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Abstract

A theoretical investigation of the unsteady flow of a Newtonian fluid through a channel
is presented using an alternative boundary condition to the standard no-slip condition,
namely the Navier boundary condition, independently proposed over a hundred years
ago by both Navier and Maxwell. This boundary condition contains an extra parameter
called the slip length, and the most general case of a constant but different slip length
on each channel wall is studied. An analytical solution for the velocity distribution
through the channel is obtained via a Fourier series, and is used as a benchmark for
numerical simulations performed utilizing a finite element analysis modified with a
penalty method to implement the slip boundary condition. Comparison between the
analytical and numerical solution shows excellent agreement for all combinations of
slip lengths considered.
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1. Introduction

A major theme during the last several decades has been miniaturization down to
the micro and nano scales. The study of small-scale fluid flow is of fundamental
importance due to the necessity of understanding the nature of flows at this scale [5].
The first question to be addressed is: what happens when the thickness of a
liquid film becomes comparable to the size of the molecules themselves? It has
been demonstrated that physical and mechanical properties cannot be understood by
extrapolating those of the bulk fluid [2, 7]. One of the main reasons for this is that
when devices are scaled down, the surface-to-volume ratio increases and therefore
surface-related phenomena become increasingly important. Qualitatively new features
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emerge when physical systems are downsized, and it becomes important to understand
the various types of interactions in the flow and their underlying physical mechanisms,
such as the interaction between the constituents of the flow and solid boundaries.

An example of the breakdown of conventional macroscopic ideas at small scales
is the no-slip boundary condition between a fluid and a solid [1, Ch. 3]. The
boundary condition illustrating how momentum is transferred from the fluid to the
solid can vary from stick to slip in response to the physical/chemical properties of
the solid surface [10, Ch. 2]. In particular, the traditional Navier–Stokes model of
fluid flow with a no-slip boundary condition at a fluid–solid interface requires the
following [6].

(i) The fluid is a continuum, which is always satisfied since there are more than
1 million molecules in the smallest volume in which appreciable macroscopic
changes take place.

(ii) The flow is near thermodynamic equilibrium, which is satisfied if there are a
sufficient number of molecular encounters during a time period that is small
compared to the smallest time scale at which the flow changes. During this time
period, a molecule would have moved a distance that is small compared to the
smallest length scale of the flow.

The traditional no-slip condition at a fluid–solid interface, namely that the fluid
velocity is zero relative to the solid boundary, requires condition (ii) to be satisfied.
For the fluid flow to be in thermal equilibrium with an adjacent solid surface,
an infinitely high frequency of fluid particle collisions with the solid boundary is
required. In a small-scale system, the collision frequency is not high enough to
ensure thermodynamic equilibrium, resulting in a certain degree of tangential velocity
slip. A simple modification to allow a certain degree of tangential velocity slip
is to replace the no-slip boundary condition [5, 6]. Navier [15] introduced the
linear boundary condition, later proposed independently by Maxwell [14], which is
a standard characterization of slip; the component of the fluid velocity tangent to the
surface is proportional to the rate of strain and the constant of proportionality is called
the slip length.

In this paper, we model the unsteady/startup flow between two parallel plates with
differing amounts of slip on each plate via an analytical solution, which is then used
as a benchmark for numerical simulations using a finite element method that employs
the slip boundary conditions via a penalty implementation. Although the problem
might seem academic in nature, channel flows are fairly common in micro- and nano-
electromechanical systems and lab-on-a-chip technologies. There have been numerous
analytical studies of unsteady Navier–Stokes flow with the standard no-slip boundary
condition (a review of these exact solutions is given by Wang [18]), but the application
of Navier slip conditions to an unsteady flow is only valid for parallel flows, such as
the unsteady flow through a tube [12] and the problem considered here. For studies
with flow reversal such as unsteady oscillatory flow, Wang [19] has shown that the
Navier slip condition is not valid.
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F 1. Schematic diagram of the channel with length L and width 2h. The coordinate system used
for the analytical and computational solution is shown. An example of the mesh used for the numerical
solution is also shown, corresponding to 496 elements.

