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THE FUNCTIONAL EQUATION OF ZETA DISTRIBUTIONS
ASSOCIATED WITH PREHOMOGENEOUS
VECTOR SPACES (G, 5, M(n, C))

YASUO TERANISHI

Introduction

Let (G, p, V) be a triple of a linear algebraic group G and a rational
representation p on a finite dimensional vector, space V, all defined over
the complex number field C.

We call the triple (G, p, V) a prehomogeneous vector space if G has
a Zariski-open orbit. Assume that the triple (G, p, V) is a prehomo-
geneous vector space. Then there exists a proper algebraic subset S of
V such that V— S is a single G-orbit. The algebraic set S is called the
singular set of (G, p, V). For . a rational character of G, a non-zero
rational function P on V is called a relative invariant of (G, p, V) cor-
responding to ¥ if

P(p(g)x) = A(g)P(x)  (geG, xe V).

Let P, - --, P, be irreducible polynomials defining the components of
S with codimension 1. It is known that P, - - -, P, are relative invariants
of (G, p, V) (cf. [1]). The set {P, ---, P,} is called a complete set of irre-
ducible relative invariants of (G, p, V).

The purpose of this paper is to give an explicit expression for the
Fourier transform of relative invariants on a certain class of prehomo-
geneous vector spaces.

NoraTtioN. We denote by Z, R and C the ring of integers, the rational
number field and the complex number field, respectively. For ze C, we
set e(2) = exp (2nv/ —12). We denote by M(n, C) (resp. M(n, R)) the com-
plex (resp. real) vector space consisting of all n by n matrices with entries
in C (resp. R). For any matrix x, ‘x denotes the transposed matrix. For
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xe M, C), we set x* ='x"'. For a C~=-manifold X, Cy(X) denotes the
space of C~-functions with compact support on X. We denote by I'(2)
the usual Gamma function. We denote by B,(C) (resp. B,(R)) the sub-
group of the general linear group GL(n, C) (resp. GL(n, R)) consisting of
all upper triangular matrices.

§1. Prehomogeneous vector space (G, 5, M(n, C))

1.1. Let G be a linear algebraic group, p: G — GL(n, C) a rational
representation of G both defined over C. We denote by G the direct
product group GXB,(C). For any xe M(n,C) and g = (g,a)c G, set
#8)x = p(g)xa™'. Then g is a rational representation of G. We denote
by g* the contragredient representation to g. It is known that the triple
@, g, M(n, C)) is a prehomogeneous vector space if and only if the triple
(G, p*, M(n, C)) is a prehomogeneous vector space. In what follows we
assume that the triplet (G, g, M(n, C))is a P.V. Let {P, ---, P,} be a com-
plete set of irreducible relative invariants of (G, 8, M(n,C)) and %, ---, %,
characters of P,, - - -, P,, respectively. Since det x is an irreducible relative
invariant of (G, 8, M(n, C)), we may set Pyx) = detx. Let P(x) be any
relative invariant polynomial of (G, g, M(n, C)). For any x e M(n, C)), we
denote by x‘ the ¢-th column vector of x. Then it is known that P(x) is
homogeneous with respect to each column vector x* (1 < ¢ < n). Denoting
by 2, the homogeneous degree of P(x) with respect to x’, one can show
that 4,’s satisfy

212222"’2271, (Cf' [6])'

Denoting by 2 the n-tuple (4, - - -, 4,), we call A the partition corre-
sponding to the relative invariant polynomial P(x). Let A(0), - .-, (k) be
partitions corresponding to P, - - -, P,, respectively. We set

P(;k(x):Po(x)Zdetx’ X(;'(:XO’
Pi(x) = P(x*)P(x)y™ and Xf =174 1<i<k).

Then one sees easily that P¥, - .-, PF are relative invariants of (G, 5%,
M(n, C)) and satisfy

PHp*(@)x) = 1@ 'P(x) (0<i<k).

