline Mach number (2.4); �t is the computational time step
(table 1); �tsq , Δts2q , ΔtsR2 are the sampling time steps for p.d.f.s, joint p.d.f.s and two-point correlations;
tOBSq , tOBS2q , tOBSR2 are the sampling observation intervals for p.d.f.s, joint p.d.f.s and two-point correlations;
Nbinsq , Nbins2q are the sampling bins for the calculation of p.d.f.s and joint p.d.f.s; Nsq , Ns2q is the number of
samples involved in the calculation of p.d.f.s and joint p.d.f.s; (·)+ denotes wall-units (2.1a).

joint p.d.f.s {fp′u′ fp′v′ } (table 2)

cp′u′
(3.4a,b)=

∫ p′
max

p′
min

∫ u′
max

u′
min

p′u′ fp′u′( p′, u′) d
(

p′

p′
rms

)
d
(

u′

u′
rms

)
, (4.5a)

cp′v′
(3.4a,b)=

∫ p′
max

p′
min

∫ v′
max

v′
min

p′v′ fp′v′( p′, v′) d
(

p′

p′
rms

)
d
(

v′

v′
rms

)
, (4.5b)

integrated with respect to the standardised variables

p′
STD := p′/p′

rms; u′
STD := u′/u′

rms; v′
STD := v′/v′

rms. (4.5c)

Near the wall, the streamwise correlation cp′u′ (figure 16) is dominated by u′ < 0
events, essentially inside the streaks. The positive/negative correlation peaks occur at
u′

� −u′
rms (figure 16), which is located approximately on or inside the streaks boundaries

determined by Mx = Mx|M′
x<0. At the lower M̄CLx ∈ {0.32, 0.79, 1.51} the integral of the

positive p′u′ > 0 quadrant Q3 (u′
STD < 0 > p′

STD) is slightly higher than the integral of
the negative p′u′ < 0 quadrant Q4 (u′

STD < 0 < p′
STD). With increasing M̄CLx , the Q3

contribution increases with respect to Q4, enhanced by p′ < 0 events well inside the
streaks (u′

STD < −1 > p′
STD). These statistical results suggest that the increase of cp′u′ with

increasing M̄CLx in the near-wall region (figure 8) is probably the result of the interaction
of the cross-streak pressure waves with the vortical structures inside the streaks, with little
contribution from the high-speed regions between streaks.

Regarding the wall-normal correlation cp′v′ , the effect of M̄CLx is more pronounced
(figure 16), confirming that the decrease towards 0 of −cp′v′ > 0 with increasing M̄CLx
in the near-wall region (figure 9) is the result of structural changes in the flow. The
positive p′v′ > 0 quadrants Q1 (v′

STD > 0 < p′
STD) and Q3 (v′

STD < 0 > p′
STD) are nearly

symmetric around the origin. With increasing M̄CLx their weight increases relative to the
negative quadrants Q2 (v′

STD > 0 > p′
STD) and Q4 (v′

STD < 0 < p′
STD), so that at the higher
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Figure 16. Integrands in the calculation of the correlation coefficients cp′u′ (4.5a) and cp′v′ (4.5b) from the
corresponding joint p.d.f.s, plotted against the standardised variables {p′/p′

rms, u′/u′
rms, v

′/v′
rms}, very near the

wall (y�
� 1), at nearly constant Reτ� � 110 for different M̄CLx ∈ {0.32, 0.79, 1.51, 2.02, 2.49}.
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M̄CLx ∈ {2.02, 2.49} the integral approaches 0. This is in complete contrast with the lower
M̄CLx ∈ {0.32, 0.79, 1.51} where the negative quadrants are clearly dominant (figure 16),
the more so with decreasing M̄CLx , with the maximum of Q4 (v′

STD < 0 < p′
STD) being

higher than that of Q2 (v′
STD > 0 > p′

STD). Note also that there are increasing contributions
from the positive quadrants (Q1 and Q3) with increasing M̄CLx . At the higher M̄CLx = 2.49
the integrands of cp′v′ have become practically antisymmetric with respect to the zero axes
(figure 16), explaining by cancellation the very low value of −cp′v′ (figure 9).