The analytical solution characterizing the flow is derived via Fourier series in
Section 2. The numerical method is described and verified via steady no-slip and
slip solutions from the literature in Section 3. A discussion of the unsteady no-slip and
slip results is given in Section 4. Appendix A deals with certain mathematical details
of the analytical solution.

2. Analytical solution

Consider the unsteady flow of an incompressible Newtonian fluid between two
parallel planes of infinite extent separated by a distance 2h as illustrated in Figure 1.
Initially the fluid is at rest, and is set in motion by a suddenly imposed and maintained
pressure difference P0 − PL acting over a distance L parallel to the planes. A Cartesian
coordinate system (x∗, y∗, z∗) is used, where y∗ is measured from the midpoint between
the two planes, normal to the planes, while x∗ is measured parallel to the planes and is
positive in the direction of flow. A velocity distribution of the form

v∗x = v∗x(y∗, t∗), v∗y = 0, v∗z = 0

is assumed so that mass conservation is automatically satisfied and the x∗ component
of momentum conservation may be written as

ρ
∂v∗x
∂t∗

= −
∂P∗

∂x∗
+ µ

∂2v∗x
∂y∗2

while the y∗ and z∗ components yield ∂P∗/∂y∗ = 0 = ∂P∗/∂z∗. Thus the x∗ component
may be written as

dP∗

dx∗
= −ρ

∂v∗x
∂t∗

+ µ
∂2v∗x
∂y∗2

.

Since the left-hand side of the above equation is a function of x∗ only and the right-
hand side is a function of y∗ and t∗ only,

dP∗

dx∗
= −A = −ρ

∂v∗x
∂t∗

+ µ
∂2v∗x
∂y∗2

,
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where A is a constant. By applying the boundary conditions P∗ = P0 at x∗ = 0 and
P∗ = PL at x∗ = L, we find that

P∗ = −Ax∗ + P0, A =
P0 − PL

L
> 0. (2.1)

Hence

ρ
∂v∗x
∂t∗

= A + µ
∂2v∗x
∂y∗2

,

which must be solved subject to the following initial condition and slip boundary
conditions given by the Navier boundary condition:

t∗ = 0 : v∗x = 0 for −h ≤ y∗ ≤ h,

y∗ = ∓h : v∗x ∓ `
∗∓ ∂v∗x
∂y∗

= 0 for t∗ ≥ 0,

where `∗∓ > 0 are the slip lengths on the bottom and top plates, respectively. Taking
`∗∓ = 0 yields the no-slip condition, while the case of infinite slip lengths corresponds
to a potential flow situation.

By introducing the dimensionless variables

vx =
2µv∗x
Ah2

, y =
y∗

h
, t =

µt∗

ρh2
, `∓ =

`∗∓

h
, (2.2)

the problem to be solved becomes the partial differential equation (PDE)

∂vx

∂t
= 2 +

∂2vx

∂y2
(2.3)

subject to the initial condition

t = 0 : vx = 0 for −1 ≤ y ≤ 1

and boundary conditions

y = ∓1 : vx ∓ `
∓ ∂vx

∂y
= 0 for t ≥ 0.

The PDE (2.3) is not in a form that can be solved via separation of variables, but
by assuming that the solution is of the form vx(y, t) = vx,∞(y) − u(y, t), where vx,∞(y)
is the steady-state velocity profile and u(y, t) is the transient velocity distribution, the
governing PDE may be transformed into an ordinary differential equation (ODE) for
the steady solution and a PDE for the transient solution that is amenable to separation
of variables. In particular, we have the ODE system

d2vx,∞

dy2
= −2, (2.4)

y = ∓1 : vx,∞ ∓ `
∓ dvx,∞

dy
= 0, (2.5)
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and the PDE system

∂u
∂t

=
∂2u
∂y2

,

t = 0 : u = vx,∞(y),

y = ∓1 : u ∓ `∓
∂u
∂y

= 0.

