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Abstract

The “No Miracle Argument” for scientific realism contends that the only plausible explanation for the
predictive success of scientific theories is their truthlikeness, but doesn’t specify what ‘truthlikeness’ means. I
argue that if we understand ‘truthlikeness’ in terms of Kullback-Leibler (KL) divergence, the resulting realist
thesis (RKL) is a plausible explanation for science’s success. Still, RKL probably falls short of the realist’s
ideal. I argue, however, that the strongest version of realism that the argument can plausibly establish is RKL.
The realist needs another argument for establishing a stronger realist thesis.
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1. Introduction

Probably no other topic in philosophy of science has been as widely discussed as scientific realism.
Despite widespread disagreement on the topic, there is surprisingly near consensus that the
strongest argument for scientific realism is the “No Miracle Argument” (NMA) or the “Ultimate
Argument.” Here is Hilary Putnam’s formulation of NMA, often considered to be the first
presentation of it in its current form.!

The positive argument for realism is that it is the only philosophy that doesn’t make the
success of science a miracle. That terms in mature scientific theories typically refer (this
formulation is due to Richard Boyd), that the theories accepted in a mature science are
typically approximately true, that the same term can refer to the same thing even when it
occurs in different theories. (1975, 73)

Scientific realism is usually understood to involve at least two claims. First, a semantic thesis: that
scientific terms refer. And second, an epistemic thesis: that the best scientific theories are approx-
imately true. The present essay focuses on the epistemic thesis.

NMA challenges antirealists to offer a plausible explanation for science’s marvelous success
other than the theory’s being truthlike. The argument rests on four assumptions.

(I) Remarkable Success: that the best scientific theories have been remarkably predictively
successful.

'See also Psillos (1999, 70-75). The “success-to-truth” inference has gone through many modifications in light of serious
antirealist challenges. Vickers (2019) contains a nice discussion of some of these developments. Such developments are largely
orthogonal to my discussion. My main contentions are equally applicable to Putnam’s original argument and, say, the
“Qualified Realist Statement” defended in Vickers (2019).
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(II) Remarkable Success requires an explanation.
(III) A good explanation for Remarkable Success is the Realist Thesis: that scientific theories
with a track record of predictive success are close to truth.
(IV) Uniqueness: the Realist Thesis is the only plausible explanation for Remarkable Success.

Assessing NMA'’s plausibility is difficult because of the reliance of premises (III) and (IV) on the
notion of approximate truth. As Larry Laudan writes, “the notion of approximate truth is presently
too vague to permit one to judge whether a theory consisting entirely of approximately true laws
would be empirically successful” (1981, 47). Now, there’s been considerable progress in this area
since Laudan’s (1981) influential paper.? However, to the best of my knowledge, we still don’t have
any account of this notion that would render NMA plausible. Let me explain. Following Popper
(1963, 234), one can distinguish between two sorts of enterprises. In the semantic enterprise, one
tries to offer a satisfactory account of ‘closeness to truth,” while in the epistemic enterprise, one tries
to decide whether our current theories are indeed close to truth. We have pursued these projects
largely independently of one another—a suboptimal methodology in my view. We have a number
of options for how to understand approximate truth, but still don’t know whether the Realist Thesis
understood in terms of any of them constitutes the only plausible explanation of science’s success.

To assess NMA'’s plausibility, we must combine the semantic and the epistemic projects. This is
my goal in this essay. I offer a conception of ‘approximate truth’ that I argue yields the strongest
necessary (or the weakest sufficient) version of the Realist Thesis that can explain science’s
predictive success. Weaken the thesis and success becomes a mere coincidence. Strengthen it
and you’ve added elements that you don’t need for a thorough explanation of such success.

My suggestion employs a prominent notion of divergence in statistics, called Kullback-Leibler
(KL) divergence.’ The KL divergence of the probability density, g, from another probability density,
£, is defined by

DKL |g)= df £ g 0

‘E{.]" denotes expectation with respect to f. The KL divergence of g from f can be understood as a
measure of how far, on average, ¢’s predictions are from data generated by f. This is the version of the
Realist Thesis (hereafter, RKL) that I think plausibly explains Remarkable Success: predictively
successful scientific theories are close to truth in the sense that their predictive elements are close to
truth in KL divergence. (For simplicity, I sometimes talk about the theory being close to truth in KL
divergence or just ‘KL-close’ to truth as shorthand for its predictive elements having this feature.) By
the ‘predictive elements’ of a theory, I mean those general claims within the theory that most
immediately result in predictions. Typically, these are obtained from big conjunctions of various
parts of the theory (from core theoretic commitments to auxiliary hypotheses and background
knowledge about observational apparatus, etc.) together with approximations and estimations. The
predictions can be represented by probability distributions for various possible experimental
outcomes. It’s sensible to envisage them as probability distributions, because observation is subject

2See Niiniluoto, Cevolani, and Kuipers (2022) for an overview.

*Kullback and Leibler (1951); The idea of using KL divergence as a measure of truthlikeness is advocated in Rosenskrantz
(1980), Niiniluoto (1987) and more recently in Niiniluoto (2021). My proposal is different from these in two respects. First, ’'m
not primarily concerned with the semantic project explicating the meaning of truthlikeness. Second, as I'll explain momentarily,
my proposal only asserts that the predictive elements of successful theories are KL-close to truth.

In section 4, I discuss an inherent limitation of this idea: strictly speaking, RKL asserts that the theory is close to truth in KL
divergence given a known or estimated probability distribution over the independent variable(s).

“In section 4, T discuss an inherent limitation of this idea: strictly speaking, RKL asserts that the theory is close to truth in KL
divergence given a known or estimated probability distribution over the independent variable(s).
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to error. Even if we are examining deterministic theories, obtaining any particular observational
value is not guaranteed but is more or less likely. This motivates using a probabilistic notion of
divergence.

Three important clarifications. First, the debate over scientific realism has often centered around
whether inference to the best explanation (IBE) is a plausible form of inference, especially when
applied to “unobservables.” I don’t contribute to this debate. I argue that even granting that IBE isa
plausible form of inference and that science can in principle tell us about unobservables, NMA can
at most establish RKL. But, as I'll explain, the predictive elements of a theory can be arbitrarily
KL-close to truth without its mathematical form, ontological commitments or fundamental ideas
remotely resembling the truth. (Ontological claims like “electrons exist” and fundamental ideas like
“all physical phenomena that are not due to gravitation, electricity and magnetism can be explained
in terms of short-range intermolecular forces,” which was the core of what Eugene Frankel has
called “the short-range force paradigm” in the beginning of the nineteenth century [1976, 144].)
This isn’t a defense of antirealism. All I say is that NMA isn’t a particularly strong argument for
realism.