Moreover the set {P§, --., P§} is a complete set of irreducible relative
invariants of (G, 7%, M(n, C)) (cf. [6]).
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We denote by X,,(G) the group of all rational characters corresponding
to the relative invariants of (G, 8, M(n, C)). It is known that the group
XP(G) is a free abelian group of rank % + 1 generated by X, ---, %, and
hence there exists k& 4 1-tuples (5(X,), - - -, 8(X,)) and (6*(X,), - - -, 0*(0),) € Z**!
such that

k k
=Tl awe= 1", (cf. [6]).
$=0 i=0
For any X eX,,(G), we set
k k

. g F* ()
Px:npg(z)z’ P;kIHP;k Ai’

o) = (6o, - -+, 8(),) and  3*() = (X, - - -, *(0)s) -

Let 2(0), - - -, (k) be partitions of P, ---, P,, respectively. For any
s =(sp -+, 8:) € C*", we write

M) = 35 .40,
and
H© =5+ Ysli — i) A<i<n).
Furthermore we set
16 = [ 7@ +n— ¢ +D
and
i) = [T T +n— ¢+ 1).

Then the “b-function” of (G, 8, M(n, C)) (resp. (é, 8, M(n, C)) is given by

by(s) = 1) (resp. b(s) = ‘ﬂslﬂ), (cf. [6]).

(s — 3(0) (s — 0*(0)
For s = (sy, 81, -+ -, 8,) € C**', we set
§* = (s, 8f, -+, 88,
where s¥ = — 2(s) and sf =5, (1 < i< k).

LemmA 1. Notations being as above, one h...
(1) 2(s*) = —20) A1 <L <),
(i) o()* = —a*().
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Proof. (i) (s = 318000 — D) — 3 8.00),

= = 215,
= - 2/3(3)
(i) 80" = (=200, 3t) -~ -, 5

= (=2 00040, 500, -+, 3(2))

Then one sees immediately

5*() = (350030, =30, -+, 30) QED.

If x is not contained in the singular set of (é, g, M(n, C)), it follows
from the definition of P}(x) that

(1) Pix*) = Pyx)™.
For XeX,,(G), we set

d@®) = 3 6(1), deg P, and d*(2) = 37 5%(%). deg Py .
=0 =0

1.2. In the following, we assume that G is defined over R. Denoting
by Gy the set of R-rational points of G, we set

~

Gy = G X B,(R),
S = SNM(n, R,
S} =S*NMn, R),
Or = flog -
Furthermore we always assume the following conditions:
(A.1) Gg is a connected subgroup of GL(n, R).

(A.2) the singular set S of (G, 8, M(n, C)) is the union of irreducible
hypersurfaces of the form

S, ={xeMn,R); P(x) =0} (0<i<h),

where, for each i, P,(x) is a C-irreducible polynomial with real coefficients.
(A.3) M(n, R) — Sy is a single pz(Gg)-orbit.
We denote by G% the connected components of the identity and con-
.icCer the pR(G%)-orbital decomposition of M(n, R) — S

Mn,R) — Spg=V,U---UV,.
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For pr(G%)-orbit V,, we set
V¥={xeMn,R); x*ecV}.

Then one sees that the set M(n, R) — S% is decomposed into the disjoint
union of g}(G%)-orbits
Mn,R) — St =V¥U-.-UVE.
For s = (s, ---,8,)e C**", we set ‘

k .

P@I = [[IP@I,  P@I = [ IPr@),
@ = [x@l, 1@l =[] 12"

§2. Fourier transforms of relative invariants

2.1. We denote by S(M(n, R)) the Schwartz space of the vector space
M(n, R). We consider the following integrals:

(2) of,9) = | f@|P@|dx
and |
(3) Or(f,9) = | f@IP@rdy (1 <i<y)

where dx is the Euclidean measure on .Vi. If Re(s), >0, ---, Re(s), >0,
the above integrals @.,(f, s), ®f(f, s) are absolutely convergent.
For XeX,(é), we set

e(X) =sgn Py|,, and &f(X) =sgn P}l (1 <i<y).

