COMPLEX BERWALD MANIFOLDS WITH VANISHING HOLOMORPHIC SECTIONAL CURVATURE*

RONGMU YAN

School of Mathematical Science, Xiamen university, 361005, P.R. China e-mail: yanrm@xmu.edu.cn

(Received 30 March, 2007; accepted 28 October, 2007)

Abstract. In this paper, we prove that a strongly convex and Kähler-Finsler metric is a complex Berwald metric with zero holomorphic sectional curvature if and only if it is a complex locally Minkowski metric.

2000 Mathematics Subject Classification. 53C56, 32Q99.

1. Preliminaries.

DEFINITION 1. A *Riemann-Finsler metric* on a real smooth manifold M is a function $F: TM \rightarrow R^+$ satisfying the following properties:

- (i) $G = F^2$ is smooth on $\tilde{M}(=TM \{0\})$;
- (ii) F(u) > 0 for all $u \in \tilde{M}$;
- (iii) $F(\lambda u) = \lambda F(u)$ for all $u \in TM$ and $\lambda \ge 0$;

(iv) for any $p \in M$, the indicatrix $I_F(p) = \{u \in T_pM | F(u) < 1\}$ is strongly convex.

A manifold M endowed with a Riemann-Finsler metric will be called a Riemann-Finsler manifold.

DEFINITION 2. A strongly pseudoconvex complex Finsler metric (we shall simply call it complex Finsler metric below) on a complex manifold M is a continuous function $F: T^{1,0}M \rightarrow R^+$ satisfying:

- (i) $G = F^2$ is smooth on $\tilde{M}(=T^{1,0}M \{0\});$
- (ii) F(v) > 0 for all $v \in \tilde{M}$;
- (iii) $F(\zeta v) = |\zeta|F(v)$ for all $v \in T^{1,0}M$ and $\zeta \in C$;
- (iv) for any $p \in M$, the *F*-indicatrix $I_F(p) = \{v \in T_p^{1,0}M | F(v) < 1\}$ is strongly pseudoconvex.

A complex manifold M endowed with a complex Finsler metric will be called a complex Finsler manifold.

Let *M* be a complex manifold of complex dimension *n*. Let $\{z^1, \ldots, z^n\}$ be a set of local complex coordinates, with $z^{\alpha} = x^{\alpha} + ix^{n+\alpha}$, so that $\{x^1, \ldots, x^n, x^{n+1}, \ldots, x^{2n}\}$ are local real coordinates. Lowercase Greek indices will run from 1 to *n*, whereas lowercase Roman indices will run from 1 to 2n. Let $T_R M$ denote the real tangent bundle of *M*, and $T^{1,0}M$ denote the holomorphic tangent bundle of *M*. \tilde{M} will denote either $T^{1,0}M$ or $T_R M$ minus the zero section, depending on the actual situation.

^{*}Supported by the National Natural Science Foundation of China (No.10501036,10771174) and the Natural Science Foundation of Fujian Province of China (No.Z0511003)

RONGMU YAN

A local frame over R for $T_R \tilde{M}$ is given by $\{\partial_1^\circ, \ldots, \partial_{2n}^\circ, \dot{\partial}_1^\circ, \ldots, \dot{\partial}_{2n}^\circ\}$, where $\partial_a^\circ = \frac{\partial}{\partial x^\alpha}$ and $\dot{\partial}_a^\circ = \frac{\partial}{\partial u^\alpha}$; analogously, a local frame over C for $T^{1,0} \tilde{M}$ is given by $\{\partial_1, \ldots, \partial_n, \dot{\partial}_1, \ldots, \dot{\partial}_n\}$, where $\partial_\alpha = \frac{\partial}{\partial z^\alpha}$ and $\dot{\partial}_\alpha = \frac{\partial}{\partial v^\alpha}$; and, $z^\alpha = x^\alpha + ix^{n+\alpha}$ and $v^\alpha = u^\alpha + iu^{n+\alpha}$.

To proceed, we need some notation. We shall denote by indices after G the derivatives with respect to the v (or u, we use Greek and Roman indices respectively)-coordinates; for instance,

$$G_{\alpha\bar{\beta}} = \frac{\partial^2 G}{\partial v^{\alpha} \partial \bar{v}^{\beta}} \quad or \quad G_a = \frac{\partial G}{\partial u^a}$$

On the other hand, the derivatives with respect to the z (or x)-coordinates will be denoted by indexes after a semicolon; for instance,

$$G_{;\mu\bar{
u}} = rac{\partial^2 G}{\partial z^\mu \partial \bar{z}^
u} \quad or \quad G_{a;b} = rac{\partial^2 G}{\partial u^a \partial x^b}.$$

For our aims, we focus on some classes of special real or complex Finsler metrics. Such metrics are important Finsler metrics, on which many discussions have been made.