Second, van Fraassen’s constructive empiricism claims that “science aims to give us theories
which are empirically adequate,” where “a theory is empirically adequate exactly if what it says
about the observable things and events in this world, is true” (1980, 12). Consider the related (but
different) thesis that what best scientific theories say about observables are approximately true and
call it Realism about Observables (RO). RO, just like the Realist Thesis, relies on the notion of
“approximate truth,” which is left unspecified. However, even if one understands this notion in
terms of KL divergence, the resulting thesis (call it ROKL) wouldn’t be equivalent to RKL. Because
predictive elements of a theory are not (necessarily) its claims about observables. It is true that
insofar as the predictive elements tend to be about entities that are closer to the observable end of the
observable-unobservable spectrum, RKL tends to be about aspects of the theory that concern
observables. However, this is mere correlation. Predictive elements can make predictions about,
say, phenomena that are too small to detect or outside of our “light cone” to be detectable or simply
unobservable given our current observational capabilities. Instead of the observable/unobservable
dichotomy, what distinguishes predictive elements of a theory from its fundamental ideas is their
level of specificity.” The fundamental ideas of a theory typically consist of a few guiding insights that
leave many details unspecified. For example, in the early modern period, the idea that all physical
phenomena are explainable by sizes, shapes, and motions of the corpuscles of matter involved in
them constituted the core of what was called “mechanistic philosophy.” Various posits and
theoretic commitments needed to be added to this idea for it to lead to any meaningful prediction.
The upshot of my argument in this essay is that what explains the success of science is the
KL-closeness of such maximally specific claims (predictive elements), but the move from that fact
(by an IBE) to the approximate truth of fundamental/ontological ideas of the theory is unwarranted.

Objection: RKL is a version of realism in name only. Most, if not all, scientific realists maintain
that science’s success is due to the truthlikeness of its theoretic commitments or claims about
unobservables, but RKL doesn’t entail that. Reply: although I think RKL is a (weak) version of the
Realist Thesis, whether one categorizes it as a form of realism is unimportant. My claim is that RKL
successfully meets NMA’s challenge of explaining science’s success and anything stronger than RKL
isn’t needed for such an explanation. The plausibility of my argument doesn’t rest on the name I've
chosen for the thesis.

Third, much of the recent debate on scientific realism has focused on various forms of “selective
realism,” where in response to serious antirealist challenges, realists have offered various criteria for
distinguishing between the “idle” and the “working” parts of the theory. The idea is that successful

>The exact relation between RKL and ROKL depends on how one disambiguates a technical ambiguity in RKL. T will discuss
this in 4.a.
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novel predictions only confirm those elements of the theory responsible for producing those
predictions.® My argument is orthogonal to that debate. Suppose we grant the selective realist that
there is a nonproblematic criterion by which to distinguish between the idle and the working parts.
By definition, only the latter “fuel the derivation” of the predictive elements of the theory. In that
event, my argument concerns the relation between the predictive elements and the working
ontological/fundamental ideas of the theory. And the upshot of my argument is this: the success
of the predictive elements of a theory doesn’t require as an explanation the truthlikeness of its
working fundamental/ontological ideas.

I appeal to the results in the Akaikean model selection framework in statistics. Model selection is
the study of families of statistical hypotheses (called ‘models’). Akaike (1973) presented interesting
results on how to estimate the comparative KL divergences of models from truth. Since then, there
has been considerable progress in this area, making it a powerful tool for a study of the predictive
success of theories.” Section 2 briefly introduces this framework.®

In section 3, I specify the main features of Remarkable Success and describe the strongest
plausible version of Remarkable Success I can think of. Thereafter, I assume that this version of
Remarkable Success is true in order to show that even this version doesn’t require anything stronger
than RKL as an explanation. I end section 3 by arguing that RKL explains Remarkable Success and
that if RKL is false, Remarkable Success becomes an improbable coincidence.

In section 4, I discuss how strong a version of the Realist Thesis RKL is and conclude that it isn’t
very strong. I talk about a number of ways in which a theory can satisfy RKL’s demands but still
significantly differ from the truth.

Section 5 contains the most important part of my argument, where I consider whether NMA can
justify a stronger version of the Realist Thesis than RKL. I argue that the most promising realist
rejoinder against my account is to argue that RKL itself requires an explanation and the only
plausible explanation for it is the truthlikeness of the theory’s fundamental commitments. I then
argue that this is mistaken. I offer an explanation for RKL that doesn’t require the truthlikeness of
core commitments, which is based on three ideas. The most important of them, which is borrowed
from the Akaikean framework, contends that simpler theories that have better fit with the extant

®Variants of this idea are championed in Psillos (1999), Kitcher (2001) and Harker (2013). See Chang (2003), Stanford
(2006), and Lyons (2006) for antirealist replies.

“Forster and Sober (1994) introduced some of these results to the philosophical literature. Sober (1999, 2002) has employed
the Akaikean framework to argue for methodological instrumentalism—that science aims at instrumental success. He
convincingly argues that if the goal of science was obtaining truth or maximizing probability of truth, certain scientific practices
wouldn’t make sense. Scientists sometimes don’t reject predictively successful theories, despite being almost certain of their
falsehoods. I find Sober’s argument quite convincing at what it tries to achieve, but I think it wouldn’t bother any actual realist.
This is because Sober sets up the debate between a version of methodological realism that claims science aims at exact truth
(or maximizing the probability of being exactly true) and a methodological instrumentalism that claims science aims at
predictive accuracy. There is no place in his argument for approximate truth as the aim of science. I think even the staunchest
realist would agree with Sober if these were the only options.

®The Akaikean framework recommends maximizing a score called Akaike Information Criterion (AIC). Although I use
results about AIC, my argument relies very minimally on the particular form of this score. All my argument needs is that the
model which does better in terms of (i) fit with the extant data and (ii) simplicity (in the sense of having fewer adjustable
parameters) is KL-closer to truth. (And as I'll explain, in cases with which I am concerned [where data size is very large], when
[i] and [ii] are in conflict, [i] has lexical priority.) This claim is applicable to a wide range of cases where AIC itself isn’t. For
example, apart from methods that are equivalent to AIC for large data (such as cross-validation and AIC,), even the very
different Bayesian method based on Bayesian Information Criterion (BIC) concurs with this claim. (Notice that here ’'m only
claiming that a wide range of model selection criteria are compatible with the idea that I need for my argument. This is not to say
that such criteria are rooted in an a priori conception of simplicity [as paucity of adjustable parameters] or that they balance
between goodness-of-fit and simplicity [so understood] for a priori reasons. Each of these criteria specifies a goal and certain
assumptions about the inference problem for which it offers a solution. The conception of simplicity as paucity of parameter and
the particular trade-off with goodness-of-fit that is recommended by each of these criteria follows from the nature of the
inference problem it is designed to solve. I am thankful to an anonymous referee for pointing out the need for this clarification.)
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data are KL-closer to truth. Therefore, if scientific methodology typically involves selecting simpler
theories that have better fit with the available data (I will offer a few reasons that it does), then the
methodology of science will typically result in theories that are KL-closer to truth than their
predecessors. This idea must be conjoined with two other ideas to establish a full explanation for
RKL. (A) that our theory pool doesn’t contain too many theories (it’s not the case that we are getting
KL-closer to truth but never meaningfully close). And (B) that our theory pool contains candidate
theories that are meaningfully KL-close to truth. I argue that both (A) and (B) are true about mature
scientific disciplines like physics. I then consider the next realist rejoinder: What explains (A) and
(B) themselves? After exploring a few possible explanations, I conclude that there are no plausible
answers to this question that would support anything stronger than RKL. This gets me to the
conclusion that NMA can at most give the realist RKL.