The instantaneous contours ∇2
xzp

′ = 0 are also the boundaries (fronts) between
(+/−)-p′ events, whereas the instantaneous contours Mx = Mx|M′

x<0 highlight the low-u
streaks (generally the statistics of Mx and u are very similar). The correlation of
this {p′, u′}-fields organisation with the wall-normal velocity v′ can be visualised by
superposing the instantaneous p′-fronts and the low-speed streaks boundaries with the
instantaneous M′

y-field (figure 17). At the higher MCLx = 2.49, high-intensity (+/−)-M′
y

events occur invariably on the p′-fronts (∇2
xzp

′ = 0 contours), and have precisely the same
spanwise coherence and organization as the cross-streak p′-bow-waves (figure 17). At
M̄CLx = 2.02, in the regions where cross-streak p′-bow-fronts are present, the (+/−)-M′

y
events coincide with the fronts (figure 17). However, in the regions where the p′-fronts
have started to align themselves with the streaks the (+/−)-M′

y events appear elongated in
the streamwise direction, and no longer coincide with the location of the fronts (figure 17).
At MCLx = 1.51, the majority of p′-fronts are aligned with the streamwise direction, and
(+/−)-M′

y events are elongated in the streamwise direction and no longer coincide with
the p′-fronts (figure 17).

Explaining the M̄CLx-induced structural modifications of the wall-normal correlation
cp′v′ is obviously more complicated than for the streamwise correlation cp′u′ . The strong
negative cp′v′ correlation coefficients observed at low M̄CLx can be associated to (+/−)-v′
events that form relatively elongated streamwise structures which do not coincide with the
p′-fronts, as, e.g., in the M̄CLx = 1.51 case (figure 17). At higher M̄CLx = 2.49 the flow
structure is completely masked by high-intensity (+/−)-v′ events which coincide with the
fronts of the cross-streak bow-waves (figure 17), and which symmetrise the cp′v′-integrand
(figure 16). It is not clear whether it is possible to analyse this modification as an additive
compressible effect, via linear approaches (Tang et al. 2020), or if there are important
nonlinear effects (Chu & Kovásznay 1958) that become dominant with increasing M̄CLx .

5. Conclusions

The construction of the (Reτ�, M̄CLx)-matrix DNS database of compressible TPC flow
presented in this paper enables the precise evaluation of the effect of each of the two
flow-determining parameters, the other being held constant. The present study focusses on
the effects of these two parameters on the fluctuating pressure p′. The wall-to-recovery
temperature ratio T̄w/Tr is not a free parameter, but is the result of viscous heating
determined by (Reτ�, M̄CLx). Therefore, results in the paper correspond to increasingly
cold-wall conditions (relative to adiabatic-wall temperature) with increasing M̄CLx .

The average wall shear stress τ̄w is a very satisfactory scale for the level of pressure
fluctuations, p′+

rms ≡ p′�
rms (identical in (·)+ wall-units or (·)� HCB units), which is much

more sensitive on Reτ� than on M̄CLx . The strongest compressibility effects on p′
rms appear
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Figure 17. Instantaneous wall-normal Mach number fluctuation M′
y (colourmap −M′

yrms
� M′

y � +M′
yrms

),
on (x‡, z‡) planes very near the wall (y�

� 1), for different M̄CLx ∈ {1.51, 2.02, 2.49} at nearly constant
Reτ� � 110; also included are approximate streak boundaries (white contours Mx = Mx|M′

x<0) and p′-fronts
(black contours ∇xzp′ = 0).

958 A19-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.42


G.A. Gerolymos and I. Vallet

in the near-wall region (y� � 15) where, at constant Reτ� , p′+
rms increases with increasing

M̄CLx , especially when M̄CLx � 2. In contrast to the increase of the wall level [p′
rms]

+
w ,

the peak value [p′
rms]

+
PEAK slightly decreases with M̄CLx , at constant Reτ� , but the M̄CLx

effect on [p′
rms]

+
PEAK is substantially weaker (more than threefold) than that on [p′

rms]
+
w . As

a consequence, [p′
rms]

+
w , which is lower than [p′

rms]
+
PEAK at incompressible and subsonic

flow, increases with increasing M̄CLx , to reach the peak level at M̄CLx � 2.3, overcoming
the peak value at higher M̄CLx . The location y�

p′
PEAK

of the peak depends principally on

M̄CLx , consistently moving away from the wall with increasing M̄CLx , with a much weaker
dependence on Reτ� . A correlation for [p′

rms]
+
w with respect to (Reτ ‡, M̄CLx, Tr/T̄w), valid

for airflow within the databases range, fits reasonably well both the incompressible and
compressible DNS data.

