
6
Linear response theory

Suppose that a solid is hit with a hammer. Sound waves will propa-
gate outwards from the point of contact. How is the frequency of the
sound wave related to its wave number? How does a light wave propa-
gate through plasma? What happens when a charge impurity is embedded
in an electrically neutral medium? Is it screened, and if so how is that
screening described quantitatively? If a medium is disturbed by a small
amount one might expect its response also to be small. The quantitative
formalism for dealing with small disturbances is called linear response
theory. The beauty of the theory is that the response of the system can
be expressed as a folding of the external source causing the disturbance
with a response function that is computed using equilibrium correlation
functions not dependent on the strength of the external source. There-
fore, details of the internal dynamics of the thermodynamic system can
be studied using weak external probes. Other areas of science where lin-
ear response theory has proven to be extremely useful are quite extensive,
and include x-ray scattering from crystals and molecules, electron scatter-
ing from protons and nuclei, and sound waves generated by earthquakes
propagating through the earth’s interior.

6.1 Linear response to an external field

Suppose we apply some external field to our system, which is initially in
equilibrium. The goal of linear response theory is to calculate the change in
the ensemble average value of any operator Y (x, t) caused by the external
field, to first order in that external field.

Let

H ′(t) = H + Hext(t) (6.1)
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6.1 Linear response to an external field 85

where H is the unperturbed Hamiltonian (but which still contains inter-
actions) and Hext(t) is the perturbation that couples the external field to
the system. We will imagine that Hext(t) vanishes when t < t0, so that
the system has had plenty of time to achieve equilibrium in the past. The
exact equation of motion for Y is

∂Y (x, t)
∂t

= i
[
H ′(t), Y (x, t)

]
(6.2)

Let |j〉 be an eigenstate of H (in the Heisenberg picture). Then it follows
that the time rate of change of the expectation value of Y in the state |j〉
is

∂〈j|Y (x, t)|j〉
∂t

= i〈j| [H ′(t), Y (x, t)] |j〉
= i〈j| [Hext(t), Y (x, t)] |j〉

(6.3)

Equation (6.3) is exact, but it is generally impossible to solve it in closed
form. At this point we assume that Hext causes only a small change in
the expectation value of Y . Then to first order in Hext we can integrate
(6.3) as

δ〈j|Y (x, t)|j〉 = 〈j|Y (x, t)|j〉 − 〈j|Y (x, t0)|j〉

= i

∫ t

t0

dt′〈j| [Hext(t′), Y (x, t)
] |j〉 (6.4)

Now take the (grand canonical) ensemble average,

δ〈Y (x, t)〉 =

∑
j e−βKjδ〈j|Y (x, t)|j〉∑

j e−βKj
(6.5)

Here K = H − μiNi, where allowance is made for an arbitrary number of
conserved charges. Using (1.1) and (6.4) in (6.5), we obtain

δ〈Y (x, t)〉 = i

∫ t

t0

dt′ Tr
{
ρ̂
[
Hext(t′), Y (x, t)

]}
(6.6)

This expresses the change in the ensemble-average value of Y in terms of
the commutator of Hext and Y evaluated in the unperturbed ensemble,
represented by ρ̂. We reiterate that (6.6) is correct to first order in Hext.

As an example, consider a real scalar field φ that is coupled to an
external source J(x, t) via

Hext(t) =
∫

d3xJ(x, t)φ̂(x, t) (6.7)

We are interested in the change in the ensemble-average value of φ̂ when
the external source is turned on. Putting (6.7) into (6.6) with Y = φ̂
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86 Linear response theory

gives

δ〈φ̂(x, t)〉 = −i

∫ t

t0

dt′
∫

d3x′J(x′, t′) Tr
{
ρ̂
[
φ̂(x, t), φ̂(x′, t′)

]}
(6.8)

At this point it is useful to introduce the following quantities:
the time-ordered propagator,

iD(x, t;x′, t′) = Tr
{
ρ̂Tt

(
φ̂(x, t)φ̂(x′, t′)

)}
(6.9)

the retarded Green’s function,

iDR(x, t;x′, t′) = Tr
{
ρ̂
[
φ̂(x, t), φ̂(x′, t′)

]}
θ(t− t′) (6.10)

the advanced Green’s function,

iDA(x, t;x′, t′) = −Tr
{
ρ̂
[
φ̂(x, t), φ̂(x′, t′)

]}
θ(t′ − t) (6.11)

In (6.9), Tt is the time-ordering operator. Then (6.8) becomes

δ〈φ̂(x, t)〉 =
∫ ∞

−∞
dt′
∫

d3x′J(x′, t′)DR(x, t;x′, t′) (6.12)

Here we have let t0 → −∞ and have set the upper limit of integration
over t′ to ∞ on account of (6.10).

Since the unperturbed system is in thermal equilibrium, DR must
depend only on x − x′ and t− t′ (the former would not be true for a
solid or crystal, of course). We insert the Fourier transforms

DR(x − x′, t− t′) =
∫

d3k dω

(2π)4
ei[k·(x−x′)−ω(t−t′)]DR(ω,k) (6.13)

J(x′, t′) =
∫

d3p dα

(2π)4
ei(p·x

′−αt′)J̃(α,p) (6.14)

into (6.12) to obtain

δ〈φ̂(x, t)〉 =
∫

d3k dω

(2π)4
ei(k·x−ωt)J̃(ω,k)DR(ω,k) (6.15)

or

δ〈φ̃(ω,k)〉 = J̃(ω,k)DR(ω,k) (6.16)

which is a very aesthetic form. The change in the ensemble average of the
field, in frequency–momentum space, is equal to the external source times
the retarded Green’s function.
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6.2 Lehmann representation

The question arises how the real time Green’s functions required in
the linear response approach to dynamical perturbations are obtained.
Are they related to the imaginary time propagators studied in previous
chapters? In fact they should be, since all dynamical information in a
quantum theory is contained in the matrix elements of operators. If both
the real time and imaginary time correlation functions can be expressed in
terms of matrix elements then a connection can be made. These expres-
sions are referred to as Lehmann representations. We shall work them
out for a real scalar field. It is straightforward to do the same for com-
plex scalar fields and for fields with spin, the main complication being the
tensorial structures.

Consider the fully interacting ensemble average of a product of scalar
field operators. Suppose that the states |n〉 form a complete set of eigen-
states of the Hamiltonian and of the momentum operator. Starting with

iD+(x, y) = 〈φ̂(x)φ̂(y)〉 =
1
Z

∑
n

e−βEn〈n|φ̂(x)φ̂(y)|n〉 (6.17)

we insert a complete set of states between the field operators:

〈φ̂(x)φ̂(y)〉 =
1
Z

∑
m,n

e−βEn〈n|φ̂(x)|m〉〈m|φ̂(y)|n〉 (6.18)

Under the assumption that the system is translation invariant in both time
and space, the matrix elements at x are related to the matrix elements at
x = 0 as follows:

〈n|φ̂(x)|m〉 = ei(pn−pm)·x〈n|φ̂(0)|m〉 (6.19)

Thus the explicit representation of the average of the product of fields is

iD+(x− y) =
1
Z

∑
m,n

e−βEnei(pn−pm)·(x−y)〈n|φ̂(0)|m〉〈m|φ̂(0)|n〉 (6.20)

The Fourier transform (we use the same symbol D in coordinate space
and momentum space for ease of notation)

D+(k) =
∫

d4z eik·zD+(z) (6.21)

can be expressed in terms of the spectral density

ρ+(k) =
1
Z

∑
m,n

e−βEn(2π)3δ(k − pm + pn)|〈n|φ̂(0)|m〉|2 (6.22)

as

iD+(k) = 2πρ+(k) (6.23)
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88 Linear response theory

This spectral density is positive definite. The Dirac delta functions do not
affect this, since one can always work in a large but finite box for which
the energy and momentum modes are discrete, replacing the Dirac delta
functions by Kronecker delta functions.