2. Akaike and predictive accuracy

Suppose you have a body of data concerning two quantities, Xand Y. You know X and Y are linearly
related and you wish to find the particular linear function that captures their relation. There is a
standard solution to this problem on which there is consensus among statisticians. You must find
the linear function with maximum likelihood relative to the data, where the likelihood of a
hypothesis H given data D, L(H, D), is defined as the probability (or probability density) of
obtaining D conditional on H being true; that is, L(H, D) = df P(D|H).

What if the inference problem involves choosing between members of different models, for
example between the family of linear functions and the family of parabolic functions? (Hereafter, I'll
refer to families of hypotheses as ‘models,’ and I'll reserve the term ‘hypothesis’ for particular
members of models.) Here you cannot simply maximize likelihood. If you do, you will almost
always choose a parabolic function (or generally the most complex model), even if the true relation
is linear. This is due to the existence of noise in data. The more complex a model is, the more
freedom it has to fit the noise, and, therefore, the more likely it is to fit the noise instead of the main
pattern in the data. This is called ‘overfitting’ the data. Akaike’s framework offers a solution for how
to avoid overfitting if one’s aim is to estimate (and maximize) the predictive accuracies of models—
or equivalently to estimate (and minimize) their relative KL divergences from truth.

A few notational conventions. I will denote the truth by f By the truth, I mean the true
distribution of observed values. If the object of inquiry is the relation between two variables, X
and Y, whose (unknown) true relation is y = D(x) with an observational error, E, fis captured by the
equation, y = D(x) + E.” Notice that whether or not D(x) is deterministic, fis always probabilistic
because E is probabilistic. Consider a model, F(0), defined over a parameter space ®, (8 € ®). For
example, if F is the family of linear functions with a normally distributed error with the unknown
variance, o, F can be characterized by F:{y = ax + b + N(0,0), a,b€R, 6€R"}. Here the parameter
space of F is three dimensional. Since F is understood as a family of probability functions over
various possible values of X and Y, we can associate a likelihood function to it, F: L(0) = L(6,z) = ¢
(|0), where g(z|0) is the probability density of obtaining the data set z = {(x, x1), (X2, ¥2)> ... »(Xp, ¥}
conditional on 0 being the true parameter value. The value of 0 for which L(0) is maximized is called
the Maximum Likelihood Estimate (MLE) of F and I denote it by 6.

There is a sense in which y = D(x) may be called the truth. T use the term differently (as is customary in model selection
literature), because I'm interested in the true distribution of observed values. Nothing substantial hinges on this terminological
issue.; Notice that fis defined as the true distribution of observed values. When people talk about “error,” they often mean the
difference between the true value and the value predicted by our theory. In that common usage of error, not every error is
observational. It can be due to the fact that the theory is different from the true hypothesis. But here, since fjust is the (unknow)
true distribution, that kind of error doesn’t arise. 'm thankful to an anonymous referee for asking me to clarify this point.
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Equation (1) defines the KL divergence of a fully specified probability distribution from another.
The KL divergence of a model from the truth is defined as the average (with respect to data) KL
divergence of the MLE of the model. That is,

{DKL(f|[F(0))} = df Ey{ DKL IIF (8(y) ) ) } = EvExllog(/(x))] - EvEx [log g (xI0()) ) |
(2)

Here g(x|§(y)) is the likelihood (relative to data set x) of the MLE of F with respect to the data y.
The last equality holds because of (1) and the fact that log(f/g) = log(f) —log(g). E,E,[log(f(x))] is an
unknown constant that depends solely on f. When we are interested in comparing contender
models, this term can be ignored, since it is equal for all models. Therefore, a quantity of interest is:

A(F)=dfEyEx [log(g(xr@\(y)))] (3)

Malcolm Forster and Elliott Sober have called this quantity the predictive accuracy of F.'°
Suppose you obtain data, y, generated by fand use it to determine 6(y). Then you obtain a new data
set, x, and measure the fit of 6(y) relative to x, where fit is measured in terms of the logarithm of
likelihood (hereafter, log-likelihood). The predictive accuracy of F is the average value—with respect
to both x and y—of this log-likelihood. The predictive accuracy of f is more than any other
hypothesis or model. And the KL-closer to fa model is, the better its predictions are.

The goal in the Akaikean framework is to estimate predictive accuracy, which, by equations (2)
and (3), is equivalent to the KL divergences of the model from truth modulo a constant, which is
equal to the unknown predictive accuracy of f. Akaike offered the Akaike Information Criterion
(AIC) of model F as an estimator of its predictive accuracy.

AIC(F,y) = dflogL (6(y)) —k (4)

Here logL(@(y)) is the log-likelihood of F’s MLE and k is its number of adjustable parameters.
Akaike showed that if certain rather nonrestrictive conditions are met, AIC(F) is an unbiased
estimator of A(F) for large data sets. An estimator is unbiased just in case its average value equals the
value it estimates. That is,

Ey[AIC(F,y)] = A(F) (5)

Equation (5) captures Akaike’s main result.

3. Precisifying the realist thesis

Three features of the empirical success of scientific theories are pertinent to NMA. First, our best
theories have sometimes fit large bodies of data very precisely. Second, such theories are not
exceedingly complicated— they do not achieve such marvelous fit with data by making increasingly
complicated (or ad hoc) modifications. Third, and importantly, scientific theories have been able to
predict surprising facts that have nothing to do with the body of observations for the

19 Actually, they divide this quantity by #, the number of data points to make it independent of data size, which makes sense.
For my purposes A(F) as defined by equation (3) works well enough.

"!'This equation is approximately true. However, the difference between the two sides of the equation quickly goes to zero as
data size increases.
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accommodation of which the theories were originally formulated. For example, Fresnel’s wave
theory of light entailed that if an opaque disk is placed in front of a point source of light, there will be
a bright spot at the center of the disk’s shadow. That such a bright spot exists wasn’t part of the
evidence for the accommodation of which Fresnel designed his theory—indeed it was pointed out
as an “absurd” consequence of the theory by Poisson. And this makes the theory especially well-
confirmed by the observation of the bright spot. Or so it is argued by proponents of predictivism: the
thesis that ceteris paribus, successful predictions provide stronger evidence for a theory than
accommodations.

