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Abstract
Mechanical metamaterials have attracted extensive attention. This paper reports a metamaterial with tunable elastic
wave bandgaps based on bistable buckling structure. First, we find that deformation of two symmetric buckling
shells is intrinsically asymmetric, which blocks the realisation of robust tunability. Based on an analytical model,
we clarify that the mechanisms for this intrinsic asymmetricity are the bifurcations on force–deformation curves.
Then we propose a superposition method of buckling shells, which can realise the symmetric deformation for
robust tunable stiffness. Using this variable-stiffness oscillator, we design a metamaterial sandwich beam, and
numerically and experimentally demonstrate its tunable bandgap for vibration suppression. This paper presents
the unusual deformation process of buckling elements widely used for constructing metamaterials, and provides a
robust way to realise metamaterials with tunable vibration bandgaps.
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Introduction

Mechanical metamaterials (Fang et al., 2022) are artificial composite materials/structures that exhibit
extraordinary mechanical properties beyond natural materials. These exotic properties can be realised
through customising the periodic unit cells. The unusual dynamic properties of mechanical metamate-
rials, such as the locally resonant bandgaps, can efficiently suppress low-frequency elastic waves and
structural vibration (Bao et al., 2022; Fang et al., 2022). Such metamaterial is called acoustic/elastic
metamaterial (Sheng et al., 2021; Gao et al., 2022). Recently, active elastic metamaterials with
tunable bandgaps attract great attention (Ning et al., 2020; Montgomery et al., 2021). This relies
on the mechanically tunable unit cells, especially the variable-stiffness resonators. Bistable/buckling
structures (Fan et al., 2020; Tao et al., 2020) can offer snap-through deformation (Hussein et al., 2019)
and negative stiffness (Anna et al., 2017). Therefore, they are widely utilised to design mechanical
metamaterials (Hang and Li, 2019; Xia et al., 2020; Fang et al., 2022) for vibration isolation and
shock protection. Such metamaterials may present negative stiffness (Tan et al., 2020), negative
Poisson’s ratio (Rafsanjani and Pasini, 2016; Yang and Ma 2020), reconfigurability (Faber et al., 2020;
Khajehtourian and Kochmann, 2021), programmability (Overvelde et al., 2016; Sengupta and Li, 2018),
and tunable mechanical properties (Slesarenko, 2020). In particular, wave propagation properties in
periodic bistable metamaterials have been investigated (Wu et al., 2018; Jin et al., 2020; Liu et al.,
2021). The review above shows that periodic bistable metamaterials can provide unusual properties for
controlling wave and deformation.

This paper attempts to conceive an elastic metamaterial with tunable bandgaps based on the buckling
element. The design relies on the variable-stiffness local resonators consisting of two symmetric
buckling shells, as shown in Figure 1(a). This is a typical buckling structure. However, we find
and experimentally demonstrate that the deformation of any symmetric buckling shell is intrinsically
asymmetric, which blocks the realisation of robust tunability. Actually, as extensively shown in many
literatures concerning the metamaterials consisting of bistable unit cells (Correa et al., 2015; Yang and
Ma, 2020), the snap-through deformation of unit cells will not appear simultaneously under a quasi-
static compressive stress. Instead, they may happen successively or randomly. This is also attributed
to the aforementioned intrinsic asymmetric deformation of a symmetric structure, but this has not
been clearly understood. In this paper, we establish a mechanical model and clarify the bifurcation
mechanisms for this property. Then, to realise a stable tunability of the local resonators, we propose
and demonstrate a superposition method of buckling shells to realise the symmetric deformation and
tunable stiffness. Using this tunable element, we design a tunable metamaterial beam and study its
tunable bandgap for vibration suppression. Simulations and experiments are carried out to demonstrate
our design.

Intrinsic asymmetric deformation of symmetric buckling structure

Design of the symmetric buckling shells

As shown in Figure 1, the typical symmetric element consists of two shells connected by a mass, and
the material of the shell is rubber. Every shell is a thin-walled taper cone with thickness t. The taper
cone is hollow. Thus, it will buckle under compression. The outer radii of the bistable shell at its large
and small ends are R and r, respectively. The height of one shell is h. The two shells of the element
are completely the same in geometry and are installed symmetrically. As labelled in Figure 1(b), the
parameters of the bistable shell in simulations are listed in Table 1.