In a similar way we define

iD−(x, y) = −〈φ̂(y)φ̂(x)〉 (6.24)

whose Fourier transform is also expressed in terms of a spectral density:

iD−(k) = 2πρ−(k) (6.25)

where

ρ−(k) = −e−βk0ρ+(k) (6.26)

The minus sign comes from the definition and the Boltzmann factor comes
from interchanging the labels m and n in the sum over states and using
energy conservation. Obviously this spectral density is negative definite.

The ensemble average of the commutator is

Dn(x− y) = −i〈[φ̂(x), φ̂(y)]〉 = D+(x− y) + D−(x− y) (6.27)

where the superscript “n” denotes the “normal” commutator-defined
Green’s function. Its spectral density is

ρn(k) = ρ+(k) + ρ−(k) =
(
1 − e−βk0

)
ρ+(k) = − (eβk0 − 1

)
ρ−(k)

=
1
Z

∑
m,n

(
e−βEn − e−βEm

)
(2π)3δ(k − pm + pn)|〈n|φ̂(0)|m〉|2 (6.28)

For linear response theory the most relevant correlation function is the
retarded propagator

DR(z) = θ(z0)Dn(z) (6.29)

Associated with it is the advanced propagator

DA(z) = −θ(−z0)Dn(z) (6.30)

Straightforward manipulations show that these can be expressed as inte-
grals over the spectral density ρn:

DR(k) = −
∫ ∞

−∞
dω

ω − k0 − iε
ρn(ω,k) (6.31)

DA(k) = −
∫ ∞

−∞
dω

ω − k0 + iε
ρn(ω,k) (6.32)

The imaginary parts of these functions are proportional to the spectral
density,

ImDR(k) = −ImDA(k) = −πρn(k) (6.33)
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and their real parts are equal,

ReDR(k) = ReDA(k) (6.34)

under the assumption that k is real.
Now we come to the connection with the imaginary time propagator,

for which the finite-temperature perturbation theory was developed. From
(3.21) we know that

D(x, τ) = 〈φ̂(x, τ)φ̂(0)〉
=

1
Z

∑
n

e−βEn〈n|φ̂(x, τ)φ̂(0)|n〉

=
1
Z

∑
m,n

e−βEn〈n|φ̂(x, τ)|m〉〈m|φ̂(0)|n〉 (6.35)

Just as in (2.86), the field evolves in imaginary time according to

φ̂(x, τ) = eHτ φ̂(x, 0)e−Hτ (6.36)

which leads to

D(x, τ) =
1
Z

∑
m,n

e−βEneτ(En−Em)ei(pm−pn)·x〈n|φ̂(0)|m〉〈m|φ̂(0)|n〉

(6.37)
Following the conventions of Chapter 3, the Fourier transform is

D(ωn,k) =
∫ β

0
dτ

∫
d3x e−i(k·x+ωnτ)D(x, τ)

=
1
Z

∑
m,n

(2π)3δ(k − pm + pn)〈n|φ̂(0)|m〉〈m|φ̂(0)|n〉

× e−βEm − e−βEn

En − Em − iωn
(6.38)

which can be written in terms of the spectral density as

D(ωn,k) =
∫ ∞

−∞
dω

ω + iωn
ρn(ω,k) (6.39)

Thus the advanced and retarded propagators can be obtained from the
finite-temperature propagator by analytic continuation as follows:

DR(k) = −D(ωn → ik0 − ε) (6.40)
DA(k) = −D(ωn → ik0 + ε) (6.41)

The spectral density ρn determines both the real time and imaginary time
propagators and is therefore a very important function.

A concrete example of these relations is provided by a free field.
The imaginary time propagator is D = 1/(ω2

n + k2 + m2). From this
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90 Linear response theory

one immediately obtains ρn = sign(k0) δ(k2
0 − k2 −m2). This shows quite

directly that all the weight is concentrated on the mass shell of the par-
ticle. Generally, for interacting particles in a medium, this weight gets
spread out over a finite range of energies. The free-particle spectral den-
sity has two obvious properties that generalize to interacting systems.
One is the symmetry in the sign of the energy and the other is an integral
over the energy.

The spectral density ρn given in (6.28) has the symmetry

ρn(−ω,−k) = −ρn(ω,k) (6.42)

Here k0 = ω. In a rotationally invariant system, for every state with energy
En and momentum pn there is a state with the same energy and the
opposite momentum. Therefore

ρn(ω,−k) = ρn(ω,k) (6.43)

Combining the above symmetries we conclude that ρn is an odd function
of the energy:

ρn(−ω,k) = −ρn(ω,k) (6.44)

The canonical commutation relation can be usefully employed to derive
a sum rule on the spectral density. Take the spatial Fourier transform of

lim
x0→0

∂

∂x0
Dn(x) = −i〈[π̂(0,x), φ̂(0,0)]〉 = −δ(x) (6.45)

and use the Lehmann representation for Dn. One concludes that∫ ∞

−∞
dω ωρn(ω,k) = 1 (6.46)

This sum rule is naturally obeyed by the free-particle spectral density. It
also implies that interactions might modify the shape of the function ρn

but that the total integrated weight is constant.

6.3 Screening of static electric fields

Let us apply an external static electric field Ecl, as might be generated
by an imposed charge distribution, to a QED plasma and observe the
response. The Hamiltonian density for this interaction is

Hext = E · Ecl (6.47)

The external field Ecl is a classical field, not a quantum operator like E
and B. It depends on position but not on time.
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The change in the electric field caused by the introduction of the exter-
nal field into the plasma can be computed using (6.6):

δ〈Ei(x, t)〉 = −i

∫ ∞

−∞
dt′
∫

d3x′Ecl
j (x′) Tr

{
ρ̂
[
Ei(x, t), Ej(x′, t′)

]}
θ(t− t′)

(6.48)

Thus we need to know the commutator of two electric field operators.
Using the expression for the electric field in terms of the vector potential
and the canonical commutation relations, one readily finds that〈[

Ei(x, t), Ej(x′, t′)
]〉

θ(t− t′) = ∂i∂
′
j

{〈[A0(x, t), A0(x′, t′)]〉θ(t− t′)
}

− ∂i∂
′
0

{〈[A0(x, t), Aj(x′, t′)]〉θ(t− t′)
}

− ∂0∂
′
j

{〈[Ai(x, t), A0(x′, t′)]〉θ(t− t′)
}

+ ∂0∂
′
0

{〈[Ai(x, t), Aj(x′, t′)]〉θ(t− t′)
}

− iδijδ(x − x′)δ(t− t′)
(6.49)

The real time photon propagator is

DR
μν(x − x′, t− t′) = iTr

{
ρ̂
[
Aμ(x, t), Aν(x′, t′)

]}
θ(t− t′) (6.50)

where the sign is chosen to be compatible with the definition of the imag-
inary time propagator in Section 5.3. It depends only on the differences
x − x′ and t− t′, owing to translation invariance in a plasma and to the
assumption of thermal equilibrium. Combining (6.48) to (6.50) we obtain
the net electric field in the medium,

Enet
i (x, t) = Ecl

i (x) + δ〈Ei(x, t)〉
=
∫ ∞

−∞
dt′
∫

d3x′Ecl
j (x′)

× (−∂i∂
′
jD

R
00 + ∂i∂

′
0D

R
0j + ∂0∂

′
jD

R
i0 − ∂0∂

′
0D

R
ij

)
(6.51)

where the arguments of DR
μν are x − x′ and t− t′ as in (6.50). The Fourier

transforms are

DR
μν(x − x′, t− t′) =

∫
d3k dω

(2π)4
eik·(x−x′)e−iω(t−t′)DR

μν(ω,k) (6.52)

and

Ecl(x′) =
∫

d3p

(2π)3
eip·x

′
Ecl(p) (6.53)
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Substitution in (6.51) gives

Enet
i (x) = −

∫
d3k

(2π)3
eik·xEcl

j (k)
[
kikjD

R
00(ω,k) + ωkiD

R
0j(ω,k)

+ ωkjD
R
i0(ω,k) + ω2DR

ij(ω,k)
]
ω=0

(6.54)

Note that the ω = 0 limit is a consequence of the static nature of the
applied field.

