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Submesoscale fronts with large horizontal buoyancy gradients and O(1) Rossby numbers
are common in the upper ocean. These fronts are associated with large vertical transport
and are hotspots for biological activity. Submesoscale fronts are susceptible to symmetric
instability (SI) — a form of stratified inertial instability which can occur when the potential
vorticity is of the opposite sign to the Coriolis parameter. Here, we use a weakly nonlinear
stability analysis to study SI in an idealised frontal zone with a uniform horizontal
buoyancy gradient in thermal wind balance. We find that the structure and energetics of
SI strongly depend on the front strength, defined as the ratio of the horizontal buoyancy
gradient to the square of the Coriolis frequency. Vertically bounded non-hydrostatic SI
modes can grow by extracting potential or kinetic energy from the balanced front and
the relative importance of these energy reservoirs depends on the front strength and
vertical stratification. We describe two limiting behaviours as ‘slantwise convection’
and ‘slantwise inertial instability” where the largest energy source is the buoyancy flux
and geostrophic shear production, respectively. The growing linear SI modes eventually
break down through a secondary shear instability, and in the process transport considerable
geostrophic momentum. The resulting breakdown of thermal wind balance generates
vertically sheared inertial oscillations and we estimate the amplitude of these oscillations
from the stability analysis. We finally discuss broader implications of these results in the
context of current parameterisations of SI.
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1. Introduction

The upper ocean is a dynamically active and important region, relevant not only to
Earth’s climate due to exchanges at the air—sea interface, but to biogeochemical processes.
Turbulence acts to vertically homogenise this upper-most layer of the ocean down to typical
depths of 10 to 100 m, driven by wind stresses, surface waves, heat or salinity fluxes
or internal flow instabilities. Dynamics in the mixed layer influences exchanges of heat,
momentum, carbon, oxygen and other important biogeochemical tracers with the ocean
interior.

Fronts, or regions with large lateral density gradients, are common in the upper ocean.
These lateral gradients (denoted V},) of the background density field, p (measured by the
horizontal analogue to the buoyancy frequency, M? = g/po|Vip|, with g the acceleration
due to gravity, and pg a reference density) are often in near-geostrophic balance and may be
generated by the frontogenetic strains of mesoscale eddies, by coastal upwelling, intrusions
into intermediate waters or river discharges. Additionally, persistent frontal systems in the
ocean include western boundary currents (e.g. the Gulf Stream and Kuroshio) and the
Antarctic Circumpolar Current.

Horizontal density gradients can drive across-front flow due to baroclinic torques,
g/poVip x z (wWhere 7z is the vertical unit vector). These baroclinic torques tend to flatten
isopycnals, but may be counterbalanced by a Coriolis torque, fd,u, (where f is the Coriolis
parameter), arising from a vertical shear in the geostrophic velocity, u,. This geostrophic
balance with the horizontal gradient of hydrostatic pressure arising from the background
density field is often called the thermal wind balance. The reservoir of potential energy
associated with the horizontal density gradient and kinetic energy associated with the
thermal wind is available to energise secondary motions. The dynamics within fronts (if
not the entirety of frontal systems), however, is often unresolved in global and regional
numerical models. A better understanding of these self-regulating frontal dynamics is
therefore crucial to modelling the up-scale influence of unresolved processes.

Fronts are susceptible to a number of linear instabilities which drive submesoscale
(100 m—10 km) motions.

Baroclinic instability releases the potential energy stored in the horizontal density
gradient, rather than extracting it from the thermal wind shear (Charney 1947; Stone 1972),
and is a major mechanism behind the generation of submesoscale eddies (e.g. Boccaletti,
Ferrari & Fox-Kemper 2007; Fox-Kemper, Ferrari & Hallberg 2008; Callies et al. 2016).
Symmetric instability (SI) is an ageostrophic instability that can develop in frontal regions
when the Ertel potential vorticity (PV)

g=(fz+V xu)-Vb, (L.1)

(defined with the velocity, u, and buoyancy, b = —gp/po) is of the opposite sign to the
Coriolis parameter, f (Hoskins 1974). The destabilising contributions of a balanced flow
are evident if we decompose the PV into a vortical and baroclinic component, respectively

q = (w0, +IN* — M*/f, (1.2)

where o, is the vertical component of the relative vorticity and M? = 3.b (as above)
is the horizontal analogue to the buoyancy frequency, N> = 3,b. A negative PV does
not necessarily imply SI, however. In the absence of a frontal buoyancy gradient (i.e.
M? = 0) ‘gravitational instability’ occurs when N> < 0 and w, + f > 0 whereas ‘inertial
instability’ occurs when N > 0 and w. + f < 0. Therefore SI only occurs when (w, +
fIN? > 0 but M*/f is sufficiently large so that fg < 0. Much of the ocean interior
is sufficiently stratified such that fg > 0. However, as noted by Thomas et al. (2016),
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a frictional stress or diabatic flux at the surface and bottom boundaries lead to fg < 0
and trigger SI.

In the context of the Eady model with uniform horizontal and vertical buoyancy
gradients, Stone (1966) found that symmetric modes, defined as those independent of the
along-front direction (i.e. perpendicular to the horizontal buoyancy gradient), grow faster
than baroclinic modes (independent of the cross-front direction) for Ri < 0.95, where Ri =
N?f2/M* is the balanced Richardson number. Stone (1971) considered the non-hydrostatic
contributions to symmetric and baroclinic instabilities in the ageostrophic Eady model,
showing that the vertical inertia suppresses both baroclinic and symmetric instabilities.
Viscous contributions to the bounded non-hydrostatic SI problem were then included by
Weber (1980) and approximated by a viscosity acting on a vertically unbounded normal
mode. Beyond the Eady model other types of instability are possible. For example, Wang,
McWilliams & Ménesguen (2014) describe a variety of instabilities that develop in more
general vertically sheared flows and how they relate to symmetric and baroclinic instability
in the Eady model.

Recent observational studies have accumulated evidence of SI in the ocean. For
example, increased turbulence and dissipation (exceeding that from atmospheric forcing)
in regions where fg < 0 has been attributed to SI (Thomas et al. (2016) in the Gulf Stream,
and D’ Asaro et al. (2011) in the Kuroshio). This negative PV is generated by atmospheric
forcing — either by upward buoyancy fluxes (for example cooling) (Haine & Marshall 1998;
Thomas et al. 2013) or wind stresses (Thomas & Lee 2005) — which can reduce the PV,
and sustain ‘SI turbulence’ and mixing stronger than what the forcing alone could generate.
Thompson et al. (2016b) and later Yu et al. (2019) have also found evidence for SI in glider
and mooring observations of the open ocean away from major frontal systems. Recently,
Savelyev et al. (2018) captured aerial images of SI in the North Wall of the Gulf Stream
(cf. figure 2), which constitutes the only visual evidence of the structure of SI to date.

Vertically sheared inertial oscillations of the isopycnals can result from the rapid
mixing of geostrophic momentum, and were present following the saturation of SI in
the simulations of Taylor & Ferrari (2009). Tandon & Garrett (1994) modelled the
response of a mixed layer front to impulsive vertical mixing using the inviscid hydrostatic
equations. After a mixing event, the front undergoes inertial oscillations and modulates
the background stratification about the average steady-state position (Ri = 1). Tandon
& Garrett (1994) also considered the case when the vertical stratification is perfectly
homogenised (for example by a passing storm), but where the geostrophic shear is partially
mixed leaving only a fraction, s, of the balanced shear profile. We will show that when
acting on times short relative to the inertial period, then SI can generate sufficient
geostrophic momentum transport needed to prompt adjustment. We quantify this mixing
fraction, (1 — s), resulting from the effects of SI.