Pressure–velocity correlations are strongly influenced by M̄CLx in the near-wall region
(y� � 15), where, at constant M̄CLx , they depend weakly on Reτ� . Joint p.d.f.s show
that the near-wall increase of the streamwise correlation coefficient cp′u′ is the result of
increasingly intense p′ < −p′

rms events within the low-speed streaks (u′
� −u′

rms), with
little influence from the higher-speed flow region between streaks. On the other hand,
the decrease of −cp′v′ in the near-wall region appears to be the result of the global
modification, with increasing M̄CLx , of the flow structure both inside and between streaks.
Although the importance of compressibility effects and the extent of the near-wall region
where they occur depend mainly on M̄CLx , there is also a weak Reτ� influence, the
Reτ� � 1000 data indicating that compressibility effects are slightly stronger at the lower
Reτ� .

In contrast to these strong M̄CLx effects on the near-wall p′-field, the average spanwise
distance between low-speed streaks Λ

(z)
S (which is a physically relevant length scale) shows

little M̄CLx-dependence, at constant Reτ� , when non-dimensionalised using a novel system
of units introduced in the paper. This new mixed inner/outer (friction/thermodynamics)
system of (·)‡ units is based on {τ̄w, miny ρ̄, maxy μ̄}, which in TPC flow without any
artificial sink term in the energy equation are {τ̄w, ρCL, μCL}. This y-independent system
of units corrects the geometric distortion of the rapid wall-normal variation of the ��

UNIT( y)
length-unit near the wall (y� � 15) and the overwhelming M̄CLx-dependence of Λ

(z)+
S in

standard (·)+ wall-units which are ill-adapted for this compressible flow. Furthermore,
in compressible TPC flow, these (·)‡ units are almost identical to (·)� HCB units for all
y� � 20.

Regarding organised structures of the near-wall flow, the low-speed streaks are well
identified (delimited) by the average spanwise Mach number of negative-fluctuation
events, i.e. the instantaneous contours Mx = Mx|M′

x<0, whereas the instantaneous contours

∇2
xzp

′ = 0 of the in-plane Laplacian determine the fronts between (+/−)-p′ events. At
high M̄CLx � 2 these p′-fronts appear organised as streamwise waves, with a bow shape
between low-speed streaks, implying that they propagate faster in the high-speed region
between streaks. More importantly, they extend across several streaks in the spanwise
direction. When such organised p′-fronts dominate the flow field, high-intensity (+/−)-v′
events and p′-fronts are essentially collocated, explaining the symmetrisation of the
cp′v′-integrand (based on the joint p.d.f.s) which reduces −cp′v′ towards 0 with increasing
M̄CLx and decreasing wall distance y�. At lower M̄CLx � 1.5, p′-fronts no longer exhibit
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this wave-packet-like structure, except for some relatively rare instances, but become
elongated structures mostly aligned with the streaks which are no longer collocated with
high-intensity (+/−)-v′ events.

Further research is required to identify the precise dynamics of these organised
pressure waves, their interaction with the wall-normal vorticity ω′

y structures which
create the near-wall low-speed streaks, and their origin in a spanwise array of (+/−)-M̄x
mixing layers embedded in a strongly stratified mean flow, as well as the effect of the
wall echo on p′ in this very-near-wall region. Obviously the near-wall compressibility
effects are induced by a combination of mean-flow stratification (Morkovin 1962) and
compressible turbulence (fluctuating dilatation and fluctuating density). Specific source
terms (−ρDtΘ − DtV ·grad ρ)′ are included in the Poisson equation for ∇2p′ (Gerolymos
et al. 2013, (A1c), pp. 45–46), and the Green’s function solution for the corresponding
contributions to p′ could contribute to assess the relative importance of each mechanism.
Another, single-point-statistics approach, is provided by appropriate rewriting of the
heat-conduction term p′∂x�

q′
� in the transport equation for p′2 (Gerolymos & Vallet 2014,

(4.11a), p. 740) to reveal the grad(1/ρ) terms hidden in ∂x�
T ′, accounting explicitly for

stratification effects. Both these complementary approaches are the subject of ongoing
research.
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