In covariant gauges the propagator is given in (5.46). In such gauges the
last three terms in (6.51) vanish. Hence the net electric field in momentum
space is

Enet
i (k) =

kikjE
cl
j (k)

k2 + F (ω = 0, k)
(6.55)

For a plasma, the net electric field must point in the same direction as
the applied external field owing to rotational invariance. The magnitudes
can be related by multiplying both sides of the above equation by ki and
summing over i. Thus

Enet(k) =
Ecl(k)
ε(k)

(6.56)

where ε(k) is the static dielectric constant and is given by

ε(k) = 1 +
F (0,k)

k2
(6.57)

This result may be obtained in other gauges as well. In the temporal
axial gauge, A0(x, t) = 0, the propagator is given by

D00 = 0 D0i = D0i = 0

Dij =
1

G− k2

(
δij − kikj

k2

)
+

1
F − k2

k2

k2
0

kikj
k2

(6.58)

Insertion of (6.58) into (6.54) again yields (6.55), although it is interest-
ing that in this gauge the contributing term is [ω2DR

ij(ω,k)]ω=0. In the
Coulomb gauge, ∇ · A(x, t) = 0, the propagator is given by

Dμν =
1

G− k2
Pμν

T +
1

F − k2

k2

k2
uμuν (6.59)

where uμ = (1, 0, 0, 0) defines the rest frame of the medium. The self-
energy Πμν is related to F and G just as in (5.46). This may be verified
by returning to the definition of the self-energy in terms of the full and
bare propagators, which may be written as

Dμν = Dμν
0 −Dμα

0 ΠαβDβν (6.60)

Substitution of (6.59) into (6.54) again yields (6.55).
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It must be emphasized that (6.55) is an exact result, to be used with
the exact expression for F (0,k) or with the best available approximation
to it. The only assumption is that the applied field Ecl is weak enough to
justify the linearity approximation.

The dielectric function is the screening factor. In the limit of no inter-
actions, where e → 0 and F → 0, the net electric field equals the applied
field. In the absence of matter T = 0 and μ = 0, but with interactions
turned on, e = 0, there is still a modification of the applied electric field
known as vacuum polarization. When |k| � me, one finds that

Fvac(0,k) ≈ − α

15π
|k|4
m2

e

(6.61)

When |k| � me,

Fvac(0,k) ≈ − α

3π
k2 ln

(
k2

M2

)
(6.62)

where M is the renormalization energy scale. One may think of virtual
electron–positron pairs continually popping out of and back into the vac-
uum to produce this modification of the applied field. Since ε(|k| > 0) = 1,
one may in this sense think of the vacuum as a medium. Furthermore
we may think of the dielectric constant as the ratio of the squared net
observed charge at momentum transfer k to the squared ordinary electric
charge at zero momentum transfer,

αnet(k)
α

=
1

1 + Fvac(0,k)/k2
(6.63)

Substitution of (6.62) into (6.63) gives exactly the lowest-order
renormalization-group result, (5.82) with μ → |k| � me, which is no coin-
cidence.

The one-loop finite-temperature and finite-density contribution to F is
in general a complicated function of k. It is given in (5.51) since F (0,k) =
−Π00(0,k). At very short distances, |k| � T and μ, the vacuum contribu-
tion dominates, Fvac � Fmat. At very long distances, |k| � T and μ, the
matter contribution dominates, Fvac � Fmat. At distances much less than
the average interparticle spacing, many-body effects cannot be important
and one recovers the vacuum. At distances much greater than the aver-
age interparticle spacing, many-body effects are most important. In fact
Fvac/Fmat ∝ k2 as k → 0, modulo logarithms. Recalling (5.66), (5.68),
and (5.69), we define the QED electric mass mel by m2

el = F (0, k → 0).
Then, approximately,

ε(k) ≈ 1 +
Fvac(0,k)

k2
+

m2
el

k2
(6.64)
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Linear response theory gives both vacuum polarization and plasma
screening.

6.4 Screening of a point charge

As a concrete demonstration of a situation commonly encountered, place
a static charge Q1 at x1 and another static charge Q2 at x2. What is the
change in free energy of the QED plasma as a function of separation?
Analogous problems arise in condensed matter physics when treating an
impurity or defect.

From Gauss’s law,

∇ · Ecl
1 = Q1 δ(x − x1) (6.65)

we obtain

Ecl
1 (x) =

∫
d3k

(2π)3
eik·xEcl

1 (k)

where

Ecl
1 = −i

k
k2

e−ik·x1 Q1 (6.66)

Similar equations are obtained for charge 2. The change in free energy is

V (x1,x2) =
1
2

∫
d3x

[
Ecl

1 (x) · 〈E2(x)〉 + Ecl
2 (x) · 〈E1(x)〉

]
where

〈E1(x)〉 = Enet
1 (x) 〈E2(x)〉 = Enet

2 (x) (6.67)

After some manipulation, this takes the form

V (r = x1 − x2) = Q1Q2

∫
d3k

(2π)3
eik·r

k2 + F (0,k)
(6.68)

When r is very large, the dominant contribution to the integral comes
from k ≈ 0. For this case, we replace F (0,k) by its infrared limit m2

el.
Then we get

V (r) =
Q1Q2

4π
e−melr

r
(6.69)

which is a screened Coulomb potential with inverse screening length mel.
At T = μ = 0 one may compute the change in the form of Coulomb’s

law due to vacuum polarization by expanding (6.68) to first order in F
and substituting in (6.61). The result is

ΔVC =
α

15πm2
e

Q1Q2δ(r) (6.70)
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This result was first obtained by Uehling [1] and by Serber [2]. See also
Bjorken and Drell [3]. Its effect has been measured in the Lamb shift in
atomic hydrogen.

At low temperatures, T � |μ|, the functional form of (6.69) is not cor-
rect even at long distances; it turns out that it is not a good approxi-
mation to replace F (0,k) by its infrared limit m2

el because of the sharp
Fermi surface.

The formula (5.51) gives the matter part of F at one-loop order for
arbitrary values of external energy, momentum, temperature, and chem-
ical potential. Evaluating it at zero energy (which is the same as at zero
Matsubara frequency) and T = 0 gives

Fmat(0, k)

=
e2

24π2

[
16μkF − 4k2 ln

(
μ + kF

m

)
− μ(4μ2 − 3k2)

k
ln
(
k − 2kF

k + 2kF

)2

+
(2m2 − k2)

√
k2 + 4m2

k

× ln

(
2μ2(k2 + 2m2) − 2μkkF

√
k2 + 4m2 −m2(k2 + 4m2)

2μ2(k2 + 2m2) + 2μkkF

√
k2 + 4m2 −m2(k2 + 4m2)

)]
(6.71)

Here kF =
√
μ2 −m2 is the Fermi momentum and k = |k|. The vacuum

part is derived in many books on QED, such as Berestetskii, Lifshitz, and
Pitaevskii [4] and Quigg [5]. It is

Fvac(0, k)

= − e2

4π2
k2

[
4m2

3
M2 − k2

M2k2

+
1

3M

(
1 − 2m2

M2

)√
M2 + 4m2 ln

(√
M2 + 4m2 −M√
M2 + 4m2 + M

)

− 1
3k

(
1 − 2m2

k2

)√
k2 + 4m2 ln

(√
k2 + 4m2 − k√
k2 + 4m2 + k

)]
(6.72)

where M is an arbitrary subtraction point such that Fvac(0,M) = 0.
The integrand in (6.68) has poles at k = ±imel ≈ ±i

√
F (0, k → 0).