A number of previous numerical process studies of SI have investigated its nonlinear
evolution with varying set-ups, but most have focused only on a single value of the
non-dimensional horizontal buoyancy gradient (Thomas & Lee 2005; Taylor & Ferrari
2009, 2010; Thomas & Taylor 2010; Stamper & Taylor 2016). Nonetheless, between
persistent fronts, transient fronts and mid-ocean fronts, the strength of these horizontal
buoyancy gradients span a large range in the ocean (Hoskins & Bretherton 1972; Jinadasa
et al. 2016; Thompson et al. 2016a). We therefore vary the front strength, I" = M?/f2,
rather than changing the vertical stratification as measured by Ri.

In this paper, we investigate the equilibration of Sl-unstable fronts. We focus on
the development and saturation of SI in the Eady model configuration to determine
the transport by SI and explain how the rate of energy extraction and amplitude of the
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resulting inertial oscillations vary with frontal strength. To do this, we first extend the
non-hydrostatic and bounded linear analysis of Stone (1971) to include viscosity. We
represent the vertical viscous terms using the wave-mode approximation of Weber (1980)
to find an analytic solution, but further solve the full numerical eigensystem to verify this
approximation in the regime of interest. Compared with Stone (1966) and ensuing papers
which studied instability of the Eady model in the inviscid, hydrostatic limit, our analysis
is no longer a function only of Ri, but now also depends on the front strength, I".

These purely linear analyses are unable to determine the finite contribution of SI to
the momentum transport, buoyancy fluxes and energetics of the flow. We analyse the
weakly nonlinear problem by considering the growth of secondary instabilities on the
growing finite-amplitude SI modes. Our analysis formally extends the work by Taylor &
Ferrari (2009) who implicitly considered the secondary shear instability of (unbounded)
SI modes by applying the Miles—Howard theorem. We are thereby able to compute a
critical amplitude beyond which SI transitions to turbulence and calculate the efficiency
with which ST mixes geostrophic momentum prior to transition. To our knowledge this is
the first calculation of the mixing fraction, (1 — s), (as used by Tandon & Garrett (1994)
to describe the geostrophic response of a front) associated with SI.

We begin in § 2 by introducing the problem set-up and primary linear stability analysis
for SI. In § 2.3, we consider the stability of these growing SI modes to secondary shear
instability and find a critical mode amplitude beyond which the front transitions to
turbulence. We finally combine these two stability analyses in §§4 and 5 to determine
the finite-amplitude contributions of SI to the energetics and momentum transport,
respectively.

In a companion paper, we explore the nonlinear consequences of these findings beyond
the saturation point. We extend the numerical simulations (from §3 here used for
validation) to study the evolution of these fronts following SI. We use the framework of
Tandon & Garrett (1994) to shed light on the effects of dissipation and a finite mixing time
on the adjustment response and resulting inertial oscillations.

2. Linear stability analysis

Perhaps the simplest model of a front, the Eady model was first introduced by Eady (1949)
and later used by Stone (1966, 1970) to study ageostrophic instabilities. As illustrated in
figure 1, the Eady model can be viewed as a local idealisation of a submesoscale mixed
layer front where the bottom of the mixed layer is replaced with a flat, rigid boundary.
Specifically, an incompressible flow in thermal wind balance with uniform horizontal and
vertical buoyancy gradients is bounded between two rigid, stress-free horizontal surfaces.

Non-dimensionalising the Eady problem such that the thermal wind shear, M?/f, is
unity in units where the vertical domain size, H = 1, brings out four dimensionless
parameters
M2 H2 M2 N2 f2
—; Re= ; = ——;
f? fv Mm*
Here, v is the kinematic viscosity and « is the diffusivity of buoyancy, but we take Pr = 1.
It should be noted that the Rossby number is not a parameter in this local frontal zone
configuration because there is no horizontal length scale.

We consider a range of front strengths, I" = M? /f2 ~ [1, 100], which covers a wide
variety of ocean fronts. Although very strong fronts with I” > 100 have been observed
(e.g. Sarkar er al. 2016), these fronts are typically very narrow and hence our assumption
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Figure 1. Schematic of a model frontal region showing coloured contours of density varying both across the
front and vertically. The across-front stratification is balanced by the thermal wind shear in vg, shown on the
top face. A local horizontally homogeneous model can be constructed by considering the region within the grey
box, where the buoyancy gradient is approximately uniform.

of a uniform horizontal density gradient is expected to break down. The development of
SI at very strong (I” > 100) and narrow fronts will be reserved for future work.

2.1. Governing equations

Here, we invoke the Boussinesq approximation with a linear equation of state. We
further assume that the Coriolis parameter, f, is constant and neglect the non-traditional
Coriolis terms (i.e. those proportional to f = 282 cos ¢, where £2 is the angular velocity
and ¢ is latitude). This ‘traditional’ approximation is made here for simplicity but
is shown in Appendix A to not qualitatively change our conclusions. The resulting
non-dimensionalised Boussinesq equations are

Du* 1 1
D‘;* =~V — Sixu' oV b, (2.2a)
Dbt 1
= —V*2p*, (2.2b)
Dr* Re
0=V*.u* (2.2¢)

Consistent with the non-dimensional parameters (2.1a—d) introduced above, the
dimensionless (*) variables here are

2 2
M 1
ut = u#; b* = b#; = tT; x* Exﬁ; V*=HV. (2.3a—e)

The dimensionless pressure head acceleration, V*IT*, absorbs the hydrostatic pressure
gradient, and is eliminated when writing (2.2a) with the along-front streamfunction.

We choose X to be the across-front direction (parallel to V,b). The background basic
state (denoted by an overbar) used for linearisation and the initial condition for the
numerical simulations is
vt =27"—1/2 o4
13*=F—1x*+Riz*}’ @4

as shown in the grey shaded region of figure 1. Following the Eady model, we will also use
solid horizontal boundaries at z* = 0 and 1 which are taken to be insulating and stress free
(Eady 1949). In what follows we will omit the appended asterisks for notational simplicity.
All variables are dimensionless unless the units are explicitly stated (as in some figures).
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2.2. Primary instability

We begin by linearising the Boussinesq equations (2.2) about the basic state (2.4) to
describe the evolution of small anomalies in buoyancy and momentum, denoted with a
prime. Since the most unstable mode of SI is independent of the along-front (p) direction
(Stone 1966), we consider linear perturbations that vary only in x and z:

1 1
atu/ — _axl—[/ + Fv/ + Evzu,

_ 1 1
v +wo = —Fu/ + R—evzv/

1
alw/ — _azn/ + R_vzw/ + b/ (2.5)
e

. -
b +u'db+wob=—V
Re

0=V.-u

We transform this set of partial differential equations (PDEs) into a set of
ordinary differential equations (ODEs) by further assuming normal mode perturbations
autonomous in x (with wavenumber k,) and in time (with frequency w) of the form

x'(x, 2, 1) = R[F () e/ BreD], (2.6)

where the eigenfunction, x(z), must then be chosen to satisfy the relevant boundary
conditions. The set (2.5), after substitution and simplification using the streamfunction
defined by (', w') = V x vy, becomes