2.1. Steady-state solution The solution to the ODE system (2.4), (2.5) is found to be

vx,∞(y) =
3(`− + `+) + 4`−`+ + 2

`− + `+ + 2
−

2(`− − `+)
`− + `+ + 2

y − y2. (2.6)

Notice that when `− = `+ = 0 (that is, no slip on the channel walls), equation (2.6)
reduces to the standard parabolic profile vx,∞(y) = 1 − y2, and when `− = `+ = ` (equal
slip on the channel walls) it reduces to vx,∞(y) = 1 + 2` − y2 as in the paper by
Matthews and Hill [11].

2.2. Transient solution With the steady solution given by equation (2.6), the PDE
system becomes

∂u
∂t

=
∂2u
∂y2

,

u(y, 0) =
3(`− + `+) + 4`−`+ + 2

`− + `+ + 2
−

2(`− − `+)
`− + `+ + 2

y − y2,

u(∓1, t) ∓ `∓
∂u
∂y

(∓1, t) = 0.

By applying the change of variable ŷ = y + 1, we obtain

∂u
∂t

=
∂2u
∂ŷ2

,

u(ŷ, 0) =
4`−(1 + `+)
`− + `+ + 2

+
4(1 + `+)
`− + `+ + 2

ŷ − ŷ2,

u(0, t) − `−
∂u
∂ŷ

(0, t) = 0, u(2, t) + `+ ∂u
∂ŷ

(2, t) = 0.

This system bears resemblance to the problem of heat conduction in a finite medium
(of width “2”) at a prescribed initial temperature with Newtonian heat loss at each
boundary [3, Ch. 3]. The solution to this problem is detailed by Hill and Dewynne [8,
Ch. 4] with equal thermal coefficients in the Newtonian heat loss boundary conditions,
and as such only the main solution steps are illustrated here.

By assuming a solution of the form u(ŷ, t) = Y(ŷ)T (t) we obtain the ODEs

Y ′′(ŷ) + λY(ŷ) = 0, T ′(t) + λT (t) = 0,
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where λ is a separation constant. The solution for T (t) is simply T (t) = Ae−λt, where A
is an integration constant. To ensure that the solution is bounded as t→∞, we require
λ = k2 > 0; that is, the separation constant must be positive (it may also be shown
that the separation constant must be positive for the boundary value problem for Y(ŷ)
to have a unique nontrivial solution: see Appendix A). Then the ODE and boundary
conditions for Y(ŷ) become the Sturm–Liouville boundary value problem

Y ′′(ŷ) + k2Y(ŷ) = 0,

Y(0) − `−Y ′(0) = 0, Y(2) + `+Y ′(2) = 0.

The solution for Y(ŷ) is found to be

Y(ŷ) = sin(kŷ) + `−k cos(kŷ),

where k is a root of

f (k) = tan(2k) −
k(`− + `+)
`−`+k2 − 1

= 0. (2.7)

The transcendental equation (2.7) has infinitely many solutions which may be found by
any standard root-finding algorithm, and without loss of generality we may consider
just the positive solutions since f (k) is an odd function of k.

By the principle of superposition,

u(ŷ, t) =

∞∑
n=1

Yn(ŷ)T (t) =

∞∑
n=1

An[sin(knŷ) + `−kn cos(knŷ)]e−k2
n t, (2.8)

where 0 < k1 < k2 < · · · are the eigenvalues from equation (2.7) arranged in ascending
order. By applying the initial condition and using the orthogonality condition∫ 2

0
Ym(ŷ)Yn(ŷ) dŷ = 0 for m , n,

as well as equation (2.7), after a considerable amount of algebraic manipulation we
find that the constants An may be determined from

An

{2(`−)2(`+)2k4
n + [(`−)2(`+ + 2) + (`+)2(`− + 2)]k2

n + `− + `+ + 2
2[k2

n(`+)2 + 1]

}
=

2

k3
n

+ sin(2kn)
[4`−`+(`− + 1)
`− + `+ + 2

+
2`−(`− + `+) − 4
k2

n(`− + `+ + 2)

]
−

cos(2kn)
kn

[4`−(`− + `+ + 1) + 4`+

`− + `+ + 2
+

2
k2

n

]
. (2.9)

Notice that Yn and the expression for An are odd functions of kn, so that there is indeed
no loss of generality in only using the positive eigenvalues from (2.7).
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T 1. The first five eigenvalues kn and Fourier coefficients An for various amounts of slip.