DEFINITION 3. A Riemann-Finsler manifold (M, F) is said to be *locally Minkowskian* if, at every point $x \in M$, there is a local coordinate system (x^i) , with induced tangent space coordinates (u^i) , such that F has no dependence on the x^i . Equivalently speaking, G_{ab} has no dependence on the x^i .

DEFINITION 4. A complex Finsler manifold (M, F) is said to be *complex locally Minkowskian* if, at every point $z \in M$, there is a local coordinate system (z^{α}) , with induced holomorphic tangent space coordinates (v^{α}) , such that F has no dependence on the z^{α} . Equivalently speaking, $G_{\alpha\bar{\beta}}$ has no dependence on the z^{α} .

DEFINITION 5. A Riemann-Finsler structure F is said to be of *Berwald type* if the Chern connection coefficients $\hat{\Gamma}^i_{ik}$ in natural coordinates have no u dependence, where

$$\hat{\Gamma}^{i}_{jk} = \frac{G^{is}}{2} \left(\frac{\delta G_{sj}}{\delta x^{k}} - \frac{\delta G_{jk}}{\delta x^{k}} + \frac{\delta G_{ks}}{\delta x^{j}} \right);$$

 (G^{ij}) is the inverse matrix of (G_{ij}) , and $\frac{\delta}{\delta x^{i}}$ are vectors on *TM* which can be found in [1, 3].

DEFINITION 6. A complex Finsler metric *F* is said to be a *complex Berwald metric* if the Chern-Finsler connection coefficients $\Gamma^{\alpha}_{\beta;\gamma}$ in natural coordinates have no *v* dependence, where

$$\Gamma^{\alpha}_{\beta;\gamma} = G^{\bar{\tau}\alpha} \frac{\delta G_{\beta\bar{\tau}}}{\delta z^{\gamma}};$$

 $(G^{\bar{\tau}\alpha})$ is the inverse matrix of $(G_{\alpha\bar{\tau}})$, and $\frac{\delta}{\delta z^{\mu}}$ are vectors on $T^{1,0}M$ which can be found in [1].

DEFINITION 7. In local coordinates, a complex Finsler metric is called *strongly-Kähler* if and only if $\Gamma^{\alpha}_{\mu;\nu} = \Gamma^{\alpha}_{\nu;\mu}$; it is called *Kähler* if and only if $\Gamma^{\alpha}_{\mu;\nu}v^{\mu} = \Gamma^{\alpha}_{\nu;\mu}v^{\mu}$; it is called *weakly-Kähler* if and only if $G_{\alpha}[\Gamma^{\alpha}_{\mu;\nu} - \Gamma^{\alpha}_{\nu;\mu}]v^{\mu} = 0$.

MAIN THEOREM. Let F be a strongly convex and Kähler-Finsler metric on a complex manifold M. Then it is a complex Berwald metric with vanishing holomorphic sectional curvature if and only if it is a complex locally Minkowski metric.

The definitions of a strongly convex metric and the holomorphic sectional curvature can be found in the following sections.

2. A Riemann-Finsler metric induced by a complex Finsler metric. Let F: $T^{1,0}M \to R^+$ be a complex Finsler metric on a complex manifold M. To F we may associate a function $F^\circ: T_RM \to R^+$ just by setting

$$\forall u \in T_R M, F^{\circ}(u) = F(u_{\circ}) \tag{1}$$

where $_{\circ}: T_R M \to T^{1,0} M$ is given by

$$\forall u \in T_R M, u_\circ = \frac{1}{2}(u - iJu).$$
⁽²⁾

Notice that *J* is the complex structure.

DEFINITION 8 ([1]). We shall say that the complex Finsler metric F is strongly convex if F° is a Riemann-Finsler metric.

Now we assume F is a strongly convex complex Finsler metric. Thanks to (1), the F-length of any curve in M is the same as its F° -length; in particular, F and F° have the same geodesics and induce the same distance function on M.