I believe a very strong version of predictivism can be established using Akaike’s results.
Accordingly, other things being equal, the model that predicts a body of data has a few units higher
AIC score than the model that accommodates that same body of data. (A difference of a few units of
AIC amounts to a significant difference in estimated predictive accuracy.)!? However, since I'll
argue that NMA cannot establish anything stronger than RKL, even if such a strong version of
predictivism is true, establishing the truth of this version of predictivism is unnecessary for my
argument in the present essay. The reader who maintains a weaker version of predictivism
(or rejects it altogether) should find no problem with my assumption of this version of
predictivism here.

Remarkably Successful theories are simple and fit the data excellently. Moreover, they have had
successful novel predictions. Therefore, they enjoy an amazing balance of goodness-of-fit and
simplicity: we can be very confident of their predictive accuracies. What explains this? RKL. By
equations (2) and (3), if a theory is KL-close to truth, its predictive accuracy is close to that of f—the
highest possible predictive accuracy.'? If T'is KL-close to f, the expected (meaning, average) accuracy
of T’s predictions is high. Thus, it is reasonable to expect T to have a track-record of empirical
success.

The above explanation might appear tautological, but it’s not. RKL concerns a general tendency
of a theory. Remarkable Success concerns its actual history. Compare: that the coin I am tossing is
fair explains the observation that in the 1,000 times I tossed it, the ratio of heads to tails was nearly
1. However, admittedly the above explanation doesn’t offer much by way of explaining Remarkable
Success. Surely, we’d want a deeper explanation of Remarkable Success. I offer such an explanation
by offering an explanation for RKL itself in section 5.

Before ending this section, I'd like to point out that RKL is the weakest sufficient explanation of
Remarkable Success in the sense that if RKL is false, then Remarkable Success is an improbable
coincidence. This comes directly from the fact that if T is not KL-close to f, its predictions aren’t
likely to be close to data generated by f.'*

121 have defended this view in Fatollahi (2023).

PEven the predictions of f are not entirely accurate because of observational error.

Strictly speaking, this only shows that the probability of Remarkable Success conditional on RKL is high and the probability
of Remarkable Success conditional on RKL being false is (very) low. However, the realist ultimately needs an argument that the
probability of Realism (or in this case, RKL) conditional on Remarkable Success is high, which doesn’t automatically follow
from the above argument. For any accepted scientific theory, T, this would follow only if the prior probability of realism (and
here RKL) about T'is not significantly lower than other theses such as constructive empiricism about T that are compatible with
accepting T. (Everyone in this debate agrees that we must accept T as our theory. The question is what exactly is involved in such
acceptance.) Champions of NMA have not neglected this aspect of the problem; see for example, Maxwell (1970, 17-18) and
Psillos (1999, 72-73). I am skeptical about talk of things like “the prior probability of realism” (and thus about a fully Bayesian
treatment of this issue) but to the extent that it is meaningful and useful to talk about such things, I find it plausible that the prior
probability of RKL about T isn’t significantly lower than the prior probability of other theses compatible with accepting T,
roughly for reasons offered by Psillos (1999). I am thankful to an anonymous referee for inviting me to clarify this point.
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4. Is RKL realist enough?
4.a The distribution of the independent variable(s)

So far I've argued that RKL explains Remarkable Success. But will the realist find it strong enough?
To decide this issue, in this section I consider the ways in which a theory can be KL-close to truth but
still different from it.

Suppose truth is represented by f: y = D(x) + E, where D(x) is a deterministic function and E is the
noise. Our model is g: y = d(x, €), where € is an error term. Importantly, both fand g are conditional
probability distributions for Y conditional on X. Therefore, RKL is effectively a claim about two
conditional probability distributions. This framework must be relativized (in fact it is implicitly
relativized) to a probability distribution for X.'> That s, g is KL-close to fgiven a known or estimated
P(X). (Hereafter, by ‘P(X)’ I mean the probability distribution of X relative to which RKL is
understood to be true.) Therefore, in principle, g can diverge from f to an arbitrarily large degree
for values of X with zero or very small probability according to P(X). That is, RKL can be true of g, if
g’s predictions are close to data generated by f for certain values of X that “matter,” not necessarily
the entire range of X. By expanding the range of X that matters, we make RKL stronger and more
interesting, but we also make proving it harder.

What determines P(X)? Minimally, P(X) must assign nonnegligible probabilities to the observed
values of X, otherwise RKL cannot explain Remarkable Success, which pertains to those values of X.
Sometimes we know the probability distribution that generated the observed values of X (Hereafter
Pobserved(X).” Pobservea(X) need not be identical to P(X)). Indeed, in controlled experiments, we
decide which values of X are observed. Other times, we have no control over the observed values of
X, but we can estimate Ppgerved(X). A sensible way to do so is to take Pgpservea(X) equal to 1/n
(n being the size of data) for observed values of X and zero elsewhere. Importantly, in either case,
Popserved(X) is effectively nonzero only within a range of values of X (hereafter, ‘Ropservea(X))-
Therefore, if we take P(X) equal to Pgpservea(X), RKL establishes the KL-closeness of g to f only
within Rgpserved(X). In that event, anything can happen outside Rpservea(X), despite RKL being true.
There is a familiar example in the history of physics that illustrates this. An excellent explanation for
the Remarkable Success of Newtonian mechanics in the nineteenth century was RKL relativized to
Popserved(X), which was consistent with the later developments in physics that Newtonian mechan-
ics works only for macroscopic phenomena and in small velocities compared to that of light.

RKL limited to Rgpservea(X) is what we minimally need to explain Remarkable Success, but what
else can we (nondeductively) infer from it? Sometimes we can infer the following stronger thesis
(hereafter, RKL™). Our theories are KL-close to truth over the entire range of X.'° The truth of RKL
(limited to Rypservea(X)) provides evidence for RKL", but how could we argue for RKL" more
conclusively? I can think of two ways. First, consider Rypserved(X) as a function of time. For the best
of our theories, this range has been expanding over time, each time the theory having been
successful in fitting the data in the expanded range. The realist might argue inductively that since
RKL has been true for Rgpserved(X)(£1); Ropserved(X)(£2), Ropserved(X)(t3), ... it will continue to hold
for larger ranges of X. Another way is to claim that RKL" is a superior explanation to RKL limited to
any finite range, because it doesn’t appeal to a mysterious range within which the theory is KL-close
to truth—any finite choice of range invites the question of why that particular range and not
another?'” This second argument has the added benefit that it establishes RKL" as part of an
explanation for Remarkable Success, i.e., within the context of NMA itself.

15Gee Forster (2002, 98) for discussion.

16T6 make the definition of RKL* rigorous, consider a series of probability functions, P,,(X), that are uniform distributions
over the interval I, = (-n, n), n € N. RKL" asserts that for all values of 7 above a certain threshold, the theory is KL-close to truth
relative to P,,(X).