Phenomena

We analyse the deformation of this symmetric configuration based on finite element method (FEM)
and experiments. In FEM, we fix the bottom edge of the bottom bistable shell and apply a compressive
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Figure 1. Variable-stiffness local resonators: (a) Variable-stiffness local resonators consisting of two
symmetric buckling shells and its simulation conditions of force disturbance; (b) A buckling shell.

Table 1. Parameters of bistable shell in simulations.

Thickness Height Large-end Small-end Density Elastic Poisson’s
t h radius R radius r 𝜌 modulus E ratio 𝜐

1 mm 15 mm 30 mm 15 mm 1,300 kg/m3 1.323e7 Pa 0.47

Figure 2. Deformation of symmetric configuration with completely identical finite element method
elements: (a) d = h/15; (b) d = h/3; (c) d = 2h/3; (d) d = 4h/3. The mass block in the centre is not
shown here.

displacement d on the top edge of the upper bistable shell. Moreover, a sweep-meshing technique is
adopted to control the element quality in FEM.

First, we make sure that the meshing elements of the upper and bottom shells are symmetric and
their structural parameters are identical in the simulation, as shown in Figures 2 and 3. In this ideal
case, with the increase of the compression d, the deformation processes of the two bistable shells are
completely symmetric, that is, d 1 = d 2 = d/2. The force–deformation curve in Figure 3(a) has only one
peak, and buckling induces negative stiffness.

However, in practice, due to the imperfections in manufacturing, experimental setups, and material
defects, it is impossible to guarantee the ideal symmetrical conditions. Actually, we find that if the
meshing elements in the upper and bottom shells are not completely identical, symmetricity will be
broken. This means symmetricity will be broken if there is tiny mechanical disturbance, such as
the structural parameters, meshing elements in FEM, or force. Here, we show a case with a small
gravitational disturbance that generally appears in practice.

As shown in Figure 1(a), we apply a small force 1 N on the upper surface of the bottom bistable shell
to simulate the influence of force disturbance on the deformation. When increasing the compressive
displacement d, as shown in Figure 4(a,b): First, the bottom bistable shell reaches the critical load and
generates snap-through buckling, whereas the upper shell has minimal deformation at this time; then the
upper shell reaches the critical load and snaps-through. This means the two geometrically symmetric
shells buckle successively instead of simultaneously. Thus, deformation becomes asymmetric. The F–d
curve has two peaks and two negative-stiffness stages.

We confirm this property in experiment. The samples are fabricated by rubber. Its geometric
parameters are as follows: large radius R = 28 mm, small radius r = 10 mm, thickness t = 1 mm, and
height h = 10 mm. Although the geometric parameters and material parameters of the bistable shell are
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(a) (b)

Figure 3. Simulation results under ideal symmetry condition: (a) Force versus compression curve F–d
(F is the force on the symmetric configuration); (b) Deformation of the bistable shell versus compression
curve d1/d2–d (d1 and d2 are the deformations of the upper and bottom shells, respectively).

(a) (b)

(c) (d)

Buckled

Buckled

Upper

bistable shell

Bottom

bistable shell

Figure 4. Finite element method (FEM) results of gravitational disturbance and compression test: (a)
F–d curve from the FEM simulation; (b) Deformation from the FEM simulation with compression d = h.
The mass block in the centre is not shown. The bottom shell snaps-through first, whereas the upper shell
has minimal deformation at this time; (c) F–d curve from the compression test; (d) Deformation with
compression d = h from the compression test. The experiments are consistent with the FEM.

inconsistent with those in the simulation, the intrinsic asymmetric deformation remains. As shown in
Figure 4(c,d), the experimental F–d curve in compression shows the identical properties presented in
the FEM simulation with gravitational disturbance. The differences of the buckling force in experiments
and FEM mainly arise from the material parameters.

The simulation and the experiment demonstrate that the symmetric buckling configuration composed
of two symmetrical bistable structures shows asymmetric deformation when compressed in practical
mechanical conditions. The two bistable elements snap-through successively.
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Figure 5. Symmetric configuration of bistable spring system: (a) Initial configuration; (b) Compressed
configuration.