The contribution from these poles gives a Debye screening function of the
form (6.69). The integrand also has a pair of branch points at k = 2kF ± iε
and a mirror pair at k = −2kF ± iε. The branch cuts can be taken to
be vertical lines going up from the points k = ±2kF + iε and vertical
lines going down from the points k = ±2kF − iε. The contribution to the
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96 Linear response theory

potential between point charges from these branch cuts is tedious but
straightforward to evaluate. The result for asymptotically large r is

V (r) =
Q1Q2e

2

4π3

μ

(4 + a)2

{
m2

μ2

cos 2kFr

(kFr)3
− sin 2kFr

(kFr)4

×
[
e2

π2

m4

μ3kF

1
4 + a

(
ln(4kFr) + γE − 3

2

)
− 16

4 + a

m2

μ2
+

m4

2μ4
− k2

F

μ2

]}
(6.73)

where a = F (0, 2kF)/k2
F. The terms neglected in this expression are one

order higher either in 1/r or in e2. The contribution from the branch
cuts dominates the Debye contribution at large r because the latter falls
exponentially in r whereas the former falls as a power.

There are two especially interesting limits of this potential. Let us write
Qi = Zie. The nonrelativistic limit, kF � m, is

V (r) =
Z1Z2e

2ξkF

2π(4 + ξ)2
cos(2kFr)

(kFr)3
(6.74)

with

ξ =
e2

2π2

m

kF

This form of screening is usually referred to as Friedel oscillation in low-
temperature physics (Fetter and Walecka [6]) and can be observed in the
nuclear magnetic resonance lines in dilute alloys [7].

The relativistic limit, kF � m, is

V (r) = Z1Z2
ᾱ2

4π
sin 2kFr

k3
Fr

4
(6.75)

This involves the renormalization-group running coupling

ᾱ =
α

1 − (2α/3π) ln (4μ/eM)
=

3π
2 ln (eΛMOM/4μ)

(6.76)

where ΛMOM is the QED scale parameter. This is familiar from (5.80)–
(5.82). The relativistic results were obtained by Sivak [8] and by Kapusta
and Toimela [9]. There may be applications to the dense matter present
in white dwarf and neutron stars.

Finally, consider what happens at small but nonzero temperature,
T � |μ|. The sharp Fermi surface is smeared over a thickness T in the
energy. Consequently, the branch cuts do not extend to the real axis,
and the branch points are shifted by an amount 2πμTi/kF. Then the
asymptotic formula for the potential must be multiplied by the factor
exp(−2πμTr/kF). When T 2 > e2k3

F/4π
4μ the contribution from the pole,

k ∼ imel, begins to dominate the oscillating terms coming from the branch
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cuts. For a white dwarf star with kF = 4me the crossover would be at
3 × 108 K or 30 keV.

6.5 Exact formula for screening length in QED

It is possible to derive an exact formula for the screening length of static
electric fields in QED. This formula connects the screening length to the
thermodynamic equation of state and so is a very interesting relation
indeed.

An exact expression for the photon self-energy, known as the
Schwinger–Dyson equation [10, 11], is

Πμν(k) = e2T
∑
np

∫
d3p

(2π)3
Tr [γμG(p)Γν(p, p− k)G(p− k)]

= (6.77)

Here the blobs on the fermion lines represent the exact fermion propa-
gator G, and the blob at the vertex represents the exact photon–fermion
vertex function Γμ. The latter depends in general on the incoming fermion
momentum p and the outgoing fermion momentum p− k. To lowest order,
the photon–fermion vertex function is the point (or contact) coupling
appearing in the Lagrangian,

Γμ
0 = γμ (6.78)

Corrections due to interactions may be found order by order, by applying
the formula

−eΓ = (δ lnZ/δΓ0)1PI (6.79)

which may be derived in a way analogous to (3.35). For example, from
(5.39), (5.62), and (5.77) we obtain

−eΓμ(p, p− k) =
p

p− k

k
μ +

p

p− k

k
μ + · · · (6.80)

It should be clear intuitively that a relation exists between the fermion
propagator and the photon–fermion vertex, since the latter represents the
propagation of a fermion while emitting a photon of momentum k. To see
what this relation might be, consider the free-fermion inverse propagator

G−1
0 (p) = p−m (6.81)
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We notice that

∂G−1
0

∂pμ
= γμ = Γμ

0 (6.82)

It turns out that the exact result is

∂G−1

∂pμ
= lim

δμ→0
Γμ(p, p− δμ) (6.83)

where only the μ-component of the four-vector δμ is nonzero. Equation
(6.83) is known as the differential form of Ward’s identity. It relates the
momentum derivative of the exact inverse fermion propagator to the exact
photon–fermion vertex in the limit k → 0.

The only change in the derivations of the Schwinger–Dyson equations
and the Ward identity at T > 0 and μ = 0 is the substitution of the fre-
quency sums for energy integrals (the interested reader should consult
Bjorken and Drell [3]; see also Fradkin [12], whose arguments we are fol-
lowing here).

At finite temperature and density, in the imaginary time formalism
p0 = (2np + 1)πT i + μ. Thus from (6.83)

∂G−1

∂μ
= Γ0(p, p) (6.84)

The screening length follows from Π00 in the static infrared limit.
Combining (6.77) and (6.84) yields

m2
el = −Π00(k0 = 0, k → 0)

= −e2T
∑
np

∫
d3p

(2π)3
Tr
(
γ0G(p)

∂G−1

∂μ
(p)G(p)

)

= e2 ∂

∂μ
T
∑
np

∫
d3p

(2π)3
Tr
[
γ0G(p)

]
= e2

(
∂n

∂μ

)
T

= e2∂
2P (μ, T )
∂μ2

(6.85)

The electric screening length is directly related to the equation of state.
To see how remarkable (6.85) is, notice that the static infrared limit of

the photon propagator at one-loop order is determined by the pressure of
a noninteracting fermion gas. To show the power of (6.85) we recall the
formula for P (μ, T ) for a massless electron–positron plasma from Exercise
2.7 and from (5.60), (5.67), and (5.68). Since the pressure is known to
order e3 when both T and μ are nonzero, the inverse screening length is
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known to order e5. For μ = 0,

m2
el =

(
e2

3
− e4

8π2
+

e5

4
√

3π3
+ · · ·

)
T 2 (6.86)

This expression is phrased in terms of a fixed coupling constant e evalu-
ated at a fixed scale. Let us denote that scale by M0. At some other scale
M the coupling constant changes to

e2(M) = e2(M0)
[
1 +

e2(M0)
6π2

ln
(

M

M0

)]
(6.87)

according to the renormalization group. Then

m2
el =

{
e2(M)

3
− e4(M)

18π2

[
ln
(

M

M0

)
+

9
4

]
+

e5(M)
4
√

3π3
+ · · ·

}
T 2 (6.88)

The issue is how best to choose M and M0 to minimize higher-order
contributions. This may be resolved as follows.