~

i ik
2_p gy kfRi) b, QT

1 2 )

iw+ —(—k>+D* | (=2 +D>y =(—-—D> -

(1a)+Re( T )) (=k; + D)y a2 T

where D = d/dz for notational ease. Note that this equation is closely related to (14)

in Grisouard & Thomas (2016) who formulated the equation in terms of pressure

and neglected horizontal diffusion. The boundary conditions for i at z =0, 1 on this

sixth-order ODE are

0

v } . (2.8)

D> =0

To make this system tractable, we follow the method of Weber (1980) and approximate
equation (2.7) as a second-order ODE by writing the vertical diffusion terms as spatially
invariant wave modes,

DY)~ i (2.9)

Re Re *7’ ’

with vertical wavenumber k.. By neglecting the vertical variations in k,, this approximation
constrains the SI mode angle to be uniform in z. This is a good approximation for large
Re and k;, when the effects of diffusion are dominated by the interior of the domain. This
does consequently prohibit the boundaries from generating vorticity, but it is found to not
influence the selection or stability of SI, which is only energised by the bulk background
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Figure 2. (a) The growth rate for the n = 1 SI mode in a vertical front with I" = 10 and Re = 10°. The real
part of w for the SI modes are everywhere 0 except where linearly stable at very small wavenumber. (b) The

growth rate of the fastest growing SI mode (7 = 1) and wavenumber at Re = 10°, as a function of I". The
vertical front (Ri = 0) is shown in black and also for increasing stratification.

buoyancy and shear. Equation (2.7) then becomes

2+ o 2iky s 2442\’ .
(m—lﬁf>4~— D> + =Dy — i Gw—i—i>+Riw=Q

rz r

which has eigensolutions of the form

A

Y = exp(id1z) — exp(idaz), (2.11)

that match the boundaries if A; — A = 2mn, for the chosen eigenmode number, n.
Equation (2.10) is thus reduced to a quadratic eigenproblem which may be solved by
numerical iteration while enforcing the vertical viscous wave-mode approximation that

K2 =1+ 3. (2.12)

Complete details of this solution are included in Appendix B.1.

The exact numerical eigensolution to the linear set (2.5) was also computed using a
pseudo-spectral eigenvalue solver written in Matlab. The computed solutions to (2.10)
give good agreement with this numerical solution, as shown in figure 2(a), where the
growth rate, o, is the imaginary part of w. This new solution correctly accounts for both
the limiting effects of the vertical boundaries at low wavenumber, and of viscosity at
high wavenumber. Accurate in the low wavenumber limit, Stone (1971) determined this
inviscid, bounded solution, where the mode growth becomes suppressed as it feels the
constraint of the boundaries for ky < 27. In the other limit of unbounded, viscous and
hydrostatic motions, Taylor & Ferrari (2009) (and later Bachman & Taylor (2014) for
non-hydrostatic motions) found that the most unstable mode has a vanishing wavenumber.
The structure of the exact (n = 1) viscous, bounded SI mode (u') is shown in the
background of figure 4. Due to viscous and non-hydrostatic effects, the modes are no
longer parallel to isopycnals as they were in e.g. Stone (1966).

We can now consider how the fastest growing mode of (2.10) varies with I" and Ri,
as shown in figure 2(b). For Ri = 0 the energy growth rate relative to f increases nearly
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Figure 3. (a) The angle of the fastest growing SI mode as measured from horizontal, plotted as a function of
front strength, I, and for different background stratifications measured by the inverse isopycnal slope, N2/M?.
The shaded grey region indicates where fg > 0 and the front is stable to SI. The unstable SI mode inclination
must remain between the angle of absolute momentum surfaces (6,,, dot-dashed line) and isopycnals (6, dotted
lines), which for N2/M? = 0, 6, = 90°. This unstratified case has modes nearly equally spaced between the
isopycnals and absolute momentum surfaces for large I", but with increasingly horizontal isopycnals the SI
modes grow more along these isopycnals. While the angle of the contour v (x, z) = 0 is a weak function of z in
the full numerical eigensolution (decreasing by at most 5 % at the boundaries), the mode angle of the solutions
(2.11) are independent of z. (See Appendix B.1 for details on the calculation of 6 and the eigenfunctions.)
(b) Contribution of the most unstable linear SI mode to the energy budget (4.1) of the vertical front for Re =
10°. Normalised by the kinetic energy, the geostrophic shear production and buoyancy flux are relatable to the
growth rate, . As expected with SI, the instability still primarily draws energy from the thermal wind shear
into the kinetic energy of the mode through the TKE production term. The grey dotted line indicates the growth
rate of baroclinic instability for this choice of parameters (Stone 1966). Symbols correspond to the numerical
simulations discussed in § 3, computed as a time average from ¢ = 0 to t./2.

linearly with front strength. However, for strong fronts stratification significantly reduces
the growth rate of the most unstable modes.

In a vertically unbounded domain with an inviscid, hydrostatic dynamics, the
maximum release of energy can be achieved by motion aligned with b surfaces, with
0 = tan— 1 (M? /N2) from the horizontal (i.e. k,/k;, = M?> /N2) (Taylor & Ferrari 2009),
effectively precluding any buoyancy flux. However, in a vertically bounded front with
weak stratification, the most unstable modes become very inclined to the isopycnals as
shown in figure 3(a), and reach nearly 45° for N> = 0. While the angle of the unstable SI
modes must still be between the angle of the isopycnals and surfaces of constant absolute
momentum (m = vg + I''%) (dotted and dash-dotted curves in figure 3a), the most
unstable modes approach more closely to the angle of the absolute momentum surfaces
(6, = tan~! ') for small front strength. This permits a larger buoyancy production
of energy (B = (w'b’)), as shown in figure 3(b), while the geostrophic shear production
(Py = —{v'w0,0,)) is the dominant energy source in the rest of the parameter space. Here
and throughout the rest of this paper, (-) indicates a volume average over the entire domain,
and primes represent local departures from the horizontally averaged fields denoted by .

2.3. Secondary instability

Secondary instability plays a key role in the equilibration of SI. Here, we explore the onset
of secondary instability to determine the cumulative effects of SI in the front equilibration
energetics and the contribution to mixing down the thermal wind shear.
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Figure 4. Diagram showing the secondary stability analysis coordinate transformation drawn over the linear SI
mode (¢'). The primary SI basic state is also indicated, with grey isopycnal lines showing the linearly increasing
buoyancy from left to right (for Ri = 0), as well as the thermal wind vectors into the page which balance the
baroclinic torques.

As described in Taylor & Ferrari (2009), shear associated with the growing SI modes
becomes unstable to a secondary Kelvin—Helmholtz instability (KHI) which prompts a
transition to turbulence. We identify this critical SI mode amplitude, Us; = U, at which
the SI modes themselves break down as the time when the SI growth rate, oy, is equal to
the KHI growth rate, ogg. Of course, ogg is a monotonically increasing function of the
shear, and thereby of Ug; which exponentially grows at a rate os;. We therefore iteratively
compute the secondary linear stability of the combined Eady and growing SI mode basic
state to determine this critical amplitude that is plotted in figure 5(a).