`− = 0 = `+ `− = 0.5 = `+ `− = 1, `+ = 0.5 `− = 0.5, `+ = 1
n kn An kn An kn An kn An

1 1.5708 1.0320 1.0769 1.7895 0.9631 1.7878 0.9631 2.2363
2 3.1416 0.0000 2.2889 0.0000 2.1609 −0.0179 2.1609 0.0290
3 4.7124 0.0382 3.6436 0.0172 3.5367 0.0086 3.5367 0.0155
4 6.2832 0.0000 5.0870 0.0000 5.0013 −0.0005 5.0013 0.0010
5 7.8540 0.0083 6.5783 0.0011 6.5085 0.0005 6.5085 0.0009

When `− = `+ = 0 (that is, no slip on the channel walls), equation (2.7) reduces
to sin(2kn) = 0, which implies that kn = nπ/2, and equation (2.9) reduces to An =

16[1 − (−1)n]/n3π3, so that equation (2.8) becomes

u(ŷ, t) =

∞∑
n=1

16
n3π3

[1 − (−1)n] sin
(nπŷ

2

)
e−n2π2t/4,

which corresponds to the classical solution. When `− = `+ = ` (equal slip on the
channel walls), equation (2.7) reduces to

tan(2kn) −
2kn`

`2k2
n − 1

= 0,

and the left-hand side of (2.9) reduces to An(k2
n`

2 + ` + 1), as in the book by Hill and
Dewynne [8, Ch. 4].

2.3. Complete solution The complete velocity profile is given by

vx(y, t) =
3(`− + `+) + 4`−`+ + 2

`− + `+ + 2
−

2(`− − `+)
`− + `+ + 2

y − y2

−

∞∑
n=1

An{sin[kn(y + 1)] + `−kn cos[kn(y + 1)]}e−k2
n t, (2.10)

where the eigenvalues kn are obtained from equation (2.7) and arranged such that
0 < k1 < k2 < · · · and the constants An are determined from equation (2.9). Table 1
shows the first five values of kn (obtained by bisection) and An for various amounts of
slip. Notice that for equal slip lengths the coefficients An are nonzero for odd values
of n (as for no slip), and that for nonzero slip lengths the coefficients An approach
zero more rapidly than in the no-slip case, indicating that the Fourier series solution
converges more rapidly with the presence of slip.

3. Numerical modelling

Consider the unsteady flow of an incompressible Newtonian fluid between two
parallel planes of length 0.1 units (so L = 0.1) separated by a distance of 0.02 units
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(so h = 0.01). Initially the fluid is at rest, and is set in motion by a suddenly imposed
and maintained pressure difference P0 − PL acting over the entire length parallel to the
planes, where without loss of generality we set PL = 0. A Cartesian coordinate system
(x, y) is used, where y is measured from the midpoint between the two planes, normal
to the planes, while x is measured parallel to the planes and is positive in the direction
of flow.

The flow is given by solving the unsteady Navier–Stokes and continuity equations

ρ
∂v
∂t

+ ρv · ∇v = −∇P + µ∇2v, ∇ · v = 0,

where v = (vx, vy) is the velocity vector, P is pressure, and ρ and µ are the fluid density
and viscosity, respectively. At the channel inlet and outlet, x = 0 and x = 0.1, we
specify the pressure and require zero vertical velocity component; that is, the boundary
conditions are

P(0, y, t) = P0, vy(0, y, t) = 0, (3.1)

P(0.1, y, t) = 0, vy(0.1, y, t) = 0.