7Notice the metaphysical nature of the question which asks “Why is g close to truth within Rgpserved(X) but not elsewhere?”
The epistemic fact that we have data only within Ropservea(X) is, at least prima facie, irrelevant to this question.

https://doi.org/10.1017/can.2023.21 Published online by Cambridge University Press


https://doi.org/10.1017/can.2023.21

Canadian Journal of Philosophy 29

Two cautionary points are in order though. First, we should always be less confident about
extrapolation than about interpolation. Regularities observed in a certain range are more likely to
show a different character in other ranges of data than in unobserved values within the same range.
Second, the deeper or more fundamental a regularity is, the more confident we can be of its validity
for other ranges of data. Phenomenological laws tend to be true for certain range of values.
Fundamental laws, by contrast, are more likely to hold universally. This is important because the
predictive elements of a theory (with which RKL is primarily concerned) are far more intimately
related to phenomenological laws than to fundamental ones.

I think although the arguments in favor of RKL" justify a modest confidence in it, our confidence
cannot be very high (at least in the absence of further evidence) given the above considerations.
Indeed, it appears to me that the realist’s most plausible move in face of RKL’s dependence on P(X)
is to argue that one of the appropriate ways in which a theory can approximate truth is by being
(nearly) true in certain ranges of X. This is the sense in which people often say that Newtonian
mechanics is approximately true under certain circumstances. However, this admission would
seriously limit the realist’s ability to justify belief in the near truth of fundamental/ontological
commitments of the theory based on Remarkable Success or RKL. Our theory, g, and the truth, f, can
produce nearly identical predictions in limited ranges of values, while their mathematical forms are
very different. (A familiar example: y = x and y = sin(x) are very close for values of x near 0.) As I will
argue shortly, when mathematical forms of g and f are (even slightly) different, the fundamental
ideas that are suggested/justified by the two can differ significantly. In 4.b, I will mention a few other
(more interesting) ways in which a theory can be KL-close to truth but different from it in more
fundamental respects.

Before doing so, however, I'd like briefly to discuss the relation between RKL and ROKL
(introduced in the introduction). The definition of RKL leaves the nature of P(X) open. Different
ways of understanding P(X), lead to different versions of RKL. For example, if one takes the range
for which P(X) is nonzero to be the range of observable values of X, then it becomes ROKL. Thus,
typically, RKL limited to Rypservea(X) is weaker than ROKL (because the entire observable range of X
isn’t typically observed) and RKL" (which is itself a form of RKL) is stronger than ROKL (because
the entire range of X might not be observable). I have a hard time coming up with any convincing
motivation for ROKL. I think depending on the case at hand, RKL limited to Ropserved(X) or RKL"
are better motivated. At any rate, what I will discuss in the rest of the essay is applicable to all
versions of RKL independently of what one takes P(X) to be.

An anonymous referee pointed out that we don’t need to take f as the true generating function.
Since nothing about the mathematical nature of KL divergence depends on f being true, everything
in the argument will be exactly the same even if we assumed f to be merely empirically adequate.
This idea has a kernel of truth in it. It is definitely the case that the mathematical nature of KL
divergence doesn’t require fto be true. Indeed, for treating any version of RKL that is weaker than or
equivalent to ROKL, this move won’t change anything. This is because within the range of
observable phenomena, the two ways of understanding f are equivalent, since “a theory is
empirically adequate exactly if what it says about the observable things and events in this world
is true” (van Fraassen 1980, 12). Only when it comes to stronger forms of RKL (like RKL") does it
matter which of the two understandings of f one adopts. The problem with taking f to be only
empirically adequate is that in that case one cannot even formulate any stronger form of RKL than
ROKL (regardless of whether one accepts or rejects it). But since my goal is to determine how strong
arealist thesis NMA can establish, I'd want to be able to formulate stronger forms of realism (even if
I end up not defending them). Moreover, recall that, as I mentioned in the introduction, my main
thesis is that even if one grants the realist that IBE can in principle tell us about unobservables, NMA
cannot give us anything stronger than some form of RKL (where the form depends on how we
understand P(X)) the strongest of which is RKL". Thus, the nature of my argument demands that I
allow every realist-friendly assumption I plausibly can, lest I set the debate up in ways that disfavor
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realism. Taking f as the true function is one of those assumptions. Notice, however, that I don’t
assume we know anything special about f.

4.b Other divergences

Consider an example in which the error in g is additive (i.e., g y = d(x) + €) and the distribution of
error is the same for fand g (e.g., E and € both have normal distributions with mean 0 and variance
1). Then RKL is true about g just in case the curve that represents d(x) (the deterministic part of g) is
close to the curve that represents D(x) (the deterministic part of f) for those values of X for which
P(X) is not extremely small. Similarly, RKL" is true just in case this holds for (almost) all values of X.
Thus, an intuitive way of understanding RKL is this: the curve representing our theory is close
(in numerical value) to the curve representing the truth. This way of thinking about KL-closeness
helps illustrate how weak a notion of “closeness” it is, because it requires nothing about the
mathematical forms of g The mathematical form of a theory—the quantities it posits and the
mathematical relation(s) among them—affects, sometimes significantly, the plausibility of various
claims about the causal or explanatory structure of the system under study. Thus, if the realist takes
science to tell us about this structure, RKL falls far short of her ideal.

Alfonso Garcia-Lapefia (Forthcoming) argues that a theory’s truthlikeness requires not only
“accuracy” (getting the numbers nearly right) but also “nomicity,” getting the shape of the curve
roughly right. RKL doesn’t require anything about nomicity. This is a potential weakness of RKL
that I won’t discuss here. Instead, I will mention three other ways in which RKL might be
insufficiently strong, which go beyond the combined demands of accuracy and nomicity but which
are required for the truthlikeness of fundamental/ontological commitments. (Clarification: I'm not
arguing that the realist must insist that our theories are similar to truth in any of these forms. She can
opt for weaker versions of the Realist Thesis like RKL. I'm only describing how strong RKL is.)

Nested Models. Suppose fis y = 2x + 1 + N(0, 1) and we’re studying it using polynomial models.
Here g might be of the form y = 8x” + ax + b+ N(0, 1), where § is small but nonzero. The realist might
think (or hope) that by increasing the data size or by setting more stringent empirical standards on
the success of g (for example, by insisting that g must have a track record of successful predictions),
one can reasonably expect § to become zero after a certain point. However, this is unlikely on the
assumption of RKL. It is a well-known fact in model selection that if one maximizes AIC, one’s
hypothesis converges to truth (3 approaches zero) but one’s model need not be “correct” no matter
how large the data is (5 need not be zero for any finite body of data).'® In other words, no matter how
stringent one’s standards of empirical success are, the model to which g belongs (the family of
quadratic functions) can be different from the smallest model that contains f—the family one
typically associates f with (the family of linear functions). This is relevant to RKL because to
maximize AIC is to minimize KL divergence. Thus, one can have a theory that is very KL-close to
truth, while one is “wrong” about the family to which it belongs. This isn’t surprising. If J is small
enough, y = x* + 2x + 1 + N(0, 1) can be arbitrarily KL-close to y = 2x + 1 + N(0, 1), thus it can be
predictively successful to an arbitrarily high standard.