Mechanism of the asymmetric deformation

We establish a typical model consisting of four springs (i.e., two double-spring systems) to clarify the
reason for the asymmetric deformation, as shown in Figure 5.The deformation of the centre point in
the horizontal direction is not considered. Springs 11 and 12 form the upper double-spring system (i.e.,
upper bistable structure), and Springs 21 and 22 form the bottom double-spring system (i.e., bottom
bistable structure). The system is compressed by force F, and the vertical compression is d. The vertical
displacements of the upper and bottom double-spring systems are denoted by d1 and d2, respectively.
d = d1 + d2. The total potential energy of the system is denoted by U. The elastic potential energies of the
upper and bottom double-spring systems are denoted by U1 and U2, respectively. U = U1 + U2. Please
see Appendix A for all equations and other parameters. The curves and the bifurcations are illustrated
in Figure 6.

In Figure 6, all curves with the same labels correspond to the same branch. The deformation of
this model features three branches, that is, Branches 1–3. There are two bifurcation points at d = h
and d = 3h, respectively. Branches 2 and 3 depart from Branch 1 (the black curve marked with ‘•’) at
d = h and join with Branch 1 at d = 3h. On Branch 1, d1 = d2, which means that the two double-spring
systems deform symmetrically and buckle simultaneously (see Figure 6(b,c)). Here, the system behaves
as a single bistable structure. However, Branch 1 has the maximum strain energy at d = 2h (see Figure
6(d–f)), which means that this point is unstable.

Branches 2 and 3 are a pair of solutions satisfying d = d1 + d2. When a branch appears above
Branch 1, the other one appears below Branch 1. Therefore, the two double-spring systems buckle
asymmetrically and snap-through in sequence in this case. Moreover, near d = h, min(d1, d2) < 0,
which means that if one double-spring system snaps-through first, the other system is stretched instead
of compressed. The potential energy tells the mechanism for the intrinsic asymmetric deformation. As
shown in Figure 6(e,f), the potential energy U1 or U2 presents as ‘N’ shape, and the two curves are
reversed. As shown in Figure 6(d), the total potential energy curves for Branches 2 and 3 are equal, and
they are always smaller than the potential energy on Branch 1. When the potential energy on Branch 1
reaches the maximum at d = 2h, the energy on Branch 2 or 3 is zero. At here, one double-spring system
snaps-through to the other stable point (without stretch or compression deformation), and the other one
recovers to the original stable point without deformation.

The principle of minimum potential energy indicates that the deformation will follow Branch 2 or
3 in practice when h < d < 3h. Therefore, the deformation is asymmetric in essence. Considering the
bifurcation from Branch 1 to Branches 2 and 3, the F–d curve features two peaks that are consistent
with the simulation and the experiment shown in Figure 4.
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Figure 6. Symmetric configuration of bistable spring system: (a) F–d curve; (b) Deformation curve
of the upper bistable spring system; (c) Deformation curve of the bottom bistable spring system; (d)
Total potential energy curve of the symmetric configuration during compression; (e) Potential energy
curve of the upper bistable spring system U1; (f) Potential energy curve of the bottom bistable spring
system U2.

Variable-stiffness oscillator with symmetric deformation

Model design

To realise a robust variable-stiffness oscillator, we have to make the deformation of the two buckling
shells be symmetric, that is, stabilise the deformation. Measures should be taken to make the
deformation follows Branch 1 instead of following Branch 2 or 3. Here, we propose a nested design
by superimposing several bistable shells, as shown in Figure 7. A bigger shell wraps a smaller one.
The lower edges of the four shells are set on the same plane, and the gap between two adjacent shells
depends on geometric parameters. Here, the vertical gap between two adjacent shells is 0.5 mm. The
upper and bottom teams of shells are symmetric. As shown in Figure 7(b), a cylinder mass block is
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Figure 7. Variable-stiffness oscillator: (a) Profile of the variable-stiffness structure; (b) Variable-
stiffness oscillator model; (c) Strain profile (i.e., the finite element simulation result) of the variable-
stiffness oscillator with compression d = 2 mm; (d) Deformation mode (i.e., the compression test result)
of the variable-stiffness oscillator with compression d = 2 mm.