By (1), one has ¢;,(X) = (%), (1 <i <v). We also set, for s = (s, - - -, ;)
‘€ Ck +1’

d(s) = i s, deg P,, d*(s) = ;Z; s, deg P}
es) = e(% 3l — eioce») ,ex(s) = e(% sl — et (1) -

Then, one can easily check:

d(n) = d@G),  d*®) = d*@* ),
e(X) = &(0(0), &) = M),
d(s) = —d*(s*) and dX) = d*(X).
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We set
1 1
F(f,8) = —@/(f,s) and F¥f,s)=- D¥(f, s) .
(9 = 1059469 (F9) = Sy 959
Denoting by 7 the Fourier transform of f, one can easily prove the fol-
lowing

LemmA 2. If Re(s,), - - -, Re(s,) are sufficiently large, one has
(1) for any X ¢ Xp(é), such that §*(X),, - - -, 0*(0), > 0,

F(pif, s) = (—2av 1) *0e F(f, s — a(0))
and for any X e X,(G) such that 5(X), - - -, (), > 0,
FHP,-f,8) = @av=1) @ OFKf, s — 5*(0)
(ii) for any 1 e X,(G) such that d(X), - - -, 3(), > 0,
/\ Py
F(P,(grad)-f, s) = (—2av/ —1)*Pe(Dby(s + sW)F(f, s + 5(1))
and for any 1 e X,(G) such that 5*(), - - -, 5*(X), = 0,
T A
F¥(P¥(grad)f, s) = (2zv/ =17 Db} (s + s*O)FH(f, s + 5*(1)) .
@(ii) for any %e X(G) such that 6*(X),, - - -, 6*(X), > 0,
F (P} (grad)f, s) = e,()(—D*PF(f, s — a(X))
and for any te X,(G) such that 6(X),, - - -, (1), > 0,
F¥(Py(grad)f, s) = eF(I(—D*PF¥Kf, s — 0*(1)) .
Let D be the domain in C**! defined by
D= {(SO’ ° '9sk)e Ck+1; Re(so) > O) Y Re(sk) > 0} .

Then one sees that s* is contained in D when s is contained in D. By
Lemma 2 (iii), one has, for any i (1 < i <),

F(Py(grad)f, s) = e(X)"(—1)""F(f, s — md(%y))
and
Fx(Py(grad)f, s) = e(2)"(—D)""F¥f, s — mi*(X,))

if Re(sy), - - -, Re (s,) are sufficiently large. Hence we can continue ana-
Iytically Fi(f, s) and F*(f,s) to holomorphic functions on D. Again, by
Lemma 2 (iii), one can easily show that the mapping f— F.(f, s) (resp.
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F¥(f, s)) defines a tempered distribution on the vector space M(n, R) when
s is contained in D (cf. Proposition 1.3 in [3]). We call this tempered
distribution a zeta distribution associated with the prehomogeneous vector
space (G, 8, M(n, C)).

Putting
O(f, ) = “(Df, 8), -+ -, DS, SN
and
OX(f, 8) = (DH(f, 9), - -+, DS, 9))
one has the following proposition.

ProposITION 1. The vector valued functions @(f, s) and @*(f, s) satisfy
a functional equation of the following form

O(f, s — nd(1) = (s — SELNC(HP*(f, s%)

where s varies in the domain D and C(s) is a v X v matrix whose entries
C,,(s) are holomorphic in D.

This proposition can be proved by the similar argument to Theorem
1.1 in [3]. For the sake of completement, we shall give a proof.

Proof of Proposition 1. For fe S(M(n, R)), set g-f(x) = f(p*(g) "' x)
(ge G%). Then one has g/\ f(x) = %;"(g)f (g 'x) and hence it follow that
F(&1, s — nt) = [18)| | Ug) FUf, s — nky),
F(g-f, s*) = [X(&) | ¥*(&)|""Ff, s¥) .

On the other hand, one can easily check that |X(g)[° = [x*(g)|*"
Then by a theorem of Bruhat (Theorem 3.1 in [7]), there exist holomorphic
functions C;,(s) (1 < i, j <v) such that

F(f,s = n) = 1**) 3 CLUOFI(, 5%)

for all fe Cy(M(n, R) — S%). We denote by T, a tempered distribution on
M(n, R) defined as

T(f) = Fdf,s — nt) = 7% 3, CuOFH(f, 59 (seD).

One can find a non-negative integer M such that the order of the tempered
distribution 7T, does not exceed M for all s contained in the set D, =
{seD; —1 < Res, <0} If 6%(2),, ---,0%*(X), > M, it follows from Lemma
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1.3 in [3] that T(P¥f) =0 (seD, —1<s,< 0 and fe Co(M(n, R)). Take
a 2 € X,(G) such that 6*(X),, - - -, 6*(), > 0. From Lemma 2, it follows that,
for every fe Cy(M(n, R) — Sg),

Pl
F(P%-f,s — niy)

= (—2z/ = 1)~ ¢ We,(X) ]Z=}1 Cii(s — s(O)r*((s — SQO))FH(f*, (s — a(X))*)

and
A~

F(P¥-f,s — nky) = 35 C[(s)eF)r*(s* + d*()FH(f*, s* + d*(1)) .