Now for small enough J, g is nearly linear. So one can argue that ¢'s mathematical form
approximates that of f's. However, fundamental/ontological commitments of a theory can be highly
sensitive to its mathematical form in ways that there might be a big difference between a quadratic
but nearly linear function and a linear one. Here is an example. Newton rejected vortex theories of
planetary motion in part because he believed vortices can only act on the surfaces of planets. Thus, if
gravity was due to a vortex, it should have been proportional to the surface areas of the planets not
their volumes (masses). He sometimes favored another explanation according to which gravity was

"®In the statistical jargon, AIC is said to be an inconsistent estimator of the number of parameters in the model (which
shouldn’t be mistaken for a logical inconsistency in AIC). See section 7 of Forster (2002) for helpful discussion.
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due to the elastic force of an all-pervading ether that interacted with the entire body of planets. Now
suppose our law for gravity suggested that (instead of being proportional to R?) gravitational force is
proportional to either R**° or R® + R®, where R is the radius of the planet. For small enough d, both
forms can be arbitrarily KL-close to R>. However, neither particularly justifies the ether explanation
of gravity. R**® seems inconsistent with the ether theory. And R + R® suggests that another
mechanism must be producing the R®-part. Here we have three functions that can be arbitrarily
KL-close but can suggest massively different causal structures.

Spurious Contributions. A special case of the above phenomenon deserves attention. This is
when fis a function of one variable, say, y = ax + b, but g is a function of two (or more) variables, say,
y =0z + cx + d—where § remaining nonzero no matter how stringent one’s empirical standards are.
For small 3, one could argue that the contribution of Z is small or negligible relative to X, but it’s
never zero and therefore, the ontological/fundamental picture suggested by g, (based on two or
more contributing factors) is different from that of f.

Partial Causes. Suppose fhas the form f=f; + f,. One might hope that if g is “close” to f, it must be
explicitly of the form g = g; + g, where g is close to f; and g, is close to f,. RKL doesn’t satisfy this
requirement. For example, one can think of f as the sum of two ordinary trigonometric functions
and g as a very good approximation of it by polynomial functions. In that case, one cannot infer
from looking at g that fis the sum of two functions. Important corollary: if f; and f, represent the
contributions of two partial causes that conjointly determine a full cause, g gives no clue about the
existence of two partial causes, since it isn’t explicitly of the form g = g; + g>. Thus, we could have an
arbitrarily KL-close theory to truth, while we are quite oblivious even to the most rudimentary facts
about the metaphysical structure.

5. The realist’s rejoinder

Recall that one of NMA’s premises was Uniqueness: that the Realist Thesis offers the only plausible
explanation for Remarkable Success. Having RKL as a potential explanation for Remarkable
Success, the problem for the realist is that she cannot easily appeal to NMA to establish a stronger
version of the Realist Thesis. She has two options. She can argue that a stronger version is a better
explanation of Remarkable Success than RKL. Or, she can argue that RKL itself calls for an
explanation and that explanation must appeal to a stronger thesis. I won’t discuss the first option
in detail. As I argued in section 3, if the proposed explanation doesn’t entail RKL, then Remarkable
Success becomes an improbable coincidence. This makes the first option unlikely to work. But no
more could be said about this without knowing the exact content of such a rival explanation.

However, the second option appears promising. Indeed, this is a rather typical argumentative
strategy for the realist. For example, Arthur Fine argues that Remarkable Success can be explained
by the instrumental reliability of our theories, where ‘instrumental reliability’ is understood as a
kind of “capacity” to produce good predictions.'? In response, Stathis Psillos writes,

Although certainly in the right direction, this account is incomplete. Not because there are no
dispositions, or powers, in nature, but rather because one would expect also an explanation of
why and how theories have such a disposition to be instrumentally reliable ... Is it a brute fact
of nature that theories—being paradigmatic human constructions—have the disposition to
be instrumentally reliable? This seems hardly credible. If dispositions of this sort need
grounding, then there is an obvious candidate: the property of being approximately true
would ground the power of scientific theories to be instrumentally reliable. Since Fine would
certainly deny this account, he owes us an alternative story of how this disposition is
grounded. (1999, 90-91)

“Fine 1991, 83.
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A virtually identical argument can be offered against RKL. What explains the fact that our
theories are remarkably KL-close to truth other than its fundamental commitments being approx-
imately true? RKL itself cries for explanation.

Fair enough. I owe the realist an explanation for RKL and I think I have one. Our theories are
KL-close to truth because the methodology of science involves (among other things) replacing
theories that are less simple?® and less close to the extant data by those that are more so. Akaike’s
results tell us that if we follow this methodology, we will continually get KL-closer to truth. Thus, if
there are theories in our radar that are meaningfully KL-close to truth, we will sooner or later choose
them. Nothing about the truth (or near truth, whatever that means) of fundamental/ontological
aspects of our theories is required.?!

Here the main idea is that scientific methodology involves (among other things) balancing
considerations of goodness-of-fit with those of simplicity. To the extent that this is the case,
scientific methodology jibes with the Akaikean recommendation. Given Akaike’s results, it follows
that subsequent theories are typically KL-closer to truth than their predecessors.

Two points must be mentioned here. First, since RKL concerns only the predictive elements of
the theory, the above explanation is satisfactory only if considerations of fit and simplicity of the
predictive elements of the theory play an important role in theory choice. Fortunately, the fit of the
predictive elements and the fit of the theory are the same thing—the theory is connected to data via
its predictive elements. However, simplicity considerations are not exhausted by those of predictive
elements. For example, although other things being equal, theories with more parsimonious
ontologies have simpler predictive elements (a linear function of one variable is simpler than a
linear function of two variables), the ontological parsimony of the theory need not be reflected in the
simplicity of its predictive elements. Second, considerations of fit and simplicity ground many other
considerations that are important in theory choice. Earlier I claimed that the evidential significance
of predictions is grounded in simplicity-favoring considerations. Forster and Sober (1994) argue
that unification is similarly grounded.?” This explanation of RKL works if the totality of such
considerations plays a major role in theory choice. I think they do.