We continue to compare these two metrics. There is a natural isomorphism, still denoted by $\circ: T^{1,0}\tilde{M} \to T_R\tilde{M}$, given by

$$\forall X \in T^{1,0}\tilde{M}, X^{\circ} = X + \bar{X},$$

with inverse $_{\circ}: T_R \tilde{M} \to T^{1,0} \tilde{M}$ given again by (2). It is easy to check that

$$(\partial_{\alpha})^{\circ} = \partial_{\alpha}^{\circ}, \quad (i\partial_{\alpha})^{\circ} = \partial_{\alpha+n}^{\circ}, \quad (\dot{\partial}_{\alpha})^{\circ} = \dot{\partial}_{\alpha}^{\circ}, \quad and \quad (i\dot{\partial}_{\alpha})^{\circ} = \dot{\partial}_{\alpha+n}^{\circ}$$

Recall that Greek indices run from 1 to $n = \dim_C M$, Latin indices run from 1 to $2n = \dim_R M$, and we use the following convention: if in an equality there is a free Latin index on one side and a free Greek index on the other side, the Greek index is equal to the corresponding Latin index taken mod n. For example,

$$\alpha = \begin{cases} a & \text{if } 1 \le a \le n \\ a - n & \text{if } n + 1 \le a \le 2n \end{cases}$$

Now we compare the Hessian and the Levi form of G. It is easily found that

$$G_a = \begin{cases} G_{\alpha} + G_{\bar{\alpha}} & \text{if } 1 \le a \le n \\ i(G_{\alpha} - G_{\bar{\alpha}}) & \text{if } n+1 \le a \le 2n \end{cases}$$

and

$$G_{ab} = \begin{cases} G_{\alpha\beta} + G_{\bar{\alpha}\bar{\beta}} + G_{\alpha\bar{\beta}} + G_{\bar{\alpha}\bar{\beta}} & \text{if } 1 \le a, b \le n \\ i(G_{\alpha\beta} + G_{\bar{\alpha}\beta} - G_{\alpha\bar{\beta}} - G_{\bar{\alpha}\bar{\beta}}) & \text{if } 1 \le a \le n \text{ and } n+1 \le b \le 2n \\ i(G_{\alpha\beta} - G_{\bar{\alpha}\beta} + G_{\alpha\bar{\beta}} - G_{\bar{\alpha}\bar{\beta}}) & \text{if } n+1 \le a \le 2n \text{ and } 1 \le b \le n \\ -(G_{\alpha\beta} - G_{\bar{\alpha}\beta} - G_{\alpha\bar{\beta}} + G_{\bar{\alpha}\bar{\beta}}) & \text{if } n+1 \le a, b \le 2n \end{cases}$$

Using this and [1, Proposition 2.6.2], J.Xiao and the author [6] give the relation of the Cartan connection and the Chern-Finsler connection for weakly Kähler-Finsler metrics:

for $1 \le a \le n$,

$$\hat{\Gamma}^{b}_{ca} = \begin{cases} Re\left(\Gamma^{\beta}_{\gamma;\alpha} + \Gamma^{\beta}_{\overline{\gamma};\alpha}\right) & \text{if } 1 \leq b, c \leq n\\ Im\left(\Gamma^{\beta}_{\gamma;\alpha} + \Gamma^{\beta}_{\overline{\gamma};\alpha}\right) & \text{if } n+1 \leq b \leq 2n \text{ and } 1 \leq c \leq n\\ Im\left(-\Gamma^{\beta}_{\gamma;\alpha} + \Gamma^{\beta}_{\overline{\gamma};\alpha}\right) & \text{if } 1 \leq b \leq n \text{ and } n+1 \leq c \leq 2n\\ Re\left(\Gamma^{\beta}_{\gamma;\alpha} - \Gamma^{\beta}_{\overline{\gamma};\alpha}\right) & \text{if } n+1 \leq b, c \leq 2n \end{cases}$$
(3)

and for $n + 1 \le a \le 2n$,

$$\hat{\Gamma}^{b}_{ca} = \begin{cases} Im \left(-\Gamma^{\beta}_{\gamma;\alpha} - \Gamma^{\beta}_{\overline{\gamma};\alpha} \right) & \text{if } 1 \le b, c \le n \\ Re \left(\Gamma^{\beta}_{\gamma;\alpha} + \Gamma^{\beta}_{\overline{\gamma};\alpha} \right) & \text{if } n+1 \le b \le 2n \text{ and } 1 \le c \le n \\ Re \left(-\Gamma^{\beta}_{\gamma;\alpha} + \Gamma^{\beta}_{\overline{\gamma};\alpha} \right) & \text{if } 1 \le b \le n \text{ and } n+1 \le c \le 2n \\ Im \left(-\Gamma^{\beta}_{\gamma;\alpha} + \Gamma^{\beta}_{\overline{\gamma};\alpha} \right) & \text{if } n+1 \le b, c \le 2n \end{cases}$$