We formulate the one-dimensional (1-D) linear Kelvin—Helmholtz stability problem
using a sinusoidal extension of the structure of the full SI mode (evaluated at the
mid-plane) in the rotated coordinates shown in figure 4. As described in Appendix C,
this basic state includes the constant vertical and horizontal buoyancy gradients associated
with the basic state in the Eady model as well as the buoyancy changes induced by the SI
modes. We iteratively compute oxp max(Usr) with a pseudo-spectral solver until finding
the critical SI mode amplitude, U.. While the most unstable SI wavevector, |ks;|, increases
as the mode number (n) and Re increase, the scaling for U, appears to be dominated by
osy and so remains largely unchanged.

We demonstrate this here just for the unstratified (Ri = 0) front, but a general analysis is
provided in Appendix C. Figure 5(a) shows the classic KH stability analysis (i.e. ignoring
rotation and neglecting the along-mode component of the background stratification)
alongside the full solution for U,. The dashed line shows the resulting scaling,

Ue. < (VT lkst)) ™", (2.13)

(in our same dimensionless units of the velocity associated with thermal wind shear). We
obtain this scaling by balancing the KHI growth rate (proportional to the non-dimensional
shear in the SI mode, oxy o U.|kss|) with the SI growth rate in the limit of large I,
os; o« I'"1/2. We see that this simple scaling argument fails for small I” where the growth
rate in these weak fronts is slow compared with f.

926 A6-9


https://doi.org/10.1017/jfm.2021.680

https://doi.org/10.1017/jfm.2021.680 Published online by Cambridge University Press

A.F. Wienkers, L.N. Thomas and J.R. Taylor

a : () . .
@ I NYM2=0 104} — 1
\ NYM2=0.5 Eglt=1,)
0.20} NYM2 =1 —— [ P, dr
~ \ N2/M? =2 102} | —¢— Ji Bdt
T 212 = | 0 1
L o1s N2YM? =10
(\IE 1/ N\ | Classic KHI
m - T (\ﬁ"\kﬂ\)’]
= 0.10 )
)
S
0.05 /;\\-‘.
oL ; . ) , \ , ;
10° 10! 102 103 100 10! 102 103

r r

Figure 5. (a) The critical amplitude of the most unstable SI mode velocity at which secondary instability
begins to dominate, shown in units of the thermal wind. The dotted line shows this critical amplitude when
rotation and along-shear stratification (i.e. x in Appendix C) are neglected in the KHI stability analysis. The
dashed line shows the scaling (2.13) achieved by taking the KHI growth rate directly proportional to the shear
and matching U, in the limit of large I". (b) The cumulative kinetic energy (KE) budget contributions from the
n = 1 linear SI mode of the unstratified front, integrated through U,.. Coloured symbols show the value derived
from the 2-D simulations. Due to weak scale and mode selection, these simulations contain a range of n and
ky, yet with increasing front strength the values calculated from the simulations approach the n = 1 line shown
due to stronger mode selection as the higher modes are damped by viscosity.

3. Numerical simulations

We employed the non-hydrostatic hydrodynamics code, DIABLO, to verify the conclusions
of the preceding linear primary and secondary instability theory as well as the results in the
following two sections. DIABLO solves the fully nonlinear Boussinesq equations (2.2) on
an f-plane (Taylor 2008). Second-order finite differences in the vertical and a collocated
pseudo-spectral method in the horizontal periodic directions are employed, along with
a third-order accurate implicit—explicit time-stepping algorithm using Crank—Nicolson
and Runge—Kutta with an adaptive step size. Rigid, stress-free and insulating horizontal
boundaries are enforced to match the linear analysis in § 2. Following Taylor & Ferrari
(2009), the simulations are run in a 2-D (x—z) domain while retaining all three components
of the velocity vector. This choice allows us to focus on the evolution and saturation of the
symmetric modes.

While the presented analytical results in this paper are general, we focus these numerical
verification experiments on an initially unstratified front (Ri = 0) with Re = 10°. It should
be noted that the along-front flow would be susceptible to KHI in a 3-D simulation, but
this is not considered for the purpose of this study. Each of the simulations were initialised
as a balanced front (2.4) with strength I" = {1, 10, 100} and white noise was added to the
velocity with a (dimensionless) amplitude of 10~*. The simulations were run through the
linear phase until secondary instability breaks down the SI modes at the critical time, t,
as shown in the right column of figure 6. At this point, we measure the cumulative effects
of SI on the front — the integrated shear production, buoyancy fluxes and momentum
transport — and present these values alongside the analytical results of §§4 and 5. While
we restrict these verification simulations to initially unstratified fronts and do not consider
times after 7., we extend these simulations in a companion paper to explore the SI-induced
re-stratification and geostrophic adjustment of the fronts at later times.
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wy(tztc/Z)/M wy(t=rc)/M

r
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Figure 6. Slices across each front show the along-front vorticity, wy, along with buoyancy contours (black
lines), for I" = 1 (top), 10 (centre) and 100 (bottom). Two snapshots are shown, at t = 7./2 (left) when the
fastest linear SI mode has emerged, and at # = 7, (right) when secondary KHI first begins to break the coherent
energy of the SI modes into small-scale turbulence. Note that the vorticity is normalised by M, which keeps
the amplitude similar across the range of I" (consistent with the scaling (2.13)). The vorticity normalised by f
can be obtained by multiplying the values shown here by I"~!/2. During the linear growth phase (left panels),
the SI modes do not align with the isopycnals, and rather become increasingly flat for larger I”, consistent with
the results shown in figure 3(a).

4. Energetics of SI

In light of these stability analyses, a natural question is: What impact does the linear SI
phase and ensuing turbulence have on the resulting equilibration of the front, and how
does it depend on the frontal strength? To answer this, we combine the primary linear
instability results of § 2.2 with the details of SI saturation from § 2.3 to determine the
cumulative contribution of SI modes up to the critical time, 7, = US_II log(U./Up), when
SI has grown to an amplitude U.. This allows us to quantify the energetics of the linear SI
modes and their influence on the evolution of the front.

With the complex eigenfunction, i, found by iteratively solving for 41 and A, in (2.11),
we determined the full structure of these modes: &, 0, w and b as given in Appendix B.1.
With these, we compute the correlations relevant to the transport and energetics of the

development of SI. We first must normalise each of the modes by +/|i|2 + |W|2, and then
rewrite them in the normal mode form, (2.6), using the parameter and eigenvalues of
(2.10).

We will first consider the contribution of SI to the turbulent kinetic energy (TKE),
Ex = %(ugu;):

OBK _ (w28 _ [ (22 | O +<w/b/)—L ou; 914\ (4.1)
ot 0z 0z 0z —— Re\0x; dx;
S—— ——

B
—Px —Py &

The first two terms on the right-hand side represent the shear production, P, converting
energy from the mean flow into TKE. Specifically, the along-front contribution (Py) is split
into a geostrophic shear production term, P,, energised by the thermal wind shear, and an
ageostrophic part. The other potential source of TKE comes from buoyancy production,
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B, which represents the transfer of energy from PE into TKE. The cumulative generation
of TKE by each of these terms in (4.1), integrated from # = O up to transition at 7, is shown
in figure 5(b). As expected for SI, the contribution from P, exceeds B, except for small
I'. Interestingly, even for these SI modes that are very flat (i.e. inclined to the isopycnals)
in strong fronts, the energetics are still dominated by geostrophic shear production which
relies on the vertical velocity to exchange geostrophic momentum. We confirm this result
using the numerical simulations described in § 3. Even though the initial white noise and
weak mode selection mean that a range of wavenumbers are represented in the simulations,
these predictions still remain robust.

