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I. In a general metric space of four dimensions, with an interval
given by — ds2 = g^v dx^ dx", where g = || g^v || <0, we can choose locally
galilean coordinates at any point. The initial directions of the axes
can be fixed in an absolute fashion as the directions of the principal
axes of the quadric G^dx^dx" = const., where G^, is the contracted
Riemann-Christoffel tensor.

In a gravitational field, however, at a point in empty space,
G^v = Xg^v, and the quadric degenerates, so that this procedure breaks
down.

Now the Riemann-Christoffel tensor has 20 independent com-
ponents. The equations G^ = Xg^ impose 10 conditions on these, so
that 10 independent components still remain. We shall show here
that these 10 quantities can be used, in general, to define absolute
coordinate directions at any point. There is in fact, in general, an
alternative method of fixing absolute directions to the use of the
quadric of curvature, which remains valid when that quadric
degenerates.

II. Two simple transformations, preserving the galilean character
of coordinates, namely a rotation about an axis and a Lorentz
transformation for motion in the direction of the same axis, are
evidently commutative and can be combined into one. If 8 be the
angle of the rotation and tanh^> the velocity of the motion, we have,
for the combined transformation,

x1 = x\ cosh <f> + x\ sinh (f>)
x2 = x'2 cos 8 — ar'.j sin 8 \
x3 = x\ cos 8 + x'2 sin 8 I'
xi = x' i cosh <f> + x\ sinh <f>j
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which can also be written,

x1 = x\ cos i(f> — ix'i sin i<f>
x2 = x'z cos 6 — x'z sin 8
x3 = x':i cos 6 + x'2 sin 6
xi = x\ cos i<f> — ix\ sin i

Any transformation which is permitted can be made up of three
transformations of this type taken in a determinate order.

Consider now the behaviour of the surface-element

dS1"' = dx» 8x" — dxv 8x*

under the transformation (1). It can be seen at once that if we
write

U 2(1) = dS23 + idS1*, 2d 2(2 ) = dS31 + idS2i, 2d S(3) = dS12 + idSSi,

then
dS(D = d S'(1) "j
d Z(2) = d 2'(2) cos (d + i<f>) — d 2'(3) sin (0 + i^) k
d 2(3) = d 2'(3) cos (6 + i<f>) + d 2'(2) sin (8 + i<£) J

There is thus a one-one correspondence between the transforma-
tions of the coordinates x* which preserve their galilean character,
and the transformations of the quantities d 2 as cartesian coordinates
in complex three-dimensional space.

III . It is convenient to introduce three symbols for tensors which
will be used as operators. These are:

and A£ =

These tensors have the following properties which are easily
verified.

W " 1 — - — t7Vi ' n n. •
III pa- — — 2 ./ e »W y^'

v — g

^; = o,
AC _ 3fl^ AC — Q •

C A»S
S ^
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W'e now apply these operators to the Riemann-Christoffel
tensor, B^,^, whose indices we write in an order such that
K^ = - KP« = - B^ = B^v. By B;i is meant gr 9'"B^.

We have

the latter result following from the identity

B^pa- + B^pav + ^ ^ p = 0.

Let II£ = AJ5JB#A£-.J#.A£> where ^ = 5 ^ , 0 = 6^. It is-
evident that

We shall proceed to show that

w9: = o. (3>
WTe have

The imaginary part of this gives zero when contracted; to evaluate
the real part we take the term

- EH B$ E* =

Now

D% D* + D$: D
This is in fact nothing else than the Laplace rule of expansion of a
determinant of the fourth order in terms of minors of the second
order.

We have thus

- E%B$EH = B;I - 2ir;ya* + 2D-o; + D;^.G

= B;: - g;G:+g;G:+ g»G; - g"aG; + D£ . G,
whence

n - = j (20; - g;G + G; + G;- ±G; + %g;G)-\ig;G= o.

IV. Consider now the invariant

Yl^ dS" dS<"> = nM,/p(r d 2*" d If,

where d S" '= b%td8"».
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It is easy to see that in galilean coordinates the relations (2) and
{3) satisfied by IIw<r become

1*2323 = ~ Hl414 = —" * n i 4 2 3 , e t c . ,
together with n2 3 2 3 + n3 1 3 1 + II1212 = 0. ( '

So that II w o. dS1"' dSf" becomes 16 times the ternary quadratic

1I2323 d 2(i) + n3J31 d S(2) + nx212 d S(3)
+ 2 n 3 n 2 d 2(2) c? S(s) + 2 ni223 d S(3) d S(1) + 2 n2331 d S(1) d 2(2). (5)

The proposed new method of fixing the directions of the axes is
that of transforming the surface variables so that this quadratic
becomes a sum of squares. With such a transformation is associated
uniquely a transformation of the point-coordinates, as shown in
section II, so that the axes can always be chosen to fulfil this condi-
tion, and uniquely if the roots of the discriminating cubic of (5) are
all different.

Moreover if we write II£ = § (P£ + iQ^ ) then

B^p* = P^ptr + |9VP GvlT + \9V<T G\p — \g ^ Gv/> — \gvf> Gw — \D^,9a G.

The B^pv are thus expressible uniquely in terms of the Pwpo. and the
GpV. The equations (4) show that there are exactly 10 independent
P^p<r. The numerical values of the P^.pcr and the G> at any one point
are thus independent of one another, and the use of the U^,,^ to fix
the directions of the axes will not be affected by the degeneracy of
On, df dxv.

V. The coefficients of the discriminating cubic of (0) are given by
the four invariants P^P^, P^Q^,, P^P^P7^, P^P^lQ^- These
form a complete system for invariants which are functions of the P's
and Q's alone.

The total number of algebraically independent invariants of the
Bhllf><T is 14. Four of these are expressible in terms of the 6?'s alone
and four in terms of the P's alone. The remaining six require both
G's and P's to express them and give the coefficients of the trans-
formation from one set of absolute axes to the other.

For the field of an isolated particle with the metric

- ds2 = - v " 1 dr2 -r2d0- - r2 sin2 6dcj>2 + ydt2, y = 1 - 2m/r,

the components of P are:

p-23 pU ~m nil p-24, p i 2 D34 ^_
23 * U r3 ' ± 31 ~ * 24 ± 12 M 34 ~ y3 '

the remaining effectively different components vanishing.
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The axial directions are thus already principal directions in our
sense. But this property will be preserved if the axes are rotated
arbitrarily in the 6 plane, or set in motion in the r direction. This
degeneracy of the field is expressed in terms of the invariants by
the vanishing of P£Q% and P£P%Q™V and by the relation
(P£ PZ)* = (P£ P% PZ)2- This example raises the problem of
determining just what relations between the invariants correspond
to the properties of being symmetrical, being static and so on.

For a gravitational field which is not further degenerate the four
P invariants will be independent functions of the coordinates. Some
set of four standard functions of the invariants can thus be taken as
a system of canonical coordinates for all fields of this type. The
known solutions of Einstein's equations have all, unfortunately,
properties of symmetry which prevent this procedure being applied
to them.

VI. It may be of interest to note that we can use the operator
AJ£ to express Maxwell's equations in the simple form

where JM is the charge-and-current vector, F^ the electromagnetic
force tensor, and O,,,, = A£ Fp<r.
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