$$\tag{4}$$

where $\Gamma_{\bar{\gamma};\alpha}^{\beta} = \frac{\partial \Gamma_{\alpha}^{\beta}}{\partial \bar{v}^{\gamma}}$ and $\Gamma_{;\alpha}^{\beta} = G^{\bar{\tau}\beta}G_{\bar{\tau};\alpha}$. In fact, $\Gamma_{\gamma;\alpha}^{\beta} = \frac{\partial \Gamma_{\alpha}^{\beta}}{\partial v^{\gamma}}$ and $\Gamma_{;\alpha}^{\beta} = \Gamma_{\gamma;\alpha}^{\beta}v^{\gamma}$. If *F* is a complex Berwald metric, $\Gamma_{\bar{\gamma};\alpha}^{\beta} = 0$. (3) and (4) reduce to: for $1 \le a \le n$,

$$\hat{\Gamma}^{b}_{ca} = \begin{cases} Re\left(\Gamma^{\beta}_{\gamma;\alpha}\right) & \text{if } 1 \le b, c \le n\\ Im\left(\Gamma^{\beta}_{\gamma;\alpha}\right) & \text{if } n+1 \le b \le 2n \text{ and } 1 \le c \le n\\ Im\left(-\Gamma^{\beta}_{\gamma;\alpha}\right) & \text{if } 1 \le b \le n \text{and } n+1 \le c \le 2n\\ Re\left(\Gamma^{\beta}_{\gamma;\alpha}\right) & \text{if } n+1 \le b, c \le 2n \end{cases}$$
(5)

and for $n + 1 \le a \le 2n$,

$$\hat{\Gamma}^{b}_{ca} = \begin{cases} Im\left(-\Gamma^{\beta}_{\gamma;\alpha}\right) & \text{if } 1 \le b, c \le n\\ Re\left(\Gamma^{\beta}_{\gamma;\alpha}\right) & \text{if } n+1 \le b \le 2n \text{ and } 1 \le c \le n\\ Re\left(-\Gamma^{\beta}_{\gamma;\alpha}\right) & \text{if } 1 \le b \le n \text{ and } n+1 \le c \le 2n\\ Im\left(-\Gamma^{\beta}_{\gamma;\alpha}\right) & \text{if } n+1 \le b, c \le 2n \end{cases}$$
(6)

Hence a direct conclusion from this is:

THEOREM 1 ([6]). Let F be a strongly convex and weakly Kähler-Finsler metric on M. F° is a Riemann-Finsler metric induced by F. If F is also a complex Berwald metric, F° must be a real Berwald metric.

206

3. A characterization of complex locally Minkowski spaces. In this section, we will finish our proof of the main Theorem.

From now on, we assume F is a strongly convex and Kähler-Berwald metric on a complex manifold M. F° is Riemann-Finsler metric induced by F. By Theorem 1, F° is a real Berwald metric.

Using the coefficients $\hat{\Gamma}_{jk}^i$, we can define a linear connection \hat{D} directly on the underlying manifold M, which we call the Berwald connection:

$$\hat{D}W := \left(\frac{\partial W^i}{\partial x^k} + W^j \hat{\Gamma}^i_{jk}\right) \frac{\partial}{\partial x^i} \otimes dx^k,$$

for a vector field $W = W^i \frac{\partial}{\partial x^i}$.

Similarly, we define the complex Berwald connection by $\Gamma^{\alpha}_{\beta;\gamma}$:

$$DV = \left(\frac{\partial V^{\alpha}}{\partial z^{\gamma}} + V^{\beta} \Gamma^{\alpha}_{\beta;\gamma}\right) \frac{\partial}{\partial z^{\alpha}} \otimes dz^{\gamma},$$

for a holomorphic vector field $V = V^{\alpha} \frac{\partial}{\partial z^{\alpha}}$.

The curvature forms of D and \hat{D} are

$$\Omega^{\beta}_{\alpha} = d\omega^{\beta}_{\alpha} - \omega^{\gamma}_{\alpha} \wedge \omega^{\beta}_{\gamma}, \quad \Theta^{j}_{i} = d\theta^{j}_{i} - \theta^{k}_{i} \wedge \theta^{j}_{k},$$

respectively, where $\omega_{\alpha}^{\beta} = \Gamma_{\gamma;\alpha}^{\beta} dz^{\gamma}$ and $\theta_i^j = \hat{\Gamma}_{ki}^j dx^k$. From (5) and (6), we easily have

$$\Omega^{\beta}_{\alpha} = \Theta^{\beta}_{\alpha} + \sqrt{-1}\Theta^{n+\beta}_{\alpha}$$

and

$$\Theta_{n+\alpha}^{n+\beta} = \Theta_{\alpha}^{\beta} \quad \Theta_{n+\alpha}^{\beta} = -\Theta_{\alpha}^{n+\beta}.$$