Return to (6.68) and expand F (0,k) in powers of |k|, keeping terms up
to and including k2. Including both the vacuum and finite-temperature
parts, and using the above expression for m2

el(e), the integrand of (6.68)
becomes

e2

m2
el(e) + {1 − (e2/6π2) [ln(πT/M) + 4/3 − γE]}k2

If we use the electric screening mass to one-loop order only, this becomes

ē2

m2
el(ē) + k2

where

ē2(T ) =
e2

1 − (e2/6π2) [ln(πT/M) + 4/3 − γE]
=

6π2

ln
(
eγE−4/3Λ/πT

)
(6.89)

The fixed coupling constant has been replaced by the renormalization-
group running coupling with the absolute scale determined naturally. If
we use the electric screening mass to order e5 we get

m2
el =

{
e2

3
+

e4

18π2

[
ln
(
πT

M

)
− γE − 11

12

]
+

e5

4
√

3π3
+ · · ·

}
T 2 (6.90)

Expressing e in terms of ē gives exactly the formula (6.85) with the fixed
coupling replaced by the running coupling:

m2
el =

(
ē2

3
− ē4

8π2
+

ē5

4
√

3π3
+ · · ·

)
T 2 (6.91)
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This has been verified in an explicit diagrammatic analysis by Blaizot,
Iancu, and Parwani [13] (the constant following the logarithm in this
work is different, on account of the different renormalization schemes).

The relation (6.85) can be understood very simply. Insert a charge Q
at location x in an electron–positron plasma. If the plasma has a charge
density −en then there must be a net background charge density to ensure
charge neutrality. Denote this background charge density by en0, so that
in equilibrium n = n0. Owing to the insertion of the charge Q there will be
a rearrangement of electrons and positrons in the plasma. The condition
of local hydrostatic equilibrium requires a balance of forces:

−∇P = enEnet (6.92)

Poisson’s equation is

∇ · Enet = [Qδ(x) − e(n− n0)] (6.93)

where Enet is the net electric field due to the external charge Q and
the consequent rearrangement of the charged particles in the plasma.
In equilibrium, T must be uniform but the charge chemical potential μ
may depend on position. Thus we write P = P (μ, T ), T = constant, μ =
μ(x), and seek to determine μ(x). Let μ0 denote the chemical potential
in the absence of the charge, and let δμ(x) denote the difference after
the introduction of the charge. Then ∇P = (∂P/∂μ)∇δμ, and n− n0 =
(∂n/∂μ)δμ. Taking the divergence of Enet in (6.92), identifying it with
(6.93), and using the above information we arrive at the expressions(∇2 −m2

el

)
δμ = −eQδ(x)

m2
el = e2 ∂2P

∂μ2

(6.94)

which have the solution

δμ(r) =
eQ

4πr
e−melr (6.95)

This is the Thomas–Fermi approximation. Clearly (6.95) is only valid for
large r, since the derivation assumes that |δμ/μ| � 1. At short distances,
the momentum dependence of F (0,k) in (6.68) cannot be neglected and
the Thomas–Fermi result is modified. This result is also incorrect for a
cold Fermi gas, as already detailed in Section 6.4.

6.6 Collective excitations

Instead of applying a static external field, let us hit the system with an
impulsive perturbation. Without loss of generality, we may focus on a sin-
gle Fourier component. Thus, for the scalar field discussed in Section 6.1,
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we take

J(x, t) = J0(k) eik·xδ(t)

J̃(ω,q) = (2π)3J0(k)δ(q − k)
(6.96)

This leads to the field response

δ〈φ̂(x, t)〉 = J0(k) eik·x
∫ ∞

−∞
dω

2π
e−iωtDR(ω,k) (6.97)

The retarded Green function is analytic in the upper half-plane. Suppose
that it has a simple pole located at ω = ω(k) − iγ(k) with γ(k) ≥ 0. Then

DR(ω,k) =
R(k)

ω − ω(k) + iγ(k)
(6.98)

where R(k) is the residue. Evaluation of (6.97) leads to

δ〈φ̂(x, t)〉 = −iJ0(k)R(k) ei(k·x−ω(k)t) e−γ(k)t (6.99)

The field response is a traveling wave with dispersion relation ω(k) and
damping constant γ(k).

For a free field with mass m, ω(k) =
√

k2 + m2, γ(k) = 0, and R(k) =
1
2ω(k). The amplitude of the wave is proportional to the residue and to
the Fourier amplitude of the impulse.

6.7 Photon dispersion relation

Let us consider a QED plasma at such high temperature or density that
the electron mass may be neglected. Based on the previous discussion,
we would expect that the poles of the photon propagator would give the
dispersion relations for traveling electromagnetic waves in the plasma.
However, this requires careful consideration owing to the fact that the
photon propagator is gauge dependent.

Transverse oscillations have a dispersion relation determined by

k2
0 = k2 + G(k0,k) (6.100)

in the temporal axial gauge (6.58), in the Coulomb gauge (6.59), and in the
covariant gauges (5.46). We write k0 = ω − iγ and assume weak damping,
otherwise the oscillations would not propagate. The above equation can
be decomposed into real and imaginary parts:

ω2 = k2 + ReG(ω,k)

γ = − ImG(ω,k)
2ω

(6.101)
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102 Linear response theory

Even at one-loop order, G(k0,k) is a complicated function. In general,
the solutions can only be found numerically. In the limit of short or long
wavelengths, however, analytical results may be found.

For short wavelengths we expect that the modification of the free-
photon dispersion relation ω = |k| by medium effects will be small. The
reason is that if we probe the system at distances considerably less than
the average interparticle spacing then medium effects should tend to zero.
Thus we look for a solution when ω ≈ |k| � T, |μ|. From Exercise 5.7 we
know that

G(ω = |k|) =
1
2
e2

(
1
3
T 2 +

μ2

π2

)
≡ m2

P (6.102)

which is precisely 1
2m

2
el = 1

2F (k0 = 0, k → 0) to order e2. The short-
wavelength dispersion relation is then

ω2 = k2 + m2
P + · · · (6.103)

Clearly this is a gauge invariant result. One may think of the high-
momentum photons as having acquired a mass mP due to plasma inter-
actions.

For the long-wavelength transverse oscillations, we expect a substantial
modification of the free-photon dispersion relation owing to many-body
effects. The oscillatory electric and magnetic fields will cause any nearby
electrons and positrons to be accelerated, giving the oscillation inertia.
In fact, one might expect that it would take a finite amount of energy
to excite an oscillation with vanishing momentum. To look for a solution
to (6.100) and (6.101) we calculate G in the limit |k2| = |k2

0 − k2| � T 2.
The functions F and G may be obtained from a combination of (5.46),
(5.48), and (5.51). This is a straightforward calculation leading to [14]

G(k0,k) = m2
P − 1

2
F (k0,k) (6.104)

and

F (k0,k) = −2m2
P

k2

|k|2
[
1 − k0

4|k| ln
(
k0 + |k|
k0 − |k|

)2
]

(6.105)

It must be emphasized that these expressions are valid not just for the
case where |k0| and |k| are small compared with T but also near the light
cone. In fact, note that G(k2 = 0) = m2

P, the same as the limit obtained
from the exact one-loop expression for G.

For small momenta we find that

G(|k| � ω < T, |μ|) = ω2
P

(
1 +

k2

5ω2
+ · · ·

)
(6.106)
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The plasma frequency ωP is related to the electric mass and the photon
mass via ω2

P = 1
3m

2
el = 2

3m
2
P at order e2 when the electron mass is set to

zero. The long-wavelength dispersion relation for transverse excitations is

ω2 = ω2
P + 6

5k
2 + · · · (6.107)

Indeed, it does take a finite energy to excite one of these modes even at
zero momentum.