Objection: the Akaikean framework recommends optimizing a very particular balance between
goodness-of-fit and simplicity. Thus, to show that the methodology is responsive to the same
considerations doesn’t establish that scientific methodology and the Akaikean recommendation are
in line. They must assign these considerations the same relative weights. This objection, although
strictly speaking true, overlooks an important fact. Scientific inferences, at least insofar as our best
theories are concerned, are different from typical curve-fitting or model selection problems in an
important respect: they are based on very large data. When data size increases, the first term in AIC
(logL(L(M))) is proportional to n, the number of data points. (Because with large n, the average per
datum log-likelihood is almost constant for different values of n.) However, the penalty term for
complexity remains constant. Therefore, considerations of goodness-of-fit dominate those of
simplicity. In other words, when data size is large, there is a lexical ordering between the two

**Here and throughout the paper, my use of ‘simplicity’ and ‘simplicity-favoring considerations is concerned only with
simplicity as paucity of adjustable parameters—the sense of simplicity that, as Akaike shows, bears on KL-closeness. I adopt this
terminology for the sake of convenience. However, I do not intend to suggest that this is the only conception of simplicity that
matters to theory choice. For example, Forster et al. (2018) introduce the principle of ‘frugality’ in connection with causal
inference. This is an important sense of simplicity, which is different from paucity of adjustable parameters. I am thankful to an
anonymous referee for suggesting that I clarify this point.

21A clarification (almost entirely borrowed from White [2003]) about how RKL is understood as the explanandum here. I
report the results of White’s analysis and refer the interested reader to his essay for the argument. Suppose T'is a theory with a
remarkable track record of predictive success. That T is KL-close to f is a necessary fact having to do with their contents and
doesn’t need any explanation. RKL requires an explanation when it is understood as the idea that “our theory is KL-close to
truth,” where “our theory” nonrigidly refers to whatever theory we hold. The Akaikean explanation I discuss is an explanation of
RKL in this sense.

*’Notice that the relevant sense of simplicity for all of these cases is paucity of adjustable parameters. See also footnote 20.
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considerations: simplicity-favoring considerations are relevant only when rival theories have (or are
supposed to have) equally good fit with the data.

Although it goes well beyond the scope of the present essay to show this conclusively, I think
scientific methodology does give simplicity a secondary status. The most famous historical example
in which simplicity-favoring considerations supposedly played a major role is the case of Ptolemaic
versus Copernican astronomy. In the seventeenth century, when Copernicanism became dominant
in scientific circles, there existed a relatively massive body of observational data on the motions of
the planets. (Notice that every single precise-enough observation is a datum here.) The two
astronomical theories were about equally fit with those observations. Thus, the relative simplicity
of the Copernican system could play a decisive role in theory choice.*

Examples like this are suggestive but are no proof for my claim. The best argument I can offer
(still not a proof) is this. Scientists often adopt a theory despite its inability to accommodate part of
observational data in part because it is simple or has other epistemic merits. But they do so believing
(justifiably or not) that the discrepancy will be sorted out. That is, they don’t accept the “errors” in
the deliverances of the theory in a permanent fashion. They temporarily allow for those “anomalies”
because they are confident in the theory’s ability eventually to accommodate them or for the
recalcitrant data to turn out to be misleading evidence. If there was an in-principle competition
between simplicity and goodness-of-fit, it would have been an acceptable argument that the
anomaly exists and is not going to go away, but this epistemic vice is counterbalanced by the
theory’s other merits, like simplicity. This doesn’t appear to be a typically acceptable argumentative
strategy in science, especially when it comes to our best theories.

The above argument might lead to a misunderstanding. The idea that scientific methodology is
roughly in accord with the Akaikean recommendation might appear to suggest a clear defense of
methodological instrumentalism (that science aims at instrumental success). The goal in the
Akaikean framework is maximizing predictive accuracy—an undoubtedly instrumentalist goal.
Thus, to suggest that the practice of science is in accord with the Akaikean recommendation might
seem an endorsement of methodological instrumentalism. However, I have argued that scientific
methodology jibes with the Akaikean recommendation only insofar as it gives a secondary status to
simplicity when data size is large. Interestingly, we have another framework based on Bayesian
Information Criterion (BIC) (defined by BIC(F)=% logL(L(F))) — (k4)log(n), where n is the number
of data points) that can be interpreted in ways that are harmonious with methodological realism,**
but similarly assigns a secondary status to simplicity for large data. (When # is large, the first term,
which is proportional to n, dominates the second term, which is proportional to log(#n)).>> Thus, my

*The case of Copernican versus Ptolemaic astronomies is also one of the best historical examples in which one can see how
paucity of adjustable parameters can lead to higher predictive accuracy. The Ptolemaic theory could in principle be made
compatible with any astronomical data by the help of more and more epicycles. However, once you select the best fitted
Ptolemaic hypothesis given previously acquired data, the fitted hypothesis would do poorly in predicting new data, whereas the
Copernican theory was able to predict new data with much higher accuracy. This is exactly what Akaike’s theory predicts
because for any fixed body of extant data, the best fitted versions of the two theories have about equal fit with that data; but the
Ptolemaic theory has far more adjustable parameters. See also Forster and Sober (1994, 14-15). I am thankful to an anonymous
referee for inviting me to say more about this case.

*BIC is an approximation of the (average) log-likelihood of the model. Assign prior probabilities to your models and
multiply them with their BIC scores and you have an approximation of their posterior probabilities (modulo a normalizing
constant). The goal in this framework is maximizing model probability, which can be interpreted in line with methodological
realism. (This is not to say that a proponent of BIC-based model selection must be a realist. I am grateful to an anonymous
referee for suggesting that I clarify this point.)

5BIC and AIC (and some other model selection criteria, like AIC.) measure the goodness-of-fit of a model by log-likelihood
of its MLE. However, they differ on the relative weights they assign to simplicity (in balancing it against goodness-of-fit). The
penalty term for complexity is (k4)log(n) for BIC, while it is k for AIC. Thus, assuming the number of data points isn’t very low
(that is, assuming log(n) > 2), for a fixed n, BIC penalizes complex models more than AIC does (while the weight of simplicity
relative to goodness-of-fit diminishes with larger data sets for both AIC and BIC). (See Forster [2002] for a more thorough
comparison between AIC and BIC.) I am thankful to an anonymous referee for suggesting that I clarify this.
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observation that simplicity has a secondary status in scientific methodology is compatible with both
realist and instrumentalist frameworks in model selection.

This ends my argument for the claim that successive scientific theories are typically KL-closer to
truth than their predecessors. This is the main idea in my explanation for RKL, but two more ideas
are needed. (A) That there aren’t too many theories in our theory pool, so that we could always get
KL-closer but never close enough in any meaningful way. And more importantly, (B) that some of
our candidate theories for explaining the entirety (or a big part) of the data are meaningfully
KL-close to truth to begin with.>® Neither fact is trivial, but we can be fairly confident about both.
We have direct access to the number of theories taken seriously by scientists. Although the number
of candidate theories (both at any given time and collectively over time) isn’t meager, it’s not
unmanageable either. So A is true. B is more interesting and more difficult to establish. Indeed, I
think B is neither true of all sciences, nor always about any particular science. Sometimes we don’t
have any good candidate theory that can satisfactorily fit the existing data without unacceptable
complexity. In fact, the hitherto falsity of B for certain scientific disciplines, like psychology, might
be the reason why they arguably haven’t attained the status of mature science. However, when it
comes to scientific areas to which our best scientific theories belong, we have direct evidence that
some theories in our radar are KL-close to truth, because we have direct evidence that our theory
itself is such.

