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from the diagram the readers can readily see that

tan
5π
12

= 2 + 3 and  tan
π
12

=
1

2 + 3
= 2 − 3.

There is another PWW from Garcia Capitan Francisco Javier [1]. Paul
Stephenson [2] and Nick Lord [3] have offered other demonstrations of the
identity of , for which Nick Lord gives four Proofs without
words, with quite different ideas. For many useful principles and comments
about Proofs without words, see [4].

tan π
12 = 2 − 3
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108.11 Euler's limit—revisited

  Let  for . It is well known that the sequence
is monotone increasing and bounded, hence it is convergent. The limit of
this sequence is the famous Euler number . Here we establish a
generalisation of this limit.

en = (1 + 1
n)n n ∈ � (en)

e

Theorem: Let  and  be two sequences of positive real numbers such
that  and  satisfies the asymptotic formula , where

. Then

{an} {bn}
an → +∞ bn bn� k · an

k > 0

lim
n → ∞ (1 +

1
an

)bn

= ek.
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Proof: Let  be defined by , Since
 for , thus  is increasing on . Again, for the

function  which is defined by ,
 for . Thus  is also increasing on . Hence

f : (1, ∞) → � f (x) = x − 1 − ln x
f ′ (x) > 0 x ∈ (1, ∞) f (1, ∞)

g : (1, ∞) → � g (x) = ln x − 1 + 1
x

g′ (x) > 0 x ∈ (1, ∞) g (1, ∞)

1 −
1
x

< ln x < x − 1 for x > 1.

For a visual proof of the above inequality, see [2]. 
Since , thus . Thus using the above inequality, we havean > 0 1 + 1

an
> 1

1
1 + an

< ln (1 +
1
an

) <
1
an

.

Since , we havebn > 0
bn

1 + an
< bn · ln (1 +

1
an

) <
bn

an
.

Since , using the Sandwich Lemma ([1]), we havebn ∼ k · an

lim
n → ∞ (1 +

1
an

)bn

= ek.

It can be seen that by choosing  and , we get Euler's

limit. Moreover, if , then . Also, if , then

.

an = n bn = n
bn
an

∼ 0 lim
n → ∞ (1 +

1
an

)bn

= 1 an
bn

∼ 0

lim
n → ∞ (1 +

1
an

)bn

= ∞
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