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Some dynamic properties of a

prestressed incompressible

hyperelastic material

J.A. Belward

The work continues some earlier investigations into dynamic

properties of prestressed incompressible elastic materials.

Whereas the material was previously assumed to be a Mooney

material, it is here allowed to have any strain energy function.

Plane wave propagation and the motions caused by an impulsive

line of traction are examined. The results obtained are

compared with the earlier work.

1. Introduction

This work is an extension of some earlier work by Belward [I]

concerning the small motions of an elastic solid about a state of finite

pure homogeneous biaxial deformation. In the previous work the material

was assumed to be a Mooney material; here it is only assumed to be

isotropic, incompressible and hyperelastic. The results of the analysis

concern plane wave propagation and the response of the material to line

impulses of traction. The generalisation to any strain energy function

makes the analysis more detailed but not intractable. Many of the results

obtained in [1] are preserved and the results for the two problems can

easily be compared.

The secular equation for the speeds of propagation of plane waves is

derived. It is factored into two simple terms from which the two

permissible wave speeds are deduced and the corresponding amplitudes
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calculated. The two waves can be characterised by their dependence on the

strain energy function. One of these involves the first order derivatives

of the strain energy function only, while the other depends on both first

and second order derivatives. Thus only one wave distinguishes between a

Mooney material and one with a more general strain energy function. By

requiring that there exist two real wave speeds in every direction in the

material, the well known Baker-Ericksen conditions on the strain energy

function are reproduced. The same type of argument is also used to

determine restrictions on the constants which appear in a strain energy

function proposed by Signorini [3]<

The response of the material to impulsive lines of traction applied

along the principal directions of the underlying strain is also examined.

Some favourable uncoupling of the equations of motion occurs (this can be

anticipated from the secular equation) and this enables the displacement

and pressure fields at small and large times to be investigated in some

detail.

2. Basic equations

Frequent reference will be made to the earlier paper by Belward [/]

and the analysis, wherever i t follows that in [ J ] , will be given in outline

only.

Consider a body of homogeneous, isotropic, incompressible,

hyperelastic material with strain energy function W . Let the body be

given an in i t i a l finite s ta t ic pure homogeneous deformation in which a

particle at X. (in a rectangular cartesian coordinate system) moves to

y. . The Cauchy stress is t . . where

(2.D t . . = -P6.. • {2W1+2I1W2)B.. - Z^uBs. ,

( r e p e a t e d s u f f i x e s i m p l y s u m m a t i o n o v e r s = 1 , 2 , 3 ) . B . . i s t h e l e f t
I'd

Cauchy-Green strain tensor,

W and J/_ are derivatives of the strain energy function with respect to
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two invariants of the strain,

(2.3) W1 = -5J- , Ix = B8 e ; (/2 = ̂ - . I2 = *(BS8Bw-B8;?Bs(?) ,

and p is a hydrostatic pressure.

Suppose that a particle at y• now moves to x. , and that this
I* %•

displacement is small in the sense that

(2.i») *i-y-i = c \

and all terms involving powers of e greater than unity can be ignored.

Now if the stress, strain energy, pressure, etc are all expanded in powers

of e thus:

(2.5) t. .(e) = t. . + ct\ .' + . . . ,

the perturbed stress can be shown to be given by

(2.6) t . . = -V 6 . . + J W B. . + 2(V +X W 1 [u- 'B .+u . B .)
1**1 I'll A. £ Uml X J. £ *- }O Oi l */ •€> O fc*

where

and the quantities I, J, W and B are evaluated in the state of

homogeneous deformation. (Some HTnn.il changes have been made to the

notation used in [J] and some minor misprints corrected. ) For a pure

homogeneous biaxial deformation with principal axes parallel to the

coordinate axes we have

(2.8) yx = u ^ , y2 = u*2 , y^ = \X^ ,

2
with U X = 1 , the incompressibility condition.

When (2.8) is introduced into equations (2.6) and (2.7) and the latter

equation entered into the equations of motion the following form for the

equations of motion for the perturbed displacements u. is obtained:
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(2.9) - P > 1 l t l l ^ ^ 2 , 2 r

- pUl,tt

(2.10) - p 2 )

^pu3,tt ' pf3

The displacements must also satisfy the incompressibility condition,

(2.12) M 1 1 + « 2 2 + M 3 3 = 0 .

The constants appearing in equations (2.9, 2.10 and 2.11) are given by

(2.13) a = 2y jW +u w? , b = 2W^\i []i -X ) , a = 2X \w +\x W,

- 1

12+ 2 P 22j '

(The superscript (1) has been suppressed in the perturbed pressure, and

the body force f^ .)

The equations of motion used in [J] correspond to the above equations

with k = h = 0 . Because h and k only appear associated with u_ __

the more general case does not increase the complexity of the problem as

greatly as might be anticipated. In particular in any motions independent

of t/_ the results of [?] apply directly.