On the channel walls we apply Navier slip conditions

vn = 0, vt = −
`

µ
Tt, (3.2)

where vn and vt are the normal and tangential velocity components, Tt is the tangential
stress, and ` is the slip length. Taking ` = 0 yields the no-slip condition, while the case
of infinite slip lengths corresponds to a potential flow situation. Note that Tt = T · t,
where T = σ · n is the stress vector for the unit outward normal n to the surface and
σ = −PI + µ[∇v + (∇v)>] is the stress tensor.

To solve for the flow numerically and allow direct comparison with the analytical
solution (2.10), we first nondimensionalize the governing equations and boundary
conditions so they match with the previous analytical solution; that is, we use the
same nondimensionalization as in the previous section. By setting the density ρ to a
convenient value (in this case 1000 kg/m3, the density of water), from the time scale
in (2.2) we set µ/ρh2 = 1 so that µ = h2ρ. From the velocity scale we set Ah2/2µ = 1
so that A = 2ρ, which implies from (2.1) and (3.1) that P0 = 2Lρ. Finally, from the slip
length scale and (3.2) we scale the slip lengths here with ρh. Hence, on the channel
walls we have the Navier slip condition

vt = −
`

ρh
Tt,

where the value of the slip length ` may be different for each wall.
We solve the dimensionless problem using COMSOL Multiphysics (Version

3.5a) [4], hereafter referred to as COMSOL, and a mixed finite element formulation
with first- and second-order Lagrange elements for the pressure and velocity,
respectively.
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3.1. Implementing the Navier slip conditions The slip boundary conditions on the
channel walls are implemented via a penalty approach that is described and verified
by Stokes and Carey [17] for steady Stokes and Navier–Stokes flow but has yet to be
verified for unsteady flows. The penalty method places no limitations on boundary
shape, handles no-slip and no-stress boundaries as limiting cases of Navier slip and
partial penetration, and is relatively straightforward to formulate and implement in a
finite element code, such as COMSOL [4].

Consider the boundary conditions

εnTn + vn = 0, εtTt + vt = 0, (3.3)

where Tt and Tn denote the tangential and normal components of stress, respectively,
vt and vn denote the tangential and normal velocity components, and εt and εn are
positive constants. As shown by Stokes and Carey [17], these are the natural boundary
conditions associated with the mixed form Lagrangian for the steady Stokes equations
in two spatial dimensions, given by

Lε(v, p) =

∫
Π

[
µ

2
∂vi

∂x j

(
∂vi

∂x j
+
∂v j

∂xi

)
− fivi − p

∂v j

∂x j

]
dV

+
1

2εt

∮
Γ

v2
t ds +

1
2εn

∮
Γ

v2
n ds,

where repeated indices imply summation, (vx, vy) = (v1, v2), Π denotes the
computational domain, which has boundary Γ, and εt and εn are (positive) penalty
parameters. The two boundary integral penalty terms are additional to the usual
Lagrangian. By setting both εt and εn to sufficiently small values, the boundary
conditions (3.3) are equivalent to the no-slip conditions vn = 0 and vt = 0, now imposed
via a penalty formulation of the viscous flow problem. Keeping εn small and setting
εt = `/ρh, we have the no-penetration (vn = 0) and Navier slip conditions. It should be
noted that the natural boundary condition associated with the mixed form Lagrangian
for the unsteady Navier–Stokes equations in two spatial dimensions is identical to that
for the steady Stokes equations in two spatial dimensions.

The boundary conditions (3.3) may be written in terms of Cartesian components to
yield

Tx = −
vn

εn
nx −

vt

εt
tx = −

(vxnx + vyny)nx

εn
−

(vxtx + vyty)tx

εt
, (3.4)

Ty = −
vn

εn
ny −

vt

εt
ty = −

(vxnx + vyny)ny

εn
−

(vxtx + vyty)ty
εt

. (3.5)

Conditions (3.4) and (3.5) are implemented in COMSOL via general stress boundary
conditions on each of the channel walls.

3.2. Verification of the numerical method To verify the numerical method, we
consider the velocity at the centre of the computational domain (at x = 0.05, y = 0).
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T 2. Velocity at the centre of the channel, showing convergence with increasing number of mesh
elements for ρ = 1000 kg/m3, t = 10 and all penalty parameters set to 10−9. The mesh element distribution
is nonuniform, with a higher density of elements around the boundary and at the midpoint. The velocity
from the analytical solution is unity.

