COMPOSITIO MATHEMATICA

Corrigendum

Elliptic curves with a given number of points over finite fields

(Compositio Math. 149 (2013), 175-203)

Chantal David and Ethan Smith

Compositio Math. 150 (2014), 1347-1348.

doi:10.1112/S0010437X14007283

Corrigendum

Elliptic curves with a given number of points over finite fields

(Compositio Math. 149 (2013), 175-203)

Chantal David and Ethan Smith

The arithmetic function $K(N)$ defined in the statement of Theorem 3 of [DS13, p. 177] should instead be defined as

$$
K(N):=\prod_{\ell \nmid N}\left(1-\frac{\left(\frac{(N-1)}{\ell}\right)^{2} \ell+1}{(\ell-1)^{2}(\ell+1)}\right) \prod_{\ell \mid N}\left(1-\frac{1}{\ell^{\nu_{\ell}(N)}(\ell-1)}\right) .
$$

The reasons for the change are a couple of errors in the proof of Lemma 11. In the last line of page 201, the Kronecker symbol $\left(\frac{-N_{\ell}}{\ell}\right)$ is missing its exponent, and should be replaced by $\left(\frac{-N_{\ell}}{\ell}\right)^{\alpha}$. In addition, the sum over $a \in \mathbb{Z} / \ell \mathbb{Z}$ that appears in the line above the last line of page 201 should also carry the condition $4 N_{\ell}+a \neq 0$. The net result is that the statement of Lemma 11 (pp. 188-189) must be altered. In particular, the displayed equation that is the second line of page 189 is not correct. Indeed, in the case that $\ell \mid(N, f)$ and $\nu_{\ell}(N)=2 \nu_{\ell}(f)$, we should have

$$
\frac{c_{N, f}\left(\ell^{\alpha}\right)}{\ell^{\alpha-1}}=\# C_{N}^{(\ell)}(1,1, f) \begin{cases}\left(\ell-1-\left(\frac{N_{\ell}}{\ell}\right)\right) & \text { if } 2 \mid \alpha, \\ -1 & \text { if } 2 \nmid \alpha,\end{cases}
$$

instead. This change in the statement of Lemma 11 then affects the computation of the product formula for the arithmetic function $K_{0}(N)=(N / \varphi(N)) K(N)$ that occupies pp. 189-192. The following list outlines the necessary changes.
(1) The function $F_{2}(\ell, f)$ should instead be defined by

$$
F_{2}(\ell, f):= \begin{cases}\left(1+\frac{1}{\ell(\ell+1)}\right) & \text { if } \nu_{\ell}(N)<2 \nu_{\ell}(f) \\ \left(1+\frac{1}{\ell}\right) & \text { if } \nu_{\ell}(N)>2 \nu_{\ell}(f) \\ \left(1+\frac{-\left(\frac{N_{\ell}}{\ell}\right)-1}{\ell\left(\ell^{2}-1\right)}\right) & \text { if } \nu_{\ell}(N)=2 \nu_{\ell}(f)\end{cases}
$$

[^0]
C. David and E. Smith

(2) If $\nu_{\ell}(N)>0$, then in all cases (that is, whether $\nu_{\ell}(N)$ is odd or even and whether $\left(\frac{N_{\ell}}{\ell}\right)=$ ± 1), we find that

$$
1+\sum_{\alpha \geqslant 1} \frac{\# C_{N}^{(\ell)}\left(1,1, \ell^{\alpha}\right) F_{2}\left(\ell, \ell^{\alpha}\right)}{\varphi\left(\ell^{\alpha}\right) \ell^{2 \alpha} F_{0}(\ell)}=1+\frac{\ell^{\nu_{\ell}(N)}-\ell}{F_{0}(\ell) \ell^{\nu_{\ell}(N)}(\ell-1)^{2}} .
$$

(3) Eventually, we arrive at the following corrected product formula for $K_{0}(N)$:

$$
K_{0}(N)=\frac{N}{\varphi(N)} \prod_{\ell \nmid N}\left(1-\frac{\left(\frac{N-1}{\ell}\right)^{2} \ell+1}{(\ell-1)\left(\ell^{2}-1\right)}\right) \prod_{\ell \mid N}\left(1-\frac{1}{\ell^{\nu_{\ell}(N)}(\ell-1)}\right) .
$$

Reference

DS13 C. David and E. Smith, Elliptic curves with a given number of points over finite fields, Compositio Math. 149 (2013), 175-203.

Chantal David cdavid@mathstat.concordia.ca
Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve West, Montréal, Québec, H3G 1M8, Canada

Ethan Smith ecsmith13@liberty.edu
Department of Mathematics, Liberty University, 1971 University Boulevard, MSC Box 710052, Lynchburg, VA 24502, USA

[^0]: Received 3 December 2013, accepted in final form 6 February 2014, published online 17 July 2014.
 2010 Mathematics Subject Classification 11G05 (primary), 11N13 (secondary).
 Keywords: average order, elliptic curves, primes in short intervals, Barban-Davenport-Halberstam theorem, Cohen-Lenstra heuristics.
 This journal is © Foundation Compositio Mathematica 2014.