Next we turn to longitudinal oscillations, or compressional charge-
density waves. Without doing the full linear response analysis in each
gauge, we would expect that the dispersion relation is determined by the
poles of the following functions in the specified gauge:

temporal axial

1
k2 − F

k2

k2
0

Coulomb
1

k2 − F

k2

k2

covariant
1

k2 − F
(6.108)

Some of the subtleties involved in gauge invariance now arise.
Consider the limit of no interactions. Then F = 0, and the covariant

gauges produce the spectrum ω = |k|, whereas in the temporal axial and
Coulomb gauges there is no wave propagation. This could have been antic-
ipated. Free electromagnetic radiation is transversely polarized. The tem-
poral axial and Coulomb gauges are physical gauges in the sense that they
have the correct number of polarization degrees of freedom, namely, two.
The covariant gauges are unphysical in the same sense since they have
four degrees of freedom. The extra two degrees of freedom are canceled
by the ghosts in the partition function. There is nothing wrong in all this,
but one must be careful to ask only physical questions of the theory. The
situation is not altered when interactions are turned on at T = μ = 0.
Recall that F = (k2/k2)Π00. It turns out that Π00 is not singular enough
at k2 = 0 to cancel the factor of k2. For example, to order e2,

Fvac =
α

3π
k2 ln

(−k2

M2

)
(6.109)

The covariant gauges still have a singularity at k2 = 0, a branch point due
to pair production, while the other two gauges do not. The conclusion is
that short-wavelength longitudinal excitations do not propagate.
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The spectrum of long-wavelength longitudinal excitations in the plasma
is manifestly gauge invariant and is determined by

k2
0 = k2 + F (k0,k) (6.110)

or equivalently

k2 = Π00(k0,k) (6.111)

Decomposing into real and imaginary parts gives

k2 = ReΠ00(ω,k)

γL =
ImΠ00(ω,k)

∂ ReΠ00(ω,k)/∂ω
(6.112)

Expanding Π00 in powers of k2/k2
0 leads to

Π00(ω,k) = ω2
P

(
1 +

3k2

5ω2
+ · · ·

)
k2

ω2
(6.113)

and finally to the dispersion relation

ω2 = ω2
P + 3

5k
2 + · · · (6.114)

The energy at zero momentum for longitudinal and transverse excitations
is the same, which is no surprise since at zero momentum there is no
distinction between longitudinal and transverse modes.

At arbitrary momentum, the dispersion relation cannot be obtained
by analytic means for either mode. They must be found by numerical
methods.

It is interesting that the damping constants as determined by the
approximate expressions (6.104) and (6.105) are zero. However, if one
returns to the exact one-loop expressions for F and G it turns out that

γT = γL =
e2

24π
ωP (6.115)

at zero momentum. The origins of the various factors in this result are
not difficult to find. The factor e2 comes from the square of the photon–
electron or photon–positron vertex and the factor ωP comes from phase
space.

Lastly, notice that the propagator in the covariant gauges has a term
ρkμkν/k2. Clearly, no physical significance should be attached to this
pole since the residue is proportional to the gauge parameter and in fact
vanishes in the Landau gauge ρ = 0.
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6.8 Electron dispersion relation

The electron propagator is

G(p) =
1

p−me + Σ(p)
(6.116)

In the Feynman gauge the one-loop expression for the self-energy is

Σ(p) = e2T 2
∑
nk

∑
nq

∫
d3k

(2π)3
d3q

(2π)3
1
k2

γμ 1
q −me

γμβδnp,nk+nq (2π)3δ(p − k − q)

(6.117)

At very high temperature the electron mass may be neglected. The evalu-
ation of this self-energy is rather tedious but straightforward. The vacuum
contribution may be found in numerous textbooks. Here we shall focus
on the matter contribution.

The leading contribution at order T 2 and μ2 is [15]

Σ0
mat = −m2

F

8|p| ln
(
p0 + |p|
p0 − |p|

)2

Σmat =
m2

F

2|p|2p
[
1 − p0

4|p| ln
(
p0 + |p|
p0 − |p|

)2
] (6.118)

where m2
F = 1

2(m2
P + 1

3e
2T 2) = 1

4e
2(T 2 + μ2/π2). Equations (6.118) may

be compared with the corresponding expressions for F and G for the
photon self-energy. Although the electron self-energy is in general gauge
dependent, the leading contributions (6.118) can be shown to be indepen-
dent of the gauge. As with the photon self-energy, it must be emphasized
that these expressions are valid not only for small electron energy and
momentum but also near the light cone at any momentum.

The poles of the propagator are determined by

[p0 + Σ0
mat(p0,p)]2 = [p + Σmat(p0,p)]2 (6.119)

There are two undamped solutions to this equation, referred to as ω+(p)
and ω−(p). They can be expressed in parametric form as

ω2±(p) = z2p2±(z)

p2±(z) = ω2
F

[ ±1
z ∓ 1

∓ 1
2

ln
(
z + 1
z − 1

)] (6.120)

with ω2
F = 1

2m
2
F and z > 1. The two solutions are shown in Figure 6.1.

https://doi.org/10.1017/9781009401968.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.007


106 Linear response theory

Fig. 6.1. The two branches (ω±) of the electron dispersion relation are shown.
For comparison, the dispersion relation of a massless particle is also plotted
(broken line).

At momenta that are high in comparison with T and μ, the solutions
become

ω2
+ = p2 + m2

F + · · ·

ω2− = p2 + 4p2 exp
(
−4p2

m2
F

− 1
)

+ · · · (6.121)

whereas at low momentum the solutions become

ω± = ωF ± 1
3
|p| + 1

3
p2

ωF
+ · · · (6.122)

The low-momentum spectra have an optical character. The high-
momentum spectrum for ω+ solution may be used to define a finite-
temperature and finite-density fermion mass, just as the photon mass
was defined at high momentum.

It is interesting to examine the behavior of the propagator in the vicinity
of the poles. In the high-momentum limit,

G(ω → ω+, p � mF) ≈ 1
2
γ0 − p̂ · γ
ω − ω+

G(ω → ω−, p � mF)≈ 2p2

m2
F

exp
(
−4p2

m2
F

− 1
)

γ0 + p̂ · γ
ω − ω−

(6.123)

https://doi.org/10.1017/9781009401968.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.007


6.9 Kubo formulae for viscosities and conductivities 107

and in the low-momentum limit

G(ω → ω+, p � mF)≈ 4
3
γ0 − p̂ · γ
ω − ω+

G(ω → ω−, p � mF)≈ 4
3
γ0 + p̂ · γ
ω − ω−

(6.124)

These display a number of features. The ω+ solution has the same relation
between chirality and helicity as free electrons whereas the ω− solution
has the opposite relation between chirality and helicity. This is true for all
momenta, not just in the limits. It suggests that the ω+ branch represents
the modification of the dispersion relation of a real electron in the plasma,
whereas the ω− branch is a true collective excitation. Indeed, the residue
of that branch vanishes as the momentum becomes large, which is the
vacuum limit. The residue of the ω+ branch in the high-momentum limit
is the same as for free electrons. Finally, notice that the residues are the
same as the momentum tends to zero since there is no distinction between
different polarizations when the particle is at rest.