Number of elements v̄x

124 1.000006
496 1.000005
1984 1.000006
7936 1.000005

With a no-slip condition at the channel walls and for large times we should find that
the x component of the velocity at the centreline is unity, consistent with the classic
steady-state velocity profile 1 − y2. We should also find that the y component of the
velocity is zero throughout the computational domain, which is found to be the case
for all computations.

Setting ρ = 1000 kg/m3 and all penalty parameters to 10−9 (that is, no slip and
no penetration on the channel walls), we first checked for convergence by increasing
the number of mesh elements for t = 10 (assumed to correspond to steady state). A
nonuniform distribution of mesh elements was used, with a higher density of elements
at the boundaries and around the midpoint of the computational domain (the main area
where we compare the analytical and numerical solutions). An example of the mesh
used with 496 mesh elements is shown in Figure 1. Table 2 shows the velocity at
the centre, v̄x, obtained with different numbers of mesh elements. It can be seen that
convergence is achieved almost immediately with five-figure accuracy for all numbers
of elements tested. Given these results, we conclude that simulations using meshes of
around 2000 elements will give good accuracy of at least five significant figures and
provide reasonable computational time for the unsteady simulations to follow.

Next we wish to establish the magnitude of the penalty parameters εt and εn

equivalent to no-slip/penetration boundary conditions. In theory, the smaller εt (εn)
the closer the boundary condition will be to no slip (no penetration), but as discussed
by Matthews and Stokes [13], too small a value will result in error due to loss of
precision. Again setting ρ = 1000 kg/m3, and with a mesh of 1984 elements, we
obtained values for v̄x with εt = εn = ε and 10−9 ≤ ε ≤ 10−5 on each of the channel
walls for t = 10, as shown in Table 3. The results are, to four decimal places, identical
for ε ≤ 10−8; they are also, to four decimal places, identical to those obtained with
no-slip boundary conditions on the channel walls set in the standard way (not shown,
but see Section 4). For this investigation we adopted εt, εn = 10−9 as satisfactory for no
slip/penetration.

With a Navier slip condition at the channel walls, with equal slip lengths and
for large times we should find that the velocity at the centreline is equal to 1 + 2`,
consistent with the steady-state slip velocity profile 1 + 2` − y2 obtained by Matthews
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T 3. Velocity at the centre of the channel for εt = εn = ε, 10−9 ≤ ε ≤ 10−5, with ρ = 1000 kg/m3,
t = 10.

ε v̄x

10−5 1.056149
10−6 1.005334
10−7 1.000530
10−8 1.000053
10−9 1.000006

T 4. Velocity at the centre of the channel, showing convergence with increasing number of mesh
elements for ρ = 1000 kg/m3, t = 10 and penalty parameters set to εn = 10−9 and εt = 1 on both channel
walls. The velocity from the analytical solution is 3.

Number of elements v̄x

124 2.998403
496 2.997436
1984 2.998956
7936 2.997988

and Hill [11]. Setting ρ = 1000 kg/m3, εn = 10−9 (that is, no penetration on the
channel walls) and εt = 1/ρh (slip on the channel walls with unity slip lengths), we
again checked for convergence by increasing the number of mesh elements for t = 10
(assumed to correspond to steady state). Table 4 shows the velocity at the centre,
v̄x, obtained with different numbers of mesh elements. It can be seen that again
convergence is achieved almost immediately with four-figure accuracy for all numbers
of elements tested.

Finally, we establish the magnitude of the penalty parameter εn equivalent to no
penetration boundary conditions. Again setting ρ = 1000 kg/m3 and εt = 1/ρh, and
with a mesh of 1984 elements, we obtained values for v̄x with 10−9 ≤ εn ≤ 10−5 on
the channel walls for t = 10, as shown in Table 5. Again we find that εn = 10−9 is
satisfactory for no penetration with partial slip.