Following Haine & Marshall (1998), it is possible to re-frame the SI stability criterion,
fq < 0, in terms of the energy sources driving growth: the background buoyancy gradient
and the geostrophic kinetic energy. First consider fluid parcels that are constrained to
move along isopycnals (and thus incur no gravitational penalty). The criterion, fq < 0,
for instability then becomes the Rayleigh criterion describing inertial instability,

7 (8—’”) <0. 4.2)
ox b

where the subscript here indicates the gradient is measured along isopycnals. Since they
are aligned with the isopycnals, these modes do not extract potential energy from the
front and instead grow by drawing energy from the thermal wind. Contrast this with the
other limiting angle that SI modes can take, when their motion is aligned with surfaces of
constant absolute momentum. Now, instability requires that the vertical buoyancy gradient
measured along these absolute momentum surfaces is negative

ab
(a_z)m < 0. (4.3)

Therefore, motions that are constrained to follow absolute momentum surfaces can extract
potential energy, analogously to ‘upright convection’ (Haine & Marshall 1998). For
hydrostatic perturbations in an unbounded domain, the most unstable mode of SI is aligned
with the isopycnals and hence grows by extracting kinetic energy from the thermal wind
through geostrophic shear production (Stone 1972; Haine & Marshall 1998; Taylor &
Ferrari 2009).

As shown previously in figure 3(a), for non-hydrostatic modes in a bounded domain, the
most unstable mode of SI is not necessarily aligned with isopycnals and hence these modes
can grow through a non-trivial combination of buoyancy production and geostrophic shear
production. We can quantify the energetic influences on the most unstable mode of SI using
the linear stability analysis up to the critical time, .. We do this by introducing the energy
production ratio,

B A1+ A2

B+ P, 2k’

as plotted in figure 7, where B is the buoyancy flux, P, is the geostrophic shear production
and A1 and A describe the vertical mode structure (2.11) and depend on Ri and I" (details
of which are given in Appendix B.2). The production ratio suggests the expected character
of SI. For strong fronts with weak vertical stratification, SI extracts energy from shear
production, and so we refer to this flavour of SI as ‘slantwise inertial instability’. In the
inviscid and hydrostatic limits, the linear analysis indicates that energy is always fully
derived from geostrophic shear production, with modes aligned perfectly with isopycnals
at 6. Non-hydrostatic effects flatten the SI modes particularly for small I". This permits
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Figure 7. Contours of the production ratio (4.4) distinguish regions where geostrophic shear production
dominates (0) and regions where buoyancy production dominates (1). The white line separates regions of
parameter space where SI modes are more aligned with isopycnals, i.e. |6 — 6| < |0 — 6,,| (inside), from the
regions (outside) where they are more closely aligned with absolute momentum surfaces. (@) The production
ratio plotted in parameter space with N2 /f2 on the y-axis, chosen so that the axes are only interdependent on f.
A black dashed line designates the contour Ri = 0.25. Lines of constant isopycnal slope (M?/N?) are straight
lines of slope 1 in this log—log scale. Strong fronts with weak stratification (equivalently, large isopycnal slope)
derive energy primarily from geostrophic shear production. Thus, rapid frontogenesis (moving horizontally
to the right), or rapid de-stratification via mixing (moving vertically downwards) will tend the SI modes
to slantwise inertial instability. (b) The parameter space is rescaled with Ri on the y-axis to emphasise the
region near Ri = 1 where SI in a balanced front becomes stabilised. Non-hydrostatic effects (for small I™)
and boundary viscous effects (for large Ri) influence the SI modes to derive this portion of energy from the
background buoyancy gradient. Non-traditional effects also influence how SI extracts energy, as shown by
figure 10 in Appendix A.2.

buoyancy production to contribute to the energy more than shear production, and so we
call this flavour of SI ‘slantwise convection’. Note that this term has sometimes been
used synonymously with SI in the literature, although it is not always congruous with
the energetics of SI (Haine & Marshall 1998). The boundary-permitted viscous limit in
figure 7(b) each for large I" and large Ri also exhibits slantwise convection modes. It is
perhaps then surprising that within the white outlined region, indicating where SI modes
are more aligned with isopycnals, the instability does not always extract a majority of
energy from the shear production (i.e. red shading).

In the ‘slantwise convection’ regime, where I3 > Pg, SI tends to be weak and the
total energy production is small. This raises the question of whether it is important to
account for the SI-driven buoyancy flux in parameterisations of SI. To provide context,
we compare the SI-driven buoyancy flux at 7. with the buoyancy flux associated with
mixed layer instability (MLI) in the parameterisation from Fox-Kemper et al. (2008). They
empirically estimated a constant efficiency factor for the finite-amplitude MLI, which in
our non-dimensional variables can be written

C, = I' " (Wb')prr = 0.06 — 0.08. (4.5)

In comparison, a typical SI buoyancy flux at t. for the slantwise convective regime
(specifically at I" = 1 and Ri = 0) is

'Y (wh')sLe = 0.0074. (4.6)
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Note that the buoyancy flux increases in time during the growing phase of SI and MLI.
The fact that (w'b’)g1 at t = 7. is smaller than (W) mrr highlights the comparatively
early saturation of SI through secondary instabilities. Thus even though MLI grows more
slowly for this set of parameters (cf. the dotted line in figure 3b), the finite-amplitude
buoyancy flux associated with MLI has a significantly larger influence on the rate of
re-stratification compared with SI for weak fronts (1" = 1). For stronger fronts with weak
vertical stratification (i.e. large I" and small Ri) where the geostrophic shear production is
larger than the buoyancy flux, SI can indirectly induce re-stratification by first generating
large vertical fluxes of geostrophic momentum. This will be discussed in the next section.

5. Momentum transport by SI

We now consider the effect that SI has on the geostrophic shear and the implications for
the subsequent response of the front.

5.1. Dominant momentum balance

We would like to determine the dominant terms in the mean horizontal momentum
equations to understand what is driving the evolution of the front. Subtracting off the
background geostrophic velocity and buoyancy gradient from the Boussinesq equation
(2.2a) gives a horizontally autonomous system allowing us to Reynolds average in the x
and y directions. Using continuity and geostrophic balance, the horizontal ageostrophic
momentum equations are

dita + du'w' = I, (5.1a)
3y + W = —I' i, (5.1b)