Table 2. Parameters of bistable shells for constructing variable-stiffness
structure.

Parameters Shell 1 Shell 2 Shell 3 Shell 4

Thickness t (mm) 1 1 1.5 1.5
Height h (mm) 15 13 12 10
Small radius r (mm) 15 12.5 9.5 6
Large radius R (mm) 30 26.25 21.75 16.55
Density 𝜌 (kg/m3) 1,300 1,300 1,300 1,190
Elastic modulus E (Pa) 3.6187e6 1.32333e7 4.4e7 2.2e9
Shore hardness HA 60 85 92 Plastic
Poisson’s ratio 𝜐 0.47 0.47 0.47 0.375

inserted between them. Parameters of these shells are listed in Table 2. When an outer soft shell is
buckled or compressed, it contacts the inner one. Thus, the stiffness is increased, and the inner one
will stabilise the deformation to be symmetric. The stiffness of variable-stiffness structure is shown in
Appendix B. The deformation of this design is shown in Figure 7(c,d).

The material parameters and structural parameters of the bistable shell (as shown in Table 2) have an
effect on the initial stiffness, critical load, critical load location, and other characteristics of the stiffness
characteristics. The stiffness of the four shells (mainly the initial stiffness) are superimposed according
to the designed configuration, and the total stiffness after superposition is the nonlinear stiffness of the
designed variable-stiffness structure, which can be adjusted by changing the parameters of the bistable
shells.

Symmetrical deformation

We still use the disturbance of gravitation force to inspect the deformation in simulation. A force 1 N
is applied on the mass block. As shown in Figure 7(c,d), the deformations of the two variable-stiffness
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Figure 8. Force disturbance of oscillator: (a) F–d curve during compression; (b) Deformation of the
variable-stiffness structures during compression.

Figure 9. Tunable property: (a) Tunability of stiffness property; (b) Tunability of dynamic property.

structures are almost symmetrical under this disturbance. The F–d curve shown in Figure 8(a) indicates
that the structural stiffness (the slope of the F–d curve) increases with the increasing compression d.
Moreover, we get a large tunable range for the stiffness within a deformation of 4 mm. As shown
in Figure 8(b), at the beginning, due to the disturbing force, the deformation of the bottom variable-
stiffness structure d2 is larger than that of the upper structure d1. With the compression increases, the
two deformation curves gradually coincide and d1 = d2 = d/2: the symmetric deformation is realised.

Therefore, this variable-stiffness oscillator can realise a wide range of stiffness and symmetrical
deformation. The asymmetric disturbance makes the initial deformation be slightly different. However,
when the compression increases, the deformation of the variable-stiffness oscillator will rapidly self-
regulate to be completely symmetric. The reason is that the hardening stiffness of the variable-stiffness
oscillator can effectively prevent the asymmetric deformation during compression. We compare the
theoretical and experimental deformation curves in Figure 9(a), and they are consistent. Thus, we can
adopt the variable-stiffness structure to realise a tunable-frequency resonator that is prepared for the
following elastic metamaterial.

Tunable resonant frequency

We conduct vibration tests on the variable-stiffness oscillator to study the variations of resonant
frequency. The stiffness is controlled by initial compression of the shells. The centre mass is 45 g
and is constant. As shown in Figure 9(b), through increasing the compression, the resonant frequency
(the peak value) gradually shifts to high frequency, that is, 179 Hz (k1) → 323 Hz (k2) → 503 Hz
(k3) → 723 Hz (k4). This is a broad tunable range desired for constructing tunable mechanical
metamaterials.
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Metamaterial beam with tunable vibration bandgaps

Metamaterial design

Based on the variable-stiffness oscillator with symmetrical deformation, we construct a metamaterial
structure with tunable bandgaps for efficient vibration reduction. The metamaterial beam is a sandwich
structure, as shown in Figure 10(a). The oscillator is periodically inserted between two sheets and act
as the local resonators of the elastic metamaterial. Locally resonant bandgap will be generated near the
resonant frequency of these oscillators. The bolts and nuts are utilised to control the distance between
the two sheets. In this way, we can control the compression to change the stiffness of the resonators.
Then the bandgap of the metamaterial sandwich beam will be changed. The width of the metamaterial
beam is 110 mm, the thickness is 40 mm, and the lattice constant is 80 mm.