6.9 Kubo formulae for viscosities and conductivities

Many physical systems can be described using fluid dynamics. In the
context of this book, examples of such systems are stars, the early universe
and, to some extent, high-energy nuclear collisions. The state of the fluid
can be described in terms of its temperature and chemical potentials,
specified as functions of space and time, together with an equation of state.
The dynamics of the fluid is described by equations of motion based on
the energy–momentum tensor Tμν(x). Here xμ = (t,x). The local energy
density is T 00, the local momentum density is T i0, and the flux of these
quantities in the direction j is T μj . Local conservation of energy and
momentum is expressed as

∂νT
μν = 0 (6.125)

This conservation law is general and makes no assumption about local
equilibrium or the types of interactions. Without loss of generality the
energy–momentum tensor can always to taken to be symmetric. As a
concrete example, the energy–momentum tensor for a set of N noninter-
acting particles labeled by index n is

T μν(x) =
N∑

n=1

pμnpνn
En

δ(x − xn(t)) (6.126)

where xn(t) is the trajectory of the nth particle.
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In a field theory with independent fields labeled φn and Lagrangian L
the energy–momentum tensor is found in the usual way to be

Tμν =
∑
n

∂L
∂μφn

∂νφn − gμνL (6.127)

Specific examples include a self-interacting scalar field

Tμν = ∂μφ∂νφ− gμνL (6.128)

and the electromagnetic field

Tμν = Fμ
ρF

ρν + 1
4g

μνFαβFαβ (6.129)

To evaluate these in a classical field theory, the solutions to the field
equations are inserted into these expressions. In a quantum theory the
fields are operators and the expressions are therefore also operators. In a
fluid, the expressions may be averaged over spacetime volumes that are
large compared with typical thermal wavelengths and correlation lengths
but small compared with distances and times over which local energy and
momentum densities vary appreciably; this averaging process is referred
to as coarse-graining.

Coarse-graining is easy to describe but usually difficult to implement.
It can be done in numerical simulations, of course. In a hydrodynamic or
perfect-fluid description, the assumption of local thermal equilibrium is
made. Then the energy–momentum tensor is

Tμν = −Pgμν + wuμuν (6.130)

where P is the local pressure, w = ε + P is the local enthalpy density,
and uμ = (γ, γv) is the local flow velocity relative to some fixed reference
frame. In a frame in which the fluid is locally at rest, uμ = (1, 0, 0, 0),
T 00 = ε, T ij = Pδij , and T i0 = 0. In general the trace of the energy–
momentum tensor is Tμ

μ = ε− 3P . For a noninteracting gas of massless
particles, 1

3ε = P and the trace vanishes. If there are conserved charges,
such as baryon number or electric charge, there is an additional conserva-
tion law or equation of motion for each. For example, the baryon current
is

Jμ
B = nBu

μ (6.131)

where nB = J0
B is the local baryon density. The conservation law is

∂μJ
μ
B = 0 (6.132)

Note that the baryon number flows with the same four-velocity as
appeared in the energy–momentum tensor. The local pressure, energy,
and baryon densities are related through the equation of state. Equiva-
lently they can all be expressed in terms of T and μB.
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When variations in temperature and chemical potential become appre-
ciable over length scales that are not large compared with thermal wave-
lengths or correlation lengths then gradients in the thermodynamic vari-
ables must be taken into account. In a typical nonrelativistic fluid the
massive particles carry the energy and momentum so that energy, momen-
tum, and baryon number all flow together with only very minor departures
associated with thermal conductivity. In a relativistic fluid, meaning one
in which P is not much less than ε, or equivalently in which the tem-
perature and chemical potential are not much less than the mass of the
particles, the situation is more complicated. The energy and momentum
may flow with a velocity different from that of the baryons if the sys-
tem has gradients that are not negligibly small. The situation is then
described in terms of (first-order) relativistic viscous-fluid dynamics. Dis-
sipative contributions are added to the energy–momentum tensor:

Tμν = −Pgμν + wuμuν + ΔTμν

Jμ
B = nBu

μ + ΔJμ
B

(6.133)

The dissipative terms are proportional to first-order derivatives of the
flow velocity, temperature, and chemical potential. There are two common
definitions of the flow velocity in relativistic dissipative fluid dynamics.

In the Eckart approach uμ is the velocity of baryon number flow
[16]. The dissipative terms must satisfy the conditions ΔJμ

B = 0 and
uμuνΔTμν = 0, the latter following from the requirement that T 00 be
the energy density in the local (baryon) rest frame. The most general
form of ΔTμν is given by

ΔTμν = η(Δμuν + Δνuμ) +
(

2
3η − ζ

)
Hμν∂ρu

ρ

− χ(Hμαuν + Hναuμ)Qα (6.134)

Here

Hμν = uμuν − gμν (6.135)

is a projection tensor normal to uμ,

Δμ = ∂μ − uμu
β∂β (6.136)

is a derivative normal to uμ, and

Qα = ∂αT − Tuρ∂ρuα (6.137)

is the heat flow vector, whose nonrelativistic limit is Q = −∇T . Further-
more, η is the shear viscosity, ζ is the bulk viscosity, and χ is the thermal
conductivity. The entropy current is

sμ = suμ +
1
T
uνΔTμν (6.138)
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and is defined is such a way that uμs
μ = s, the local entropy density. Its

divergence is

∂μs
μ =

η

2T
(
∂iu

j + ∂ju
i − 2

3δ
ij∇ · u)2

+
ζ

T
(∇ · u)2 +

χ

T 2
(∇T + T u̇)2 (6.139)

All three dissipation coefficients must be non-negative to ensure that
entropy can never decrease.

In the Landau–Lifshitz approach, uμ is the velocity of energy transport.
The dissipative part of the energy–momentum tensor satisfies uμΔTμν =
0, and ΔJμ

B is not constrained to be zero. In this case the most general
form of the energy–momentum tensor is

ΔTμν = η(Δμuν + Δνuμ) +
(

2
3η − ζ

)
Hμν∂ρu

ρ (6.140)

The baryon current is modified to

ΔJμ
B = χ

(
nBT

w

)2

Δμ
(μB

T

)
(6.141)

The three coefficients η, ζ, and χ are the same as in the Eckart approach.
This can be proven in a variety of ways. For example, even though the
entropy current in this approach is different, being

sμ = suμ − μB

T
ΔJμ

B (6.142)

its divergence is the same. Physical, observable, results cannot depend on
how one defines the frame of reference.

In the above approaches the dissipative coefficients are taken to be phe-
nomenological constants or, rather, functions of temperature and chemical
potential. However, it ought to be possible to derive them from the micro-
scopic theory. In particular, it ought to be possible to derive them using
linear response theory since departures from local thermal equilibrium
are assumed to be small. Indeed this is so, and the resulting formulae are
named after Kubo [17].

Consider the problem of pure baryon number diffusion in the absence
of energy flow. The most direct approach to use in this case is that of Lan-
dau and Lifshitz: the vanishing of the energy flux implies that the flow
velocity is zero. The equation of continuity for the baryon current, includ-
ing dissipation, reduces to a diffusion equation for the baryon chemical
potential:

∂μB/∂t = D∇2μB (6.143)
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Here

D ≡ χT

dnB/dμB

(nB

w

)2
(6.144)

is the diffusion constant. A single Fourier mode exp[i(k · x − ωt)] will
relax towards equilibrium as exp(−Dk2t).

A nonuniform baryon distribution can be achieved by the imposition
of an external force that is turned on and off, allowing the system to
relax back towards equilibrium. It does not matter how this is done. For
example, we could take the coupling Hamiltonian to be

Hext(t) =
∫

d3x Ĵμ
B(x, t)Jext

μ (x, t) (6.145)

where Jext
μ is an external perturbing current. The response of the baryon

current is given in the usual way by

δ〈Ĵμ
B(ω,k)〉 = Jext

ν (ω,k)Bμν
R (ω,k) (6.146)

where Bμν
R (ω,k) is the Fourier transform of the retarded current–current

correlation or response function:

iBμν
R (x, t;x′, t′) =

〈[
Ĵμ
B(x, t), Ĵν

B(x′, t′)
]〉

θ(t− t′) (6.147)

Since baryon number is conserved the most general form of the response
function is

Bμν
R = BLP

μν
L + BTP

μν
T (6.148)

where BL and BT are longitudinal and transverse response functions.
Without loss of generality it is convenient to parametrize the longitudinal
response function, or equivalently the time–time component, as

B00
R (ω,k) =

k2

k2
BL(ω,k) =

ik2D(ω,k)
ω + ik2D(ω,k)

B00
R (ω = 0, k) (6.149)

Here D(ω,k) is an unknown function. It is expected to be a smooth
function of ω and k, whereas the response function itself is expected to
have singularities, usually poles. If we define D ≡ D(ω → 0, k → 0), and if
there is a slow perturbing variation in the baryon density, then the density
will relax back towards equilibrium with a dispersion relation determined
by the pole of the response function, namely, ω = −iDk2. Therefore we
may identify this D with the diffusion constant in the dissipative fluid
dynamics calculation.