To determine the dominant balance at early times arising from the growing SI modes, we
first assume the Coriolis term in (5.16) is small. With this approximation, we construct a
ratio from the terms in (5.1a),

du'w dou'w' _op2g2 At
F_ll_}a 1_,_1 /Tamdl‘ A1+ Ay — 2k, I
Z
0
~2 forI"> land Ri =0, (5.2)

where we have also assumed exponential growth in time, o exp(o't). We take Ugy att = 0
to be infinitesimal so that the lower limit of integration evaluates to 0. The arbitrary upper
limit, 7, then cancels with the exponential evaluated at T in the numerator. Similarly for
the terms in the y-momentum equation (5.10), the ratio is

aopu'w o, v'w 2/11 + A — 2k, I
-1, N
I i 1“_1/ o.u'w dr At
0
~2I" forI" > land Ri =0, (5.3)

where we again use the solution for the eigenfunctions (B7) derived in Appendix B.1 to
evaluate these integrals. Each of these expressions in (5.1b) are self-consistent with our
assumption to neglect the Coriolis term if both ratios are >> 1. We found this to be the
case for I' 2 1 and Ri < 0.5 and so we conclude that the mean ageostrophic y-momentum
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Figure 8. (a) The mixing time scale (5.5) required for SI-driven fluxes to entirely destroy the thermal wind
shear. Strong fronts with steep isopycnals are rapidly mixed (relative to an inertial period) whereas this time
scale becomes longer than an inertial period for small I". (b) The thermal wind shear mixing fraction, (1 — s),

induced by SI (5.9). Colours correspond to the different values of inverse isopycnal slope, N2/M?, shown in
the legend at left. Symbols show the extracted values from the 2-D simulations. Momentum is only rearranged
within the domain by the linear modes, and so the domain average is conditioned on positive fluxes.

is driven more strongly than the x-momentum —i.e. the dominant balance is initially 9,0, ~
—dv'w.

5.2. Loss of geostrophic balance

This dominant balance with the 8,v'w’ Reynolds stress term suggests that, at first order,
SI can influence the large-scale evolution of the front by rearranging the momentum of
the balanced thermal wind. The rate at which this geostrophic shear profile is reduced will
give hints as to the type of adjustment that follows SI.

Taking the vertical gradient of the dominant momentum balance,

P -
—(,0) ~ —d2v'w, (5.4
ot
we can estimate the time scale required to mix the thermal wind shear
0,0
Tmix = ———, (55)
mix (812v’w/)c

for SI momentum fluxes evaluated at .. This value is plotted for each I" in figure 8(a), and
details of the calculation are saved for Appendix B.3. If this time scale is long compared
with f (as for very weak fronts), then we might expect the front to slowly slump over while
remaining quasi-balanced. In contrast, when the vertical fluxes rapidly (relative to f) mix
down the thermal wind shear before inertial effects can influence the large-scale dynamics,
then the response can be viewed as a form of geostrophic adjustment. This is the case for
r = 10.

Tandon & Garrett (1994) showed that in the limit of instantaneous mixing (here for
I’ > 1) this resulting geostrophic adjustment of the front results in inertial shear
oscillations. They considered the evolution of a mixed layer front when a fraction (1 — )
of the vertical shear is removed, such that initially

0,010 = 50,0, (5.6)
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The subsequent horizontally invariant inertial oscillations modulate the background
stratification by differentially advecting the lateral buoyancy gradient across the front.
Assuming the PV remains constant, the (dimensionless) stratification evolves according
to

3.bi = (1 — s)(1 — cos(I'"'#)) + Ri. (5.7)

These inertial oscillations draw closed circular orbits and have a linear structure in z
i = —(1 —5)(z— 1/2) sin(I" "), (5.8a)
bi=s(z—1/2)+ (1 — )z — 1/2)(1 — cos(I'"'p)). (5.8b)

The amplitudes of these inertial shear oscillations are dimensionally (1 — s)M?2/f.

5.3. Inertial oscillation amplitude

The reduction in thermal wind shear before 7. thus should dictate the amplitude of
these inertial oscillations in a front following SI. We can estimate this mixing fraction,
(1 — ), as introduced in Tandon & Garrett (1994). Again using the vertical derivative of
the dominant momentum balance (5.4), we compute the cumulative contribution of the SI
modes through to 7.

T o
l—s=/ (02v'w') dt, (5.9)
0

(detailed in Appendix B.3). Note that the term on the right-hand side has been

non-dimensionalised by M?/f (consistent with the dimensionless units used throughout
this paper) so that (1 — s) is interpreted as a fraction of the thermal wind shear. This
mixing fraction is shown in figure 8(b). We see that with increasing front strength the
linear SI modes are able to remove a larger fraction of the thermal wind shear before t,
setting up larger inertial oscillations. While these results combine the analysis of ST with
the theory of Tandon & Garrett (1994), in a companion paper we consider the direct and
indirect nonlinear effects of SI on the evolution of these inertial oscillations.

6. Conclusions

SI occurs at density fronts in the ocean and atmosphere when the PV takes the opposite
sign to the Coriolis parameter, i.e. fg < 0. While previous studies have focused on the
effect of Richardson number on SI, here we have explored the dependence of SI on front
strength, parameterised by I" = M?/f?, where M? is the horizontal buoyancy gradient. To
that end, we have analysed an idealised model of a frontal region initially in thermal wind
balance with a uniform horizontal buoyancy gradient and a constant background vertical
stratification. Although highly idealised, this configuration was motivated by rapid mixing
events such as the passage of a storm or an event which vertically mixes the buoyancy
profile.

Using a linear stability analysis in a vertically bounded domain with viscous and
non-hydrostatic effects, we have shown that SI can grow via two routes: by converting
kinetic energy associated with the balanced thermal wind into the growing perturbations,
or by extracting potential energy from the front via the buoyancy flux. For strong fronts and
where Ri < 0.5, the larger contribution energising the instability comes from geostrophic
shear production, but for large Ri and/or weak fronts the buoyancy flux is also important.
We have characterised the two limiting behaviours of SI distinguished by the dominant
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energy source: ‘slantwise convective instability’ extracts energy from the background
potential energy via buoyancy production with modes tending along absolute momentum
surfaces, while ‘slantwise inertial instability’ is energised by shear production and has
more upright modes nearly along isopycnals. This finding provides context to the work
by Grisouard (2018) on mixed ‘inertial-symmetric instability’. By varying the Rossby
number, they found that while the two limiting instabilities extract energy via shear
production, buoyancy fluxes can still be important for the mixed modes. Here, we have
focussed on pure SI (d,v = 0), and found that even in this limit the dominant energy source
depends on the details of the front. However, for the parameters where the buoyancy flux
is the largest energy source (the ‘slantwise convection’ regime), the SI-driven buoyancy
flux is small compared with the mixed layer eddy parameterisation of Fox-Kemper
et al. (2008). Nonetheless, at stronger fronts SI can induce rapid re-stratification by first
generating large vertical fluxes of geostrophic momentum, as parameterised by Bachman
et al. (2017).

By extracting energy from the balanced thermal wind, SI leads to re-stratification, and
can induce vertically sheared inertial oscillations depending on the strength of the front.
The mixing time scale for SI to homogenise the thermal wind shear decreases with front
strength, and is faster than an inertial period for I" = 10. Thus the response to rapid
mixing of the thermal wind shear at strong fronts can be described in terms of geostrophic
adjustment. We analysed this behaviour in the context of the model used in Tandon &
Garrett (1994) which assumed that the PV was constant throughout the adjustment process.
Using the linear stability analysis, we estimated the degree to which SI mixes the thermal
wind shear and concluded that SI can generate large amplitude inertial oscillations at
strong fronts.