Hence, by using the relation (s — d(X))* = s* + d*(X), one obtains
Ciys) = (—2av/ =1)" "D (NeF(X)C, (s — (X)) .
Therefore, for any fe Cy(M(n, R)) and §*(X),, - - -, 6*(X), > M, one has
T(Pif) = (—2rv/ =1) D ()T, _s0(f) -
This implies that, for any se D,,
Ts-B(l)(f) =0 (fe CSO(M)y 6*(X)07 Ty 5*(x)k 2 M) .

Since T, is a tempered distribution and T,(f) is a holomorphic func-
tion of s in D, we can conclude T,(f) =0 (se D, fe S(M(n, R)) which
proves our proposition. ’

Remark. It is known that the integrals @,(f, s), - - -, @(f, s), D¥(f, s), - - -,
@*(f, s) have analytic continuation to meromorphic functions of s in C**!
(cf. [3], [5]) and hence Proposition 1 holds in C**!,

We denote by e(s) the v by v matrix whose entries are given by

Q@ﬁa%VW4i§}@w@ﬂ,1gujg».

Then it is easy to verify the following relation, for any X ¢ X,,(G)R,
eii(8) = (—2nv/ = 1) *De(Nef(M)eii(s — 6(0)) .
We set t,,(s) = C,(s)e;;(8)* (1 <i,j<v). Then one sees
t(s) = t(s — 0()  (teX,(Gr).

2.2. In this paragraph, we shall give an explicit expression for the
functions t,,(s). We denote by D the group consisting of n by n diagonal
matrices whose diagonal entries are 1 or —1. For two subsets A and B
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of GL(n, R), we write A B if there exists a matrix g in D such that A =
B.g. We set, for any integer i (1 <i <y),

K, = {ke SO(n, R); 3a € BY(R) such that k-ae Vie}
and

K¥ = {k e SO(n, R); 3a € B}(R) such that k-a* e Vie},
where

1
.1’

a;

(
-
l

i (a; = &) -
J

From (A.3), it follows that V.3V, (1 <i,j<v). On the other hand,
the Iwasawa decomposition for the group GL(n, R)° shows that, for any

P A<i<y), ‘
(4) V’L:Ki'Bn(R)O'eiv
(5) Vi = K¥-B(R) -e,,

where B,(R). stands for the subgroup of GL(n, R) consisting of lower
triangular matrices. Since the mapping x — x* gives a one-to-one corre-
spondence between V, and V¥, one has K, = K} (1 <i <)

Using the Iwasawa decomposition

(x;) = g-(t.)), ((x:)) € GL(n, R), (t,)) € B(R)’, g€ SO(n, R)),
we normalize a Haar measure dg on SO(n, R) by setting
LT dxy = 11t I1,dt.,-ds -
Then, one has
[ 1Perdg = [ _IPo)rdg, a<ii<y.
Let f(s) be a function on C**'. For a character X e X,,(G), we set:

(6) g (f(s) = eOf(s + 6(1)), (A <Li<y).

We also set

E(s) = (—2)"(2x) —wze( _ f%ff:),)ei(_ s) [n sin _g_ ((s) — 0).
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We set
E;F:(Ej(x(})k)y"'rej(xf))’ 1£j£n-

ProPOSITION 2. Assume that, for all p,q (p # q), ef +¢f. Then t,(s)
is given by

tij(s) = (‘%‘)k+1 5;‘(_ s%) eﬁo a1+ oj(xl)Ei(s)) .