The diffusion constant can be extracted directly from the response func-
tion. First,

D = lim
ω→0

lim
k→0

i

ω

BL(ω,k)
BL(0, k)

(6.150)
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Now BL(ω = 0,k → 0) = −B00
R (ω = 0,k → 0) = ∂2P/∂μ2

B = ∂nB/∂μB.
(The reasoning is the same as for the electric screening mass.) Further-
more,

BL(ω, |k| → 0) = k̂ik̂ j Bij
R (ω, |k| → 0) (6.151)

where k̂i = ki/|k| is a unit vector in the direction of k. Putting all this
together and using the rotational symmetry yields a linear response for-
mula for the thermal conductivity:

χT =
1
3

(
w

nB

)2

lim
ω→0

1
ω

∫
d4x eiωt

〈[
Ĵ i
B(t,x), Ĵ i

B(0,0)
]〉

θ(t) (6.152)

The factor (w/nB)2 arises in the conversion of baryon current to enthalpy
current. Alternatively, (6.152) could be written in terms of the spectral
densities for the longitudinal part of the baryon response function as

χT =
1
3

(
w

nB

)2

lim
ω→0

1
ω
ρn
L(ω, |k| = 0)

=
1

3T

(
w

nB

)2

lim
ω→0

ρ+
L (ω, |k| = 0) (6.153)

The latter equality follows from the relation ρn = (1 − e−βω)ρ+, as dis-
cussed in Section 6.2.

There are Kubo-type linear-response expressions for the viscosities too.
These may be derived in a way analogous to that for the thermal con-
ductivity since Tμν may be viewed as representing a set of four conserved
currents. One obtains

η =
1
20

lim
ω→0

1
ω

∫
d4x eiωt

〈[Sij(t,x), Sij(0,0)
]〉

θ(t) (6.154)

ζ =
1
2

lim
ω→0

1
ω

∫
d4x eiωt〈[P(t,x), P(0,0)]〉θ(t) (6.155)

where P = −1
3T

i
i represents the trace of the momentum tensor (the pres-

sure in equilibrium) and Sij = T ij − δijP represents the traceless part.
These follow from the dispersion relation for the transverse part of the
momentum density,

ω = −iDSk2 (6.156)

where DS = η/w, and from the dispersion relation for pressure waves,

ω2 − v2
Pk2 + iDPωk2 = 0 (6.157)
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where DP = (4
3η + ζ)/w (when the thermal conductivity is neglected). In

terms of the spectral densities we have

η =
1
20

lim
ω→0

1
ω
ρn
SS(ω, |k| = 0) =

1
20T

lim
ω→0

ρ+
SS(ω, |k| = 0) (6.158)

ζ =
1
2

lim
ω→0

1
ω
ρn
PP (ω, |k| = 0) =

1
2T

lim
ω→0

ρ+
PP (ω, |k| = 0) (6.159)

It is worth noting that in all these formulae the relevant transport coeffi-
cient is proportional to a diffusion constant with dimensions of length. In
a multicomponent fluid those particles or fields with the longest diffusion
length tend to dominate the transport coefficient.

In a similar manner one may derive an expression for the electrical
conductivity, which is the coefficient in Ohm’s law JEM = σelE:

σel =
1
6

lim
ω→0

1
ω

∫
d4x eiωt

〈[
Ĵ i

EM(t,x), Ĵ i
EM(0,0)

]〉
θ(t) (6.160)

This may also be expressed in terms of the corresponding spectral density.
The viscosities in λφ4 theory have been calculated by Jeon [18] and

Jeon and Yaffe [19]. In the limit of weak coupling and high temperature,
the shear viscosity is

η = 5.28T 3/λ2 (6.161)

The parametric dependence of η on T and λ is straightforward. Recall that
η = wDS . A diffusion constant may be estimated as n〈σv〉, where n is an
average density, σ is a cross section, and v is the speed of the particles.
For massless, or nearly massless, particles, v ≈ 1, n ∝ T 3, and w ∝ T 4.
The thermally averaged elastic cross section in λφ4 theory is propor-
tional to λ2/T 2. Putting this all together yields the estimate η ∝ T 3/λ2,
in agreement with the result quoted above. However, to calculate the over-
all coefficient is not easy. This may be seen immediately by the inverse
dependence of η on λ. An infinite set of ladder diagrams corresponding
to elastic scattering must be summed along with finite-temperature self-
energy insertions. The calculation is ultimately reduced to a single integral
equation that is solved numerically. The bulk viscosity for point particles
with no internal degrees of freedom undergoing local interactions is gen-
erally much smaller than the shear viscosity. For the λφ4 theory the bulk
viscosity is nonzero at high temperature because of inelastic scatterings.
When these are taken into account it is found that

ζ = 0.00214λ ln2(1.55λ) T 3 (6.162)

The ratio of the two viscosities ζ/η = λ3 ln2(1.55λ)/2470. For λ = 1/10
the ratio is 1.4 × 10−6 and for λ = 1 it is 7.8 × 10−5. The thermal and
electrical conductivities have no meaning in this theory since there is no
conserved charge.
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The shear viscosity, diffusion constant, and electrical conductivity have
been evaluated at high temperature in gauge theories, to lowest order in
the gauge coupling but to all orders in the logarithm of the coupling, by
Arnold, Moore, and Yaffe [20]. Rather than applying the Kubo formulae
directly they found it more expedient to do a numerical calculation based
on the Boltzmann transport equation. For one flavor of lepton (electrons)
the results are

D =
0.596

α2 ln(1.46/α)
1
T

(6.163)

η =
2.39

α2 ln(5.99/α)
T 3 (6.164)

σel =
2.50

α ln(1.46/α)
T (6.165)

and for two flavors (electrons and muons) they are

D =
0.392

α2 ln(1.08/α)
1
T

(6.166)

η =
1.53

α2 ln(2.33/α)
T 3 (6.167)

σel =
3.29

α ln(1.08/α)
T (6.168)

Here D refers to (conserved) lepton number diffusion. These QED expres-
sions have an extra logarithmic factor arising from the screening of the
long-range Coulomb force. The corresponding results for QCD will be
discussed in later chapters.

6.10 Exercises

6.1 Find the linear response of the fermion number density to an applied
neutral scalar field φext(x, t) for a Yukawa theory with interaction
LI = gψ̄ψφ.

6.2 Repeat the analysis of Section 6.2 for a charged scalar field with a
chemical potential.

6.3 Derive (6.47) for the interaction Lagrangian (5.36). You may choose
whichever gauge you prefer.

6.4 Repeat the analysis leading to (6.70) but in the opposite limit, that
of vanishing electron mass.

6.5 Derive the low-momentum expansion for F (0,k) at finite tempera-
ture and chemical potential.

6.6 Derive the limiting form, (6.104) and (6.105), of the photon self-
energy.
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6.7 Is there an expression analogous to (6.120) for the photon dispersion
relations?

6.8 Find the relationship between the flow velocities in the Eckart and
the Landau–Lifshitz approaches.

6.9 Transport coefficients may be expressed in terms of differing corre-
lation functions. As an example of this, express the thermal conduc-
tivity in terms of the density–density correlation function instead of
the current–current one.

6.10 Derive the Kubo formula for the electrical conductivity.
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