Tunable bandgaps

In order to study the tunable bandgap, the superposed shells are equivalent to a homogeneous variable-
stiffness rubber cylinder to calculate dispersion curves, as shown in Figure 11. The mass of every rubber
cylinder equals to the mass of a team of shells. One can change the cylinder’s elastic modulus to make
its stiffness equal to the variable-stiffness structure. The equivalent parameters are shown in Table 3.

Then we adopt the periodic boundary conditions to calculate the dispersion curves of the variable-
stiffness metamaterial based on FEM, as shown in Figure 12, where the abscissa is the normalised
wavenumber, and the ordinate is the eigenfrequency calculated from the wavenumber. It can be seen

Figure 10. Tunable metamaterial: (a) Model; (b) Configuration of sandwich beam vibration test.

Table 3. Parameters of the homogeneous rubber cylinder equivalent to different stiffness.

Dynamic stiffness Length Area Elastic modulus Density
k (N/m) l (mm) A (mm2) E (Pa) 𝜌 (kg/m3)

5.5781e4 15 706.8583 1.1864e6 1,310.9
1.8167e5 14.5 706.8583 3.7267e6 1,356.2
4.3914e5 14 706.8583 8.6976e6 1,404.6
9.0901e5 13.5 706.8583 1.73608e7 1,456.6
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Figure 11. Equivalent of the variable-stiffness oscillator: (a) Variable-stiffness oscillator; (b) Homo-
geneous rubber cylinder.

Figure 12. Dispersion curves of tunable metamaterial: (a) Compression d1 = 1 mm; (b) Compression
d2 = 2 mm; (c) Compression d3 = 3 mm; (d) Compression d4 = 4 mm.

that, in 0–2,000 Hz, the location and width of the bandgaps are tunable by compression, as shown in
Table 4. With the increase of compression, the starting frequency of the first bandgap shifts to high
frequency, and the bandgap width is widened. In addition, we have investigated the frequency response
of the tunable metamaterial and the results are shown in Appendix C.

Experiments

We fabricate a six-period sandwich beam using the geometric parameters and material parameters listed
in Table 2. The constant mass of the resonator is 45 g. Figure 10(b) shows the configuration of the
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Table 4. Bandgaps of the tunable metamaterial with different
compressions.

Compression Dynamic Bandgap Bandgap
(mm) stiffness (N/m) location (Hz) width (Hz)

d1 = 1 5.5781e4 170–664 494
813–1,105 292

d2 = 2 1.8167e5 200–835 635
d3 = 3 4.3914e5 295–1,076 781
d4 = 4 9.0901e5 408–1,140 724

1,434–1,761 241

Figure 13. Comparison between the test results and simulation results of the sandwich beam: (a)
Compression d1 = 1 mm; (b) Compression d2 = 2 mm; (c) Compression d3 = 3 mm; (d) Compression
d4 = 4 mm.

sandwich beam in the vibration test. The transverse excitation signal is applied at the middle point of
a face sheet. We use a laser vibrometer to measure the average response on the other face sheet of
the sample, V av. The excitation velocity is V 0. The vibration transmission T = V av/V 0. The stiffness
of the system is adjusted by compressing variable-stiffness oscillators. Moreover, we perform FEM
simulation for the 0–2,000 Hz frequency responses of this metamaterial sandwich beam. The boundary
conditions in the simulation are identical with the experiment.

The comparison of vibration transmissibility between the test results and the simulation results under
different compressions is shown in Figure 13. The vibration test results and the finite element simulation
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results show that the location and width of the attenuation zone are consistent with the bandgap range
shown in Figure 12. With the increase of stiffness, the starting frequency of the vibration attenuation
zone shifts to high frequency, and the zone with high attenuation efficiency (transmissivity T ≈ 10−1)
widens to high frequency. Therefore, the tunable bandgap enables the tunable and broadband vibration
suppression.