Proof. Let f be a function on the vector space M(n, R) defined by
f(x) = exp(—n(x, x)). Then f=f. We make change of variables (4) and
(5). Then, using an well known formula:

Lvonr(1E2) [ e,
2 2 0

one has

0sf,9) = [ _1P@dg- [ exp(=z3i8) [ o o
K; 0 ¢=1 £=1 ¢=1

Ltg<eo =

- sdo (LY z-tnarn ~rae) 3 (ﬂz,@),j”,‘,’ﬁizj 1)
_JK1|P(g)| dg (2) 4 4 ;1]1 2

and

or(f, 59 = [ IP*@ [ exp(—n ) [l e ]

0<ty<oo =

= I |P(g)18dg-(}_)”ﬂ—in(nn)nidm ﬁ ]‘(j‘l&@ié) .
K} 2 £=1 2

Thus, from Proposition 1, one obtains

1 nr(rg(s)—-e+_1>

(7) 7(s — n1) e 5
_ Z e1(8)E,,(5) H (—2‘(;) +¢ ) C dcicy.

Using well known formulas of I'-function:
Irerd —z =—" .
sin w2

and
@z —= 2" F(z)F(z n l) ,
v 2

we can rewrite (7) as
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v

(8) 3@t = (~2r@n iy [ sina(M0=0), 1<i<y).

7=1

Hence one has

Efs) = > ef(s¥)tu(s) .

=1

From (6), it follows that
(9) o, (0ELs) = ef(X) KZI ef((s + 6(0)*)t:Ls)
= 3 FFDEH ) -

Putting L,(X) = {£; e¥(X) = ¢}(¥).}, one can rewrite (9) as

A+ G DEW) = | 3 eHeIns).

¢€ Lj(x)

Then, by our assumption of Proposition 2, one obtains
1 k+1 & ol ke
(3) A+ o DE® = 56,

which proves our assertion.
By Proposition 1 and Proposition 2, we have the following theorem.

THEOREM 1. Assume that, for all p, g (p #q,1<p, g <v), ef + ek
Then the tempered distributions O(f,s), ---, O(f, s), P¥(f,s), ---, D*(f, s)
defined by (2) and (3) satisfy a system of functional equations of the follow-
ing form.

O(f, s — nd(ty)) = 1(s — nd(L,))C(S)P*(f, ),

where C(s) is the v by v matrix whose entries are given by

Cule) = (=27(5) " @ X))

(10 x 1@+ oe( =2 )e(=9) [{ sin Zats) - ),

1<, j<n).
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§3. Examples

Let G be a connected semi-simple linear algebraic group and p an n-
dimensional irreducible representation both defined over C. Assume that
the triple (G, g, M(n, C)) is a prehomogeneous vector space. Then the
group G must be one of the following subgroups of SL(n, C) and p the
identity representation of G;

G = SL(n, C), SO, C) or Sp(m, C) witn n =2m, (cf. [6]).

Case 1. (cf. [2], [6]) G = SL(n, C).
In this case, {det x} is a complete set of irreducible relative invariants
and the b-function is given by

@) =I'(s+n)---I'(s+ 1), seC.
Since the singular set is given by
S =8* ={xeMn,C), det x = 0}.
We have the orbit decomposition
M(n,R) — S = V,UV,,
where
Vi={xeM(n, R), detx >0} and V,= {xe M(n, R), detx < 0}.
Then one has
C.(s) = 2 2m)rn-nrz-ns
ay (Tl cos Zs — ¢+ D+ =D [ sin Z(s — 6+ 1)},
1<, 5j<2).
By Theorem 1, one has a system of functional equations.
PrororisoN 3. The zeta distributions for G = SL(n, C) have the follow-
ing system of functional equations:
Off,s —n) = [ —1) - I'(s — n + 1) JZ CSO(f, —5)
where C,(s) is given by (11), (i = 1, 2).

Case 2. G = SO(n, C).
For x ¢ M(n, R), we denote by x’ the i-th column vector of x. Put
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P(x) = det x
and
(', &), - - o, (a, %)
P(x) = det| - 1l<i<n-1)),
(x, %), - - -, (', %)

where (x’, x*) denotes the usual inner product,
(i.e. (=7, x*) = 3, xix’;) .
a=1

Then {P,, ---, P,_,} is a complete set of irreducible relative invariants of
this prehomogeneous vector space, and the singular set S is given by

S = USz,
S, ={xeMn,R); P(x) =0} (0<i<n-—1).

The orbit decomposition of M(n, R) — Sy is given by
M@n,R) — Sy = V,UV,,
where
Vi={xeM(n, R) — Sg; detx > 0}
and
V., ={xe M(n, R) — Sg; det x < 0}.