In Part 2 of this series (Wienkers, Thomas & Taylor 2021), we consider the nonlinear
consequences of these findings well beyond the saturation point of SI. We continue
the numerical simulations presented here to study the long-term evolution of initially
unstratified fronts. In particular, we focus on the equilibration of the front and how the
details depend on the particular flavour of SI and the front strength.
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Appendix A. Non-traditional Coriolis effects
A.l. Non-traditional governing equations

In the following appendices we will detail and generalise our bounded, viscous, and
non-hydrostatic analysis without neglecting the horizontal component of Earth’s rotation.
The influence of these so-called ‘non-traditional’ terms on SI has been previously explored
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in the inviscid limit by Colin de Verdiere (2012) and for unbounded modes by Zeitlin
(2018).

One consequence of the traditional approximation we used in the analysis thus far is
that the dynamics is independent of the front orientation. We therefore only specified that
X points across the front (parallel to V,b). However, the non-traditional terms break this
horizontal isotropy, and so we must specify the angle, ¥, of the background buoyancy
gradient relative to north. We still take x to be across front (i.e. |Vpb| = 0xb = M?), but
we now orient the entire front (and X) at an angle ¥ from north.

Including the northward horizontal component of Earth’s rotation, the Boussinesq
momentum equation (2.2a) becomes

Du*
Dr*

The importance of these non-traditional terms is measured by

1 1
= VT = S(yi+ej+) xu'+ Fev*zu* + b*z. (A1)

cos U
" tang’

(A2)

y j;cosﬂ

which accounts for both the latitude (¢) and the orientation (%) of the across front (x-axis)

relative to north. « is the ‘symmetric’ component of f in the along-front () direction, and
drops out upon writing (A1) with the streamfunction. So while the front orientation and
latitude are both important when considering non-traditional effects, these can be reduced
into the single parameter y .

It becomes apparent now that the traditional approximation (y — 0) used to simplify
the analysis in § 2 holds better at mid to high latitudes and for fronts with a nearly east/west
lateral density gradient. Additionally, the importance of this horizontal component is
diminished in the large shear regime of the strong fronts we considered, where the vorticity

from the thermal wind shear (M?/f) greatly exceeds f (i.e.when y/I' K 1).

A.2. Non-traditional results at ¢ = 45°

To demonstrate the effects of the non-traditional terms on the main results in this paper,
we present a selection of these results for ¢ = 45°, and for ¥ = 0° and 180°. We find
that while the horizontal component of Earth’s rotation quantitatively influences the SI
growth and transport properties, it does not qualitatively change the observed trends and
our conclusions.

The non-traditional terms impact the stability of SI by changing the contours of absolute
momentum,

= b+ ~x— Loz, (A3)

(Recall x is still the across-front coordinate, but now the entire front has been oriented
¥ from north.) This means that for the range I" < y, the front is stable to SI. This is
written equivalently as a sub-critical Richardson number, Ri. = 1 — y/I". Of course it
should be emphasised that at ¢ = 45°, y =1 only if the high buoyancy side is further
north (9 = 0°). In the opposite orientation (when the buoyancy gradient points south)
then y = —1. Thus non-traditional effects can either increase or decrease the region of
instability (in Ri—I" space) and consequently influence the growth rate. This is apparent
in figure 9(a), where for strong yet unstratified fronts, the non-traditional effects have
a uniform influence of increasing (decreasing) the growth rate by ~ 25 % when the
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Figure 9. (a) The growth rate of the fastest growing SI mode as a function of I", for both axisymmetric
front orientations at ¢ = 45° and compared with the traditional approximation (y = 0) as in figure 2(b).
Stratification suppresses the non-traditional effects, and so the lines for Ri = 0.25 collapse at larger values
of I'. (b) The angle of the fastest growing SI mode as measured from horizontal, plotted as a function of
I" for the same two front orientations at latitude ¢ = 45° and the traditional approximation (y = 0) matching
figure 3(a). The two isopycnal slope angles are indicated with dotted lines, and the angle of absolute momentum
surfaces (6,,) are shown in grey.
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Figure 10. Contours of the production ratio (B13) for (a) y = 1 and (b) y = —1. (Note the different y-axis
scales.) This metric in Ri—I" parameter space distinguishes regions where geostrophic shear production
dominates (0) and regions that buoyancy production dominates (1), as shown in figure 7(b) in the traditional
approximation. The black solid line is the sub-critical Richardson number, Ri. = 1 — y/I", which is no longer
equal to 1. The white line separates regions of parameter space where SI modes are aligned closer to isopycnals
(inside) from regions (outside) where they are more along absolute momentum surfaces. Comparing these
two contour plots with figure 7(b) shows similarly distinct regions that could be characterised as ‘slantwise
convection’ separated from the ’slantwise inertial instability’.

buoyancy gradient is north (south). This effect is much less pronounced with even a weak
stratification of Ri = (.25, in agreement with Colin de Verdiere (2012).

By changing the contours of absolute momentum (A3), the non-traditional Coriolis
terms also influence the angle of the SI modes. As shown in figure 9(b), the SI mode
angle becomes steeper with increasing y, and tends to align more with isopycnals as the
tilted rotation vector steepens the absolute momentum contours.
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We finally consider how the energy source for SI changes with varying y. This is best
seen by the generalised production ratio (B13) which is plotted for y = +£1 in figure 10.
Compared with figure 7(b) under the traditional approximation, we note similarly distinct
regions of slantwise convection (black) and slantwise inertial instability (red). These
regions are largely unchanged for large I" (where the strong thermal wind shear means
that all rotation is less important), and the slantwise convective character still persists near
Ri = 1 compared with the slantwise inertial instability region for small Ri. Still, the energy
source for weaker fronts appears to be influenced more by the non-traditional effects.

Appendix B. Primary linear stability analysis
B.1. SI eigenfunctions

Following the linear stability analysis of § 2.2, but using the new momentum equation (A1)
containing the non-traditional Coriolis terms, then (2.10) instead becomes

2
k2 + k2 1| 5. 2k Y\ s
iw— <% — | D —(1—— D
<1w Re e vt r F) v

2
) k2 4+ k2 y y oA

This ODE is reduced to a quadratic eigenproblem by noting that solutions have the general
form,

A

Y = exp(idiz) — exp(id2z), (B2)
which satisfy the boundary conditions (2.8) if
A — Ay = 27n. (B3)

A1 and A, are then just the quadratic roots,

_ —b+ Vb? — 4ac

A1 = , B4
1,2 2 (B4)
where
- oo o\, ]
a=— lw_R_e(kx+kz) +ﬁ , (B5a)
2k
p="2(1-2), (BSb)
r r
c= 12 (io- L2+ 2—1<1—1)+Ri . (B5c)
x Re ™ % r r
The final constraint is given by the vertical viscous wave-mode approximation,
k2 =1+ ). (B6)

This system of algebraic equations ((B3)—-(B6)) implicitly defines w as a function of k,,
and is solved by numerical iteration to construct the growth curve, as in figure 2(a).
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For SI, the real part of the frequency is 0, i.e. % (w) = 0, and so then computing 4; and A
gives the vertical structure for the eigenmodes

. 1 , -
U= — |[A]| (A1 exp(izd1) — A2 exp(izd2)), (B7a)
o1 (eI = y) — A explizdi) — (e(I" = y) — ) explizda)
V= ——F 2 2 ’ (B7b)
7 [ ((2 +k2)/Re + o)
o1 . .
= o kexplin) — expiz). (B7c)
j_ L Adiexpiz) — 4 exp(izﬂz)’ (B7d)

0] T(((2+Kk2)/Re + o)

where each component is normalised by the eigenmode velocity magnitude in the x-z

plane, |U | = V/|it|? + |W|2. The full structure and evolution of the linear perturbations is
then

u' (x, z, 1) = R[ia(z) ek, (B8)

and correspondingly for each of the other components.
We can now compute the angle of the SI modes, 8, from the horizontal by analysing the
zero contours of

¥ (x,2) = Ry (@) . (BY)
The slope of these contours is

dz —2k, al’
. - , (B10)
dx N4+ 1—-y/I’

and so @ = tan"'(al'/(1 — y/I)), for a from (B5a). It is thus apparent that 6 in this
vertical viscous wave-mode approximation is independent of height. The exact linear mode
angle computed using a pseudo-spectral eigenvalue solver shows that the actual angle is
in fact a very weak function of z, decreasing by at most 5 % near the boundaries at the
extremes of our parameter space. It should also be noted that while figure 7 shows the
diagnostics of the dominant (fastest growing) SI mode, there is still a distribution of slower
SI modes with varying characteristics.