Conclusions

In this paper, we stabilise and symmetrise the deformation of buckling structure to design an elastic
metamaterial with tunable bandgaps. The main results are summarised as follows:

1. Based on finite element simulation and experimental test, we find that a symmetric element com-
posed of two bistable structures can present symmetric deformation only under strictly symmetric
mechanical conditions. In practice, due to uncertainties, symmetricity of the deformation is broken,
and the two bistable structures snap-through successively instead of simultaneously. A general
model is established to clarify the mechanism for this intrinsic asymmetric deformation: bifurcations
of force–deformation curves. The curve has three branches. Symmetricity is broken because the
deformation actually follows the pair of branches with minimum potential energy.

2. A variable-stiffness oscillator with symmetrical deformation is designed by superposing multiple
bistable shells, and the robustness and stable tuning ability of the variable-stiffness oscillator is
validated with finite element simulation and test.

3. Based on the local resonance mechanism, we design a tunable metamaterial sandwich beam using
the variable-stiffness oscillators. Tunable bandgaps and vibration responses are extensively studied
by simulation and vibration test.

In conclusion, this paper investigates the mechanical property of the tunable metamaterial and
its wave attenuation characteristics using bandgaps. The results are significant for the design of
metamaterials using buckling elements, and the paper provides a way to realise metamaterials with
tunable vibration bandgaps.
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Appendix A: Analysis process of asymmetric deformation mechanism

Figure 5(a) shows the series double-spring system. The system parameters are as follows: (i) the
stiffness of the spring 11 is k11, its original length is l11, the horizontal distance from one end to the
other end of the spring is a 1, the vertical distance (i.e., the height of the double-spring system) is h1,
and l11 =

√
a2

1 + h2
1; (ii) the stiffness of the spring 12 is k12, its original length is l12, the horizontal

distance from one end to the other end of the spring is a 2, the vertical distance is h1,and l12 =
√

a2
2 + h2

1;
(iii) the stiffness of Spring 21 is k21, its original length is l21, the horizontal distance from one end to the
other end of the spring is a 1, the vertical distance is h2, and l21 =

√
a2

1 + h2
2; (iv) the stiffness of Spring

22 is k22, its original length is l22, the horizontal distance from one end to the other end of the spring is
a 2, the vertical distance is h2, and l22 =

√
a2

2 + h2
2.

Compressed by the vertical force F (Figure 5), the deformations of the four springs are Δl11, Δl12,
Δl21, and Δl22, respectively, and the lengths of the four springs become l11 − Δl11, l12 − Δl12, l21 − Δl21,
and l22 − Δl22, respectively. The vertical lengths of springs are h1 − d1and h2 − d2, respectively. The
horizontal lengths of the springs are a′1 and a′2.
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The system is analysed according to the force balance condition, and the vertical direction of the
series system is asymmetric.

The deformations of the springs after compression are

Δl11 = l11 −
√
(h1 − d1)2 + a′2

1 ,

Δl12 = l12 −
√
(h1 − d1)2 + a′2

2 ,

Δl21 = l21 −
√
(h2 − d2)2 + a′2

1 ,

Δl22 = l22 −
√
(h2 − d2)2 + a′2

2 .

(1)

The spring forces are

F11 = k11Δl11 = k11

(
l11 −

√
(h1 − d1)2 + a′2

1

)
,

F12 = k12Δl12 = k12

(
l12 −

√
(h1 − d1)2 + a′2

2

)
,

F21 = k21Δl21 = k21

(
l21 −

√
(h2 − d2)2 + a′2

1

)
,

F22 = k22Δl22 = k22

(
l22 −

√
(h2 − d2)2 + a′2

2

)
.

(2)

From equations (1) and (2), it can be deduced that, after being compressed, the horizontal force of
the two springs on the left side of the vertical asymmetric system to the connection point is

Flh = k11Δl11
a′1√

(h1−d1)2+a′21
+ k12Δl21

a′1√
(h2−d2)2+a′21

= k11a′
1

(
l21√

(h1−d1)2+a′21
− 1

)
+ k12a′

1

(
l21√

(h2−d2)2+a′21
− 1

)
.