This completes our verification of our numerical method, and the penalty
implementation of the boundary conditions in particular. We now proceed to look
at the effect of slip on the flow and compare the analytical solution with the time-
dependent numerical simulations.

4. Results and discussion

For the analytical solution given by equation (2.10), it was found that 25 terms
were enough to ensure five-digit accuracy at all times and slip lengths considered. The
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T 5. Velocity at the centre of the channel for εt = 1 and 10−9 ≤ ε ≤ 10−5, with ρ = 1000 kg/m3, t = 10.

ε v̄x

10−5 3.236910
10−6 3.020071
10−7 3.000908
10−8 2.999134
10−9 2.998956

1.5

1.0

0.5

–0.5 0.0 0.5–1.0 1.0
y

t = 5

t = 1

t = 0.5

t = 0.25

t = 0.1

t = 0.05

t = 0.025

2.0

0.0

v x
 (

y,
 t)

F 2. Velocity profiles for the analytical and numerical solutions for various times, for no slip
(`− = 0 = `+) and symmetric slip with `− = 0.5 = `+. The times for the slip solutions are the same as
for the no-slip solutions. The analytical and numerical solutions are indistinguishable at the scale of the
plot.

velocity profiles obtained from the analytical solution are shown in Figures 2 and 3 for
various times and amounts of slip.

Figure 2 shows the velocity profiles from the analytical solution for times ranging
from t = 0.025 to t = 5 for no slip (that is, `− = 0 = `+) and for symmetric slip with
`− = 0.5 = `+. The profiles are symmetric about the centreline y = 0, so only half the
profile is shown for each case. The slip profiles are for the same times as the no-slip
profiles. It can be seen that the velocity profile approaches the fully developed solution
as time increases and, at the graphical scale used, is essentially the same as the fully
developed solution (1 − y2 for no slip, 2 − y2 for slip; see (2.6)) by t = 5.

Figure 3 shows the velocity profiles from the analytical solution for times ranging
from t = 0.025 to t = 5 for the case of nonsymmetric slip corresponding to `− = 1
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–0.5 0.0 0.5–1.0 1.0
y

t = 5

t = 0.025

v x
 (

y,
 t)

1.5

1.0

0.5

2.5

2.0

0.0

F 3. Velocity profiles for the analytical and numerical solutions for various times and nonsymmetric
slip (`− = 1 and `+ = 0.5). The times for the slip solutions are from t = 0.025 to t = 5, and are the same
as those for the no-slip solutions shown on the left-hand side of Figure 2. The analytical and numerical
solutions are indistinguishable at the scale of the plot.

and `+ = 0.5. Notice that the profiles are no longer symmetric about the centreline
y = 0. The profiles are for the same times as for the no-slip profiles, shown on the
left-hand side of Figure 2. It can be seen again that the profiles gradually increase
in magnitude, and that for t = 5 the profiles are essentially the same as that for the
fully developed flow, which from equation (2.6) corresponds to 17/7 − 2y/7 − y2 with
a maximum at y = −1/7. Note that the case `− = 0.5, `+ = 1 is a mirror image of
Figure 3 about the centreline y = 0.

The velocity profiles from the numerical modelling were calculated along various
perpendicular cross sections of the channel, and they were found to be identical. For
the same slip length combinations used in the analytical studies, the velocity profiles
were found to be indistinguishable at the scale of the plots in Figures 2 and 3. To
ascertain the precise agreement between the analytical and numerical solutions, the
velocities v̄x for various times t ranging from t = 0.025 to t = 5 at the midpoint of the
channel were calculated from the analytical and numerical solutions, and the results
are shown in Tables 6 and 7.