The realist might justifiably ask for an explanation for A and B themselves. Why is it that we are
able, at least in certain areas of inquiry, to formulate theories that are KL-close to truth? I think this
is a fair question, but one that is unlikely, even prima facie, to help the realist’s position. Consider the
set of all the relatively simple models describing functional dependencies between the “natural”
properties of a system (properties that are describable by predicates like green and blue, as opposed
to grue and bleen) and call it M(S), where S is the system under study. We can think of M(S) as the
set of our candidate models for S prior to consulting the data at any given point in the development
of a science. (It’s a mistake to think of M(S) as a fixed set determined a priori. More about this
momentarily.) This is because we hardly ever consider hypotheses that are either formulated in
terms of functions of great complexity (like the family of polynomials of degree 1000) or in terms of
other, “nonnatural” properties like grue. M(S) is huge but it’s not unmanageably so, especially given
the fact that data typically weeds out an absolute majority of its members. Thus, the fact that M(S) is
the set of our candidate models explains A. B can be explained by the fact that there are members of
M(S) that are KL-close to truth (given an error distribution). But what explains this fact?

The realist might argue that only the (near) truth of the fundamental/ontological aspects of our
theories can explain this. Richard Boyd has offered such an argument. Accordingly, all aspects of
scientific method—including which properties of a system are deemed “natural” or the kind of
functional dependencies that are considered “simple”are theory-dependent. Therefore, the judg-
ment to include a given function in M(S) is itself theory dependent. Boyd adds,

The only scientifically plausible explanation for the reliability of a scientific methodology that
is so theory dependent is a thoroughgoingly realistic explanation: scientific methodology,
dictated by currently accepted theories, is reliable at producing further knowledge precisely
because, and to the extent that, currently accepted theories are relevantly approximately true.”
(1990, 362)

I agree that the determination of the members of M(S) (among other aspects of scientific
methodology) is a theory-dependent judgement. However, I think the move from this idea to “a

%%Tt is important to bear in mind that (B) concerns only the KL-closeness of those theories that are sophisticated enough to be
candidates for explaining (most of) the phenomena in a given scientific discipline. Otherwise, (B) becomes trivial, since there
are many trivial theories we can come up with that are very KL-close to truth or outright true. I am grateful to an anonymous
referee for pointing this out to me.
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thoroughgoingly realistic explanation” isn’t warranted. Take the concept of ‘inertial mass’ as it was
introduced to natural philosophy by Newton. Why were he and other natural philosophers who
came after him convinced that mass is a “natural” property of a physical system? Because they
observed that simple hypotheses formulated in terms of mass can fit the extant data nicely. That is,
the fact that scientific methodology jibes with the Akaikean recommendation explains the fact that
the development of M(S) over time leads to the inclusion of new hypotheses that are KL-closer to
truth than their predecessors.

This is not (yet) a full explanation of the fact that some members of M(S) are meaningfully
KL-close to truth. We could be getting closer (in adding new members to M(S)) but not be
meaningfully close. Thus, the remaining question is: Why is it that we are able to formulate theories
that are meaningfully KL-close to truth at all? I don’t know the answer, but I can think of only two
initially promising ones. (I) Nothing. It is just a brute fact that there are members of M(S) that are
KL-close to truth. This might not be as bad an idea as it initially appears. As I argued earlier, being
KL-close to truth is not a particularly exacting requirement. Therefore, that our most fundamental
epistemic tendencies (e.g., the concepts in terms of which we tend to think) are such that in some
areas of inquiry, there are members of M(S) that are KL-close to truth might not be a particularly
impressive epistemic condition to need an explanation. (II) It is evolutionarily beneficial to think in
terms of concepts that are such that simple hypotheses formulated in their terms are KL-close to
truth. Notice, however, that although constructing theories that are KL-close to truth
(or instrumentally reliable) might have evolutionary benefits, forming ontologically/fundamentally
true theories has no further evolutionary benefit. (That is, having ontologically/fundamentally true
beliefs has no evolutionary benefit conditional on the belief being instrumentally reliable.) Thus, if
this explanation is indeed true, it doesn’t favor the realist’s position.?”

Is there any realist-friendly explanation for the fact that some of the members of M(S) are
KL-close to truth? The only thing that comes to my mind is something like Descartes’s appeal to
God’s benevolence in creating us (which justifies his clear-and-distinct-idea criterion). According
to that explanation, we tend to think about concepts that enable us to discover deep truths, which
then entail predictive elements that are KL-close to truth. Regardless of what one thinks about this
epistemological view, I think even Descartes would have probably agreed that it is particularly
unconvincing to argue for it by way of explaining the Remarkable Success of science. I cannot think of
any plausible realist rejoinders at this point.

Therefore, I conclude that the strongest version of the Realist Thesis that NMA can plausibly
establish is RKL and, in some instances, its extensions like RKL".

Perhaps there is a deeper lesson we can learn from NMA’s inability to establish a strong version
of realism, independently of the particular nature of RKL and its explanation. In many academic
disciplines, it is part of common wisdom that there ain’t no such thing as a free lunch. Philosophers
are by no means strangers to this idea. It is a notorious fact about deductive reasoning that it doesn’t
discover anything that’s not already contained in the premises. That is why there’s been more
attention in recent decades to various nondeductive forms of reasoning, both as objects of study and
as forms of reasoning within philosophy. Granted that such nondeductive forms of reasoning are
ampliative—they add something to the premises—we should still be wary of arguments that
purport to give us something big for nothing. But that is exactly what NMA purports to give
us. It begins with the instrumental success of science and purports to establish the (near) truth of
ontological or fundamental commitments of scientific theories. Even if we didn’t have a well worked
out answer to the realist’s challenge for explaining Remarkable Success, this big leap in NMA would
have been sufficient ground for concern. Indeed, I find it particularly problematic that NMA is

*’The idea here is quite different from van Fraassen’s Darwinist explanation of the Remarkable Success of scientific theories.
(The argument is presented in van Fraassen [1980, 40]. See Lipton [1991, 192-95] and Psillos [1999, 93—-94] for compelling
critiques.)
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insensitive to the particular content and the prima facie metaphysical plausibility of the theory’s
ontology—instrumental success is supposed to be enough.

A useful concept in studying a physical system is that of its ‘degrees of freedom.” When the
number of constraints on the system are less than its degrees of freedom, its state is indeterminable.
Perhaps a similar notion is useful in epistemology. When all you know about a theory is that it is
predictively successful, there is no way you can decide the truth of particular parts of it. More
information is needed to settle the issue one way or the other. And in all likelihood, the issue is going
to be settled differently for different theories, even if they are all predictively successful. This is
compatible with the plausible idea that the predictive success of a theory provides evidence for its
fundamental commitments. But having evidence for something is different from having a (fallible)
proof for it.
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