(3)

The horizontal force of the two springs on the right side of the vertical asymmetric system to the
connection point is

Frh = k21Δl12
a′2√

(h1−d1)2+a′22
+ k22Δl22

a′2√
(h2−d2)2+a′22

= k21a′
2

(
l12√

(h1−d1)2+a′22
− 1

)
+ k22a′

2

(
l22√

(h2−d2)2+a′22
− 1

)
.

(4)

Combining equations (3) and (4), from the force balance in the horizontal direction of the system,
we can obtain

k11a′
1

(
l11√

(h1−d1)2+a′21
− 1

)
+ k12a′

1

(
l12√

(h2−d2)2+a′21
− 1

)
= k21a′

2

(
l21√

(h1−d1)2+a′22
− 1

)
+ k22a′

2

(
l22√

(h2−d2)2+a′22
− 1

)
.

(5)

After being compressed, the vertical force of the upper double-spring in the vertical asymmetric
system to the connection point is

F1v = k11Δl11
h1−d1√

(h1−d1)2+a′21
+ k12Δl21

h1−d1√
(h2−d2)2+a′21

= k11 (h1 − d1)
(

l21√
(h1−d1)2+a′21

− 1

)
+ k12 (h1 − d1)

(
l21√

(h2−d2)2+a′21
− 1

)
.

(6)
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The vertical force of the bottom double-spring to the connection point is

F2v = k21Δl12
h2−d2√

(h1−d1)2+a′22
+ k22Δl22

h2−d2√
(h2−d2)2+a′22

= k21 (h2 − d2)
(

l12√
(h1−d1)2+a′22

− 1

)
+ k22 (h2 − d2)

(
l22√

(h2−d2)2+a′22
− 1

)
.

(7)

Combining equations (6) and (7), from the force balance in the vertical direction of the system, we
can obtain

k11 (h1 − d1)
(

l21√
(h1−d1)2+a′21

− 1

)
+ k12 (h1 − d1)

(
l21√

(h2−d2)2+a′21
− 1

)
= k21 (h2 − d2)

(
l12√

(h1−d1)2+a′22
− 1

)
+ k22 (h2 − d2)

(
l22√

(h2−d2)2+a′22
− 1

)
,

(8)

F = F1v = k11 (h1 − d1)
���	

l21√
(h1 − d1)2 + a′2

1

− 1

��� + k12 (h1 − d1)

���	
l21√

(h2 − d2)2 + a′2
1

− 1

��� . (9)

From the deformation relationship in the vertical direction of the system, we can get

d1 + d2 = d. (10)

From the deformation relationship in the horizontal direction of the system, we can get

a′
1 + a′

2 = a1 + a2. (11)

Combining equations (5) and (8)–(11), a set of equations for the relationship between variables F,
d1, d2, a′1, and a′2 and the compression d can be obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k11a′
1

(
l11√

(h1−d1)2+a′21
− 1

)
+ k12a′

1

(
l12√

(h2−d2)2+a′21
− 1

)
= k21a′

2

(
l21√

(h1−d1)2+a′22
− 1

)
+ k22a′

2

(
l22√

(h2−d2)2+a′22
− 1

)
,

k11 (h1 − d1)
(

l21√
(h1−d1)2+a′21

− 1

)
+ k12 (h1 − d1)

(
l21√

(h2−d2)2+a′21
− 1

)
= k21 (h2 − d2)

(
l12√

(h1−d1)2+a′22
− 1

)
+ k22 (h2 − d2)

(
l22√

(h2−d2)2+a′22
− 1

)
,

F = k11 (h1 − d1)
(

l21√
(h1−d1)2+a′21

− 1

)
+ k12 (h1 − d1)

(
l21√

(h2−d2)2+a′21
− 1

)
,

d1 + d2 = d,
a′

1 + a′
2 = a1 + a2.

(12)

In order to simplify the analysis, we ignore the asymmetry in the horizontal direction of double-
spring structures, and assume that the deformation in the horizontal direction before and after
compression is completely symmetrical.

To satisfy the assumptions, the system needs to satisfy

a′
1 = a′

2 = a1 = a2 = a, (13)
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l11 = l12 = l1,
l21 = l22 = l2,

(14)

k11 = k12 = k1,
k21 = k22 = k2.