Initially, the case of no slip was investigated. From the analytical solution (2.10),
the velocities v̄x (corresponding to y = 0) were calculated for various times t ranging
from t = 0.025 to t = 5. The velocities were also calculated numerically in COMSOL
via standard methods (that is, by enforcing vt = 0 exactly) and via the penalty method
with all penalty parameters set to 10−9. The results from the three cases are shown
in Table 6. It can be seen that there is virtually complete agreement between the
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T 6. Comparison of the velocity at the centre of the channel for various t with the analytical solution
and the numerical solutions with ρ = 1000 kg/m3 found via standard no-slip methods and the penalty
method with εt = 10−9 = εn.

t v̄x (analytical) v̄x (standard) v̄x (penalty)

0.025 0.0500 0.0520 0.0520
0.05 0.1000 0.1019 0.1019
0.1 0.1977 0.1993 0.1993
0.25 0.4432 0.4451 0.4450
0.5 0.6995 0.6998 0.6998
1 0.9125 0.9102 0.9102
5 1.0000 1.0000 1.0000

T 7. Comparison of the velocity at the centre of the channel for various t with the analytical solution
and the numerical solution with ρ = 1000 kg/m3 for the cases of symmetric slip and nonsymmetric slip.

`− = 0.5 = `+ `− = 1, `+ = 0.5
t v̄x (analytical) v̄x (penalty) v̄x (analytical) v̄x (penalty)

0.025 0.0500 0.0520 0.0500 0.0520
0.05 0.1000 0.1020 0.1000 0.1020
0.1 0.1995 0.2013 0.1996 0.2014
0.25 0.4804 0.4818 0.4843 0.4858
0.5 0.8619 0.8653 0.8867 0.8895
1 1.3626 1.3715 1.4592 1.4663
5 1.9938 1.9931 2.4049 2.4052

numerical solutions via the penalty method and the standard method, and agreement
to two decimal places with the analytical solution. Although small, the discrepancy
between the analytical and numerical solutions is likely due to the entrance and end
effects of the channel in the numerical solution, which the analytical solution cannot
possibly account for. Indeed, by increasing the channel length L (and adjusting the
pressure P0 accordingly), it was found that the agreement between the analytical and
numerical solution improves as L increases.

Finally, we compare the average velocities v̄x from the analytical and the numerical
solutions for `− = 0.5 = `+ and `− = 1, `+ = 0.5 for various times ranging from t =

0.025 to t = 5. These are shown in Table 7. Again we see good agreement, with the
two results the same to two decimal places.

We may conclude from this analysis that the penalty method described and verified
by Stokes and Carey [17] for steady Navier–Stokes flow has now been directly verified
for unsteady Navier–Stokes flow via direct comparison with an analytical slip solution.
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However, as pointed out by Stokes and Carey [17], implementation of the Navier slip
boundary condition is relatively straightforward for wall boundaries that coincide with
Cartesian coordinate planes [9, 16], which is the case considered here. A complete and
thorough verification therefore requires the analysis of a problem involving unsteady
flow with an inclined or a curved boundary, along with direct comparison with an
analytical solution.

Appendix A. Details of the boundary value problem

Consider the boundary value problem

Y ′′(ŷ) + λY(ŷ) = 0,

Y(0) − `−Y ′(0) = 0, Y(2) + `+Y ′(2) = 0.

If λ = −k2 < 0 then Y(ŷ) = C1ekŷ + C2e−kŷ, and the boundary conditions imply that for
a nontrivial solution to exist we must have

e4k =
(1 − `−k)(1 − `+k)
(1 + `−k)(1 + `+k)

.

With `−, `+ > 0 and k , 0 this equation has no solution, and hence there are no negative
eigenvalues. If λ = 0 then Y(ŷ) = C1ŷ + C2, and the boundary conditions imply that for
a nontrivial solution to exist we must have `− + `+ + 2 = 0, which cannot be satisfied
for positive slip lengths. Hence zero is not an eigenvalue, and therefore all the
eigenvalues are positive.

The fact that all the eigenvalues are positive can also be deduced from the Rayleigh
quotient, which for this problem is given by

λ =

∫ 2

0
(Y ′)2 dŷ − [YY ′]2

0∫ 2

0
Y2 dŷ

.

From the boundary conditions, this may be written as

λ =

∫ 2

0
(Y ′)2 dŷ + `−[Y ′(0)]2 + `+[Y ′(2)]2∫ 2

0
Y2 dŷ

,

and it follows that λ > 0.
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