Under local coordinate system, we write

$$\Omega^{\beta}_{\alpha} = \frac{1}{2} K^{\beta}_{\alpha\gamma\overline{\delta}} dz^{\gamma} \wedge d\overline{z}^{\delta}$$

and

$$\Theta_i^j = \frac{1}{2} R_{ikl}^j dx^k \wedge dx^l,$$

where $K_{\alpha\gamma\bar{\delta}}^{\beta} = -2\frac{\partial\Gamma_{\alpha\gamma}^{\beta}}{\partial\bar{z}^{\delta}}$ and $R_{ikl}^{j} = \frac{\partial\hat{\Gamma}_{il}^{j}}{\partial x^{k}} - \frac{\partial\hat{\Gamma}_{ik}^{j}}{\partial x^{l}} + \hat{\Gamma}_{ks}^{j}\hat{\Gamma}_{il}^{s} - \hat{\Gamma}_{ik}^{s}\hat{\Gamma}_{ls}^{j}$. Furthermore, we can have

$$K_{\alpha\gamma\bar{\delta}}^{\beta} = \left(R_{\alpha\gamma\delta}^{\beta} + R_{\alpha\gamma+n\delta}^{\beta+n}\right) + \sqrt{-1}\left(R_{\alpha\gamma\delta+n}^{\beta} + R_{\alpha\gamma+n\delta+n}^{\beta+n}\right).$$

We know from [1,2, 3, 9] that the flag curvature of (M, F°) is

$$K(P, y) = \frac{G_{is}(y)R_{jkl}^s y^l y^l w^i w^k}{G(y)G(w) - G_{ij}(y)y^i w^j},$$

RONGMU YAN

where the flag *P* is described by one edge along the flag pole $y = y^i \frac{\partial}{\partial x^i}$ and another transverse edge $w = w^i \frac{\partial}{\partial x^i}$. The holomorphic sectional curvature of (M, F) is

$$K(X) = -\frac{G_{\alpha\bar{\beta}}K^{\alpha}_{\sigma\gamma\bar{\delta}}y^{\sigma}\bar{y}^{\beta}y^{\gamma}\bar{y}^{\delta}}{2G^{2}(y)}$$

where $X \in T_pM$, $p \in M$, and $X = y + \bar{y}$, $y \in T_p^{1,0}M$, $y = y^{\alpha} \frac{\partial}{\partial z^{\alpha}}$.

If (M, F) has vanishing holomorphic sectional curvature, $\Omega_{\alpha}^{\beta} = 0$. Hence $\Theta_{i}^{j} = 0$. that is, (M, F°) has vanishing flag curvature. It has been known (for example, in [2]) that a real Berwald space with zero flag curvature is in fact a locally Minkowski space. This means G_{ab} is independent of (x^{i}) , so $G_{\alpha\bar{\beta}}$ must be independent of (z^{γ}) . And (M, F) is a complex locally Minkowski space.

Suppose (M, F) is a complex locally Minkowski space. Obviously $\Gamma_{;\alpha}^{\beta}$ vanishes in some priviledged coordinate charts and so $\Gamma_{\gamma;\alpha}^{\beta}$. This means (M, F) is a complex Berwald space with vanishing holomorphic sectional curvature. Thus we finish our proof of the main Theorem.

REFERENCES

1. M. Abate and G. Patrizio, *Finsler metric-a global approach*. Lecture Notes in Mathematics No. 1591, (Springer-Verlag, 1994).

2. D. Bao, S.S. Chern and Z. Shen, *An introduction to Riemann-Finsler geometry* (Springer-Verlag, 2000).

3. S.S. Chern and Z. Shen, Riemann-Finsler geometry (Worldscientific, Singapore, 2005).

4. Z. Shen, Volume comparison and its applications in Riemann-Finsler Geometry, *Adv. Math.* **128**, 306–328 (1997).

5. Z. Szabó, Positive definite Berwald spaces (Structure Theorems on Berwald spaces), *Tensor, N.S.* 35 (1981), 25–39.

6. J. Xiao and R. Yan, Two topics in complex Finsler geometry, J. Xiamen Daxue Xuebao Ziran Kexue Ban 45 (2006), 614–616.

7. R. Yan, Connections on complex Finsler manifold, *Acta Math. Applie. Sinica* 19, 431–436 (2003).

8. R. Yan, On the volume of the projectivized tangent bundle in a complex Finsler manifold, *Arch Math.* **86**, 458–463 (2006).

9. R. Yan, Holomorphic sectional curvature in complex Finsler Geometry. Preprint.