B.2. SI energetics

Using the above eigenfunctions (B7), we can write the geostrophic shear production
generated by the SI modes in terms of the growing mode amplitude, Ug;(¢)

dg U ke i+ A —2k(I" — y)

P,=—(vw—)= -~ B11
g <UW 8z> 022 (K +Kk2)/Re+o (B11)

All of the time dependence of P, is contained in Ug;(t). Therefore when considering the
production at 7. (as in § 4) this expression is correspondingly scaled by Usi(t.)? = UC2 (as
computed in Appendix C and plotted in figure 5a). The buoyancy production is similarly

926 A6-21


https://doi.org/10.1017/jfm.2021.680

https://doi.org/10.1017/jfm.2021.680 Published online by Cambridge University Press

A.F. Wienkers, L.N. Thomas and J.R. Taylor

computed as
B = (Wb) = lﬁ’k—x At (B12)
\U2 2T (k2 +k2)/Re + o
The fraction of the total production contributed by buoyancy can then be simplified as
B A1+ A —1
B+P, 2kl al (I —y)

(B13)

for a from (B5a).

B.3. SI transport

The dominant balance of the y-momentum equation during the initial phase of adjustment
as Sl is mixing down the thermal wind shear is given by

30~ —d.v'W, (B14)

as shown in § 5. It is straightforward to determine the contribution of the SI modes to the
evolution of the vertical shear, 0,v:

— 2
<82v/W/> B Ug, 4ty Ay + Ay — 2k (I — V) , (B15)

92 [ o I (R+k2)/Re+o
again using the normalised eigenfunctions (B7) and scaling by U%, to correspond to the

time when the SI mode has amplitude Us;. We can then construct a thermal wind shear
mixing time-scale using the instantaneous mixing rate (B15) evaluated at 7,

—\ -1
a0, [ 0%2v'w
Tmlezf_g< >
C

9z \ 92

OP 1 (K2 +k2)/Re + o
U2 Ak, A+ A = 2k (T — )’

(B16)

using the critical mode amplitude, U, calculated in Appendix C. This time scale is plotted
in figure 8(a). Rather time integrating the mixing rate through 7., then we get a measure
for the cumulative contribution of the SI modes to mixing down the thermal wind shear

e [9%v'w 1 U2 [9*'w
/ dt = ——<(——), B17)
0 972 20|02\ 922
using the SI mode mixing rate from (B15). We consider Ug; at t = 0O to be infinitesimal
so that the lower limit of integration evaluates to 0. In the dimensionless units used

throughout this paper (M?/f), this quantity represents the fraction of the thermal wind
shear which is destroyed by 7. (i.e. 1 — ), and is plotted in figure 8(b).

Appendix C. Secondary linear stability calculation

We conduct a secondary linear stability analysis to determine the time at which the
growing SI modes break down and prompt transition to turbulence. We consider
perturbations to the basic state shown in figure 4, which includes both the Eady basic
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state for the primary linear stability analysis superimposed with the fastest growing SI
mode of amplitude, Us;. This dimensionless basic state is

it = Usy R[01(z) exp(ikex)], (Cla)

v = Ugy N[0(z) exp(kyx)] + z, (Cl1b)

w = Ust R[W(z) exp(ikex)], (Clc)

b = Us; R[b(z) exp(ikex)] + I'"'x + Riz, (Cl1d)

again using the normalised SI eigenfunctions (B7). The analysis is greatly simplified by
rotating the domain by 6 to align with the SI modes as evaluated at the mid-plane, such that
the transformed coordinate x' is along SI modes and z' is perpendicularly across modes.
The w'" component of the eigenfunction at z = 1/2 then becomes 0. Focusing on shear
instability at the mid-plane, we extend the eigenmodes as sinusoids with the inclination

and perpendicular wavenumber, ks; = |ks7| = /kZ + k2, evaluated at z = 1/2 such that

0 = sin! (kyx/ksr). This new rotated basic state is then

it = Ussin(ksiz"), (C2a)
I'lcosd — (1 —y/I)sinb
it = —Ug 59~ . VIT)SING Gntkgreh) + (F cosd — x'sin@),  (C2b)
o + kg;/Re
_ I'!cosé
bt = _USI—zos sin(ks;z') + 'z sin @ + x" cos 8) + Ri(z cos @ — x" sin 9).
o + kg;/Re

(C2c)

We note that this basic state now has a background stratification with a component induced
by the SI modes. Similarly rotating the governing equations (2.2) and linearising about this
new basic state, then the linearised system becomes

’ =7 ’ ra =t ’ 1 1 : 1 2.7 -
o +u'oxu +wou' = —0, 01" + Fv (cosf + ysinf) + R—V u — b sinf
e
1 1
v+l o + o +wonl = —F[u’(cosé + ¥ sinf) + w'(sin@ + y cos0)] + R—vzv/
e

1 1

aw' + i dew’ = —0, 11 + Fv/(sine +ycosf) + R—vzw’ + b/ cos0 '
e

N _ 1
b +u' b +utob +wab = szb’
e

0=V.-u

(C3)

where all perturbation quantities and derivatives are relative to the rotated coordinates. For
large I", we can ignore the effects of rotation on the secondary instability. If we also for a
moment ignore the x' component of the background stratification, then this system reduces
to the Taylor—Goldstein equation and can be easily numerically solved for oxy (kgxy) for
each SI mode amplitude, Us;. We designate SI criticality when oy max = 051, and so for
each I we compute the required critical mode amplitude, U, when this condition is met.
This classical KHI solution is plotted with a grey dotted line in figure 5(a). Accounting
now for rotation effects and also the full SI mode buoyancy contribution, then the system
(C3) can only be reduced to a system of three equations for ', v’ and &', which have

a normal mode form é(xT, 7= é(ZT) exp(i(lqg.pcT — wt)). We numerically solve this
system for each oxp(kxg; Usr) using a 1-D pseudo-spectral eigenvalue solver written in
Matlab, and using N = 128 Fourier modes across a width of 21g;. We solve the nonlinear
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optimisation problem to find the minimum Ug; that satisfies oy (kxg; Usr) = osy, and
plot this U.(I") as a solid line in figure 5(a). This value for U, can then be used to calculate
the various transport and energetic quantities for SI in Appendix B.
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