For s = (s,, sy, - -+, 8,_1) € C", one sees
n—1
d(s) = ns, + >, 24s,
=
2(8) = s+ >l 2ms,, (1<i<n),
m=4

and
ei(s) = e(lf_t(4:,1,)i—l so>’ (l — 1, 2) .
Thus one has:

Cus) = 2 (@ay (] cos Zas) — ¢ + 1)
(12) o
+ (= DI [ sin 2 — ¢+ 1)), 1<ij<2).

From Theorem 1, we obtain the following proposition.
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ProrosiTion 4. The zeta distributions for G = SO(n, C) have the fol-
lowing system of functional equation: for i =1, 2,

@z(fy 8§ — na(xo)) = ﬁ F(SO + i 2m8m - ﬂ + 1) Z2: C”(S)Q](f, S*) ’
£=1 m=4¢ j=1
where C,(s) is given by (12) and
§ = (80’ Sy sn—l) ’ s* = (—SO - i zmsm’ Sgy v vy 372—1) .

Case 3. G = Sp(m, C), (n = 2m).
Denoting by [x, y] the skew symmetric bilinear form on C* X C* defined

as
[x, y] = ; (x.y — x7y.)
with & = “(x, x7, -+, %, %) and ¥ = (¥, ¥, * *, Yo, Vo), We set
P(x) = det x

and, for i =1,2,.---, m — 1,

[x}, x1], -, [x', x%]

P(x) = Pff -
[xZi, xl]? ) [x%, sz]

where Pff denotes the Pfaffian.

Then {P,, ---, P,_,} is a complete set of the irreducible relative in-
variants of this prehomogeneous vector space, and the orbit decompositions
are given as follows:

M(n, R) — Sp =)V, and M(n, R) — St = V¥,
i€l el

where I denotes a set consisting of all m-tuples (i, - - -, i,,.,) with each i,
is equal to 1 or —1, and V, is described as

V,={xeM(n,R) — Sg; sgn P, =1}, 0<i<m.

In this case, one has:
d(s) = 2ms, + 3. 20s,,
=1

2(8) = 8, + 2Z>:[Si ,
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7(s) = eﬁl Py + 2si+n—£6+ D,
1 m—1 - .
o) = o+ T 51— 1)).
4 =0
Thus one has

Cule) = 2@yen-ve( WD )e(s) [] (@ + 0,1,

% e(—ﬂsl)ei(—s) [T sin = (s, + 316 — £).
4 =1 2 Y]
From Theorem 1, we obtain the following proposition.

ProposITION 5. The zeta distributions for G = Sp(m, C) have the fol-
lowing system of functional equations,

OF, s — not) = 1 G, + Dt n— £+ D Cue)D(f, 5.

£=1

Now, we shall give an example such that G is not reductive. Let
G be a subgroup of SL(n, C) consisting of all lower triangular matrices

whose diagonal entries are all equal to 1 and p a representation of G
defined by

o(gx=gx, xeMnC).

Then the triplet (G, 7, M(n, C)) is a prehomogeneous vector space.
For x = (x,;) € M(n, C), we set

Py(x) = det x
and

Xy =5 Xy

P,(x) = det , 1<i<n-—-1).

Xy ** vy Xyg

One sees that {P,, -.-, P,_;} is a complete set of irreducible relative
invariants of this space and the orbit decomposition is given by

M(n, R) — S = zLeJI |

where I denotes the set of all n-tuples (i, - - -, i,_,) with i, =1 or —1, and

Vi={xeMn,R) — Sg; sgnP, =i, 0< £ < n—1}.
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In this case, one has
d(s) = ns, + f ’s,
=1
2(8) =8, + 2. s:, 1<¢<n),
=6
and
1 n—1 . .
(©) =e(+ S s—i)),  GeD.
4 =o
Thus, one obtains

13)  Cs) = (— 1>n<2x>"<ﬂ-l>/2-d<s>e(fl§?—)ez<s>

k n
X [T 1+ oj(xr))e<—'g‘(§l>ei(— 8) [] sin £(30 +218.—10).
r=0 4 (=1 2 >t
By Theorem 1, we have the following proposition

ProrosiTioN 6. The zeta distributions for this group have the follow-
ing system of functional equations, for any iel

Df, s = nd() = [T (s + S+ n— £+ DX Cul@p(f, 5%,
where C,(s) is given by (13).
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