(15)

Correspondingly, the spring deformations are

Δl1 = l1 −
√
(h1 − d1)2 + a2,

Δl2 = l2 −
√
(h2 − d2)2 + a2.

(16)

The spring forces are

F1 = k1Δl1 = k1

(
l1 −

√
(h1 − d1)2 + a2

)
,

F2 = k2Δl2 = k2

(
l2 −

√
(h2 − d2)2 + a2

)
.

(17)

From the force balance in the vertical direction of the system,

F = 2k1 (h1 − d1)
(

l1√
(h1−d1)2+a2

− 1
)
,

k1 (h1 − d1)
(

l1√
(h1−d1)2+a2

− 1
)
= k2 (h2 − d2)

(
l2√

(h2−d2)2+a2
− 1

)
.

(18)

Combining equations (12) and (18), a set of equations for the relationship between variables F, d1,
and d2 and the compression d can be obtained as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F = 2k1 (h1 − d1)
(

l1√
(h1−d1)2+a2

− 1
)
,

k1(h1 − d1)
(

l1√
(h1−d1)2+a2

− 1
)
= k2 (h2 − d2)

(
l2√

(h2−d2)2+a2
− 1

)
,

d1 + d2 = d.

(19)

In the initial state, when the two double-spring structures are completely symmetrical, that is,
h1 = h2 = h, l1 = l2 = l, and k1 = k2 = k, equations (19) can be expressed as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F = 2k(h − d1)
(

l√
(h−d1)2+a2

− 1
)
,

(h − d1)
(

l√
(h−d1)2+a2

− 1
)
= (h − d2)

(
l√

(h−d2)2+a2
− 1

)
,

d1 + d2 = d.

(20)

The elastic potential energies in the system are

U1 = 2 × 1
2 k1Δl21 = k1

(
l1 −

√
(h − d1)2 + a2

)2
,

U2 = 2 × 1
2 k2Δl22 = k2

(
l2 −

√
(h − d2)2 + a2

)2
,

U = U1 + U2 = k1

(
l1 −

√
(h − d1)2 + a2

)2
+ k2

(
l2 −

√
(h − d2)2 + a2

)2
.

(21)

We solve equations (20) and (21) by MATLAB and set the spring stiffness k = 1,000 N/m.
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Appendix B: Stiffness of variable-stiffness structure

The theoretical results, simulation results, and test results of the stiffness of the variable-stiffness
structure with different compression are shown in Table B1. We can see that the stiffness measured
by the test is within three times of that predicted by the finite element simulation. Except for the fourth
stage, the theoretical stiffness, simulation stiffness, and experimental stiffness differ by about three
times.

Table B1. Theoretical results, simulation results, and test results of the variable-
stiffness.

Compression Theoretical Simulation Test
(mm) stiffness (N/m) stiffness (N/m) stiffness (N/m)

d1 = 1 1.1195e4 1.168e4 4.082e3
d2 = 2 4.432e4 3.645e4 1.272e4
d3 = 3 2.0276e5 1.303e5 7.165e4
d4 = 4 7.9607e6 1.125e6 1.4086e6

Appendix C: Frequency response curves of the tunable metamaterial

The frequency response curves of the finite periodic structure with different compressions are shown
in Figure C1, where the purple bands represent the vibration attenuation zones (where the vibration
transmissibility T < 1). The location and width of the attenuation zones are shown in Table C1, which
are consistent with the bandgap in the infinite periodic structure.

Figure C1. Frequency response curves of the finite periodic structure: (a) Compression d1 = 1 mm;
(b) Compression d2 = 2 mm; (c) Compression d3 = 3 mm; (d) Compression d4 = 4 mm.
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Table C1. Attenuation zones of tunable metamaterial with different compressions.

Compression Dynamic Location of the Width of the
(mm) stiffness (N/m) attenuation zone (Hz) attenuation zone (Hz)

d1 = 1 5.5781e4 219–685 466
749–1,138 344

d2 = 2 1.8167e5 239–870 631
d3 = 3 4.3914e5 304–1,109 805
d4 = 4 9.0901e5 424–1,148 724

1,560–1,801 241

Cite this article: Liu, E., Fang, X., Zhu, P., and Wen, J. (2023). Stabilise and symmetrise the deformation of buckling
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