3. Propagation of plane waves

Plane wave solutions of equations (2.9)-(2.12) are sought by

introducing the functions

(3.1) u, = A,(y.)exp[iw[yglg-vt)} , p = Pexp[i<ji(ygl ->-vt))

into the equations and setting f. = 0 . If lglg = 1 then u is the

speed of propagation of the wave. Four linear equations in A, and P

result and the determinantal condition that these have non-trivial
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solutions reduces to

(3.2)

This is the secular equation for the squared speeds of propagation of the

wave forms (3.1) in the direction I, . We note that only one of the two

wave speeds exhibits a dependence on the second order derivatives of W .

This is also true of the pressure and amplitude. When

2 i 2 2l 2pu = (a-fc)l J-+l_l + eZ_ , the pressure and amplitudes are given by

(3-3) P : l^ + l^2 : A3 = 0 : 1 : 0 ;

the wave is a constant pressure wave polarised in the planes parallel to

the yxy2 plane. For pu2 = a(i*+l*j + cl2 + (fc-

(In [J3 the counterpart of (S.'*) is in error; it should be replaced by

(3.U) with h = k = 0 .)

In order that there exist two real wave speeds in each direction we

require

(3.5) (a-i)[^+Z^j + Ol\ > 0 and c^T,
2*!2} + ol\ + (fe-^)z|fzj+z|j > 0 .

Prom (3.5)i, in view of (2.13), we deduce that

(3.6) »x + \
2W2 e 0 and W± + \?W2 Z, 0 ,

with equality permitted in only one of (3-6). These are the Baker-

Ericksen conditions on the strain energy function obtained by many previous

writers and first for incompressible materials by Truesdel I [4]. The

Inequality (3.5)2 does not give information of any value for a general

strain energy function, however it can be applied to the strain energy

function

(3.7) W = 0(^-3) + B(X2-3) + Y(i"2-
3)2

proposed by Slgnorini [3] and studied lately by Manacorda [2]. It is easy

to show that the condition (3.5)2 implies that the inequalities
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(3 .8 ) ' ot + l ( Y > O , Y > O ,

are necessary and sufficient conditions for the existence of two real wave
speeds in any direction.

4. The response to impulsive line tractions: ( i ) General remarks

The remainder of the paper is concerned with various aspects of the
solution of equations (2.9)-(2.12) when p/fc = u&6 {y2)6 (i/3)6(t) , (ufe is

a constant vector). This amounts to finding the response of the material
to a line impulse of traction acting along the t/, axis. Because the

in i t ia l homogeneous deformation has equal extensions in the y and y^

directions , and because the equations of motion are autonomous in y^ and

t , this is equivalent to finding the response of the material to any line
of traction in the y j / _ plane. (As mentioned previously, if the force

acts along the j / _ axis the results are the same as for the corresponding

problem in [7]. )

Derivatives with respect to y^ disappear from the equations of

motion and Fourier transforms are taken in i/_, y, and t thus

(U.I) [t^, p) = j exp(t(e8J/e+a)t))(i^, p)d£,kdt .

The resulting equations are linear in IU and p and their solutions are

(U.3)

(U.U)

It follows that the response of the material consists of two travelling

waves, one carried by u. and the other carried by u,,, M_ and p .. The
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inverse of ii. is simply a fundamental solution of the vave equation in

two dimensions {of. equation (5>7) in [7])

(U.5)

fo 2
I *** o

t > —r +
\a-b o

PJ/O py
t < —r + —\a-b o

At this stage the complexity involved in dealing with any strain energy

function begins to obstruct the analysis. In order to determine u and

M_ it is necessary to invert

(4.6)

In [ J ] , & and ft were both zero and f could be represented as a double
integral. A closed form formula for V seems impossible to obtain in this
case, beyond the triple integral obtained by applying the Fourier inversion
formula to equation (U.6). The comparison between the results from [1] and
the case of any strain energy function will therefore be made by perturbing
from k = h = 0 and calculating the first perturbation. To the first
power in k - h ,

- 1 - 1 - 2 -2

The inverse of the first term of the right hand side of equation (U.7) was
encountered in [?]• The second term will be dealt with in the next
section.

The inversion of p follows a similar pattern to that of «„ and

tL . Expansion of

(U.8) p =

to first powers in h and fc gives

where the *. are functions of and Co such that each term above is
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homogeneous of degree -1 in £„, So a n d M • T h e problems of inverting

p are similar to those for $ .

5. The response to impulsive line tractions: ( i i ) Solutions

The notation F~ [f[K^, u>)) is used for the inverse transform of / ,

Mow

A
where K i s an arbitrary constant. Also

_ 2

r^lla
- 2

1+TTp

Hence

a a

, t < — +
a a

(5.1)

where, by the convolution theorem,

2 2

X •L

The constant K is suppressed because it vanishes on differentiating

2 1 2 1 2
D. is the set of points inside the ellipse t = pa Zp + pe a •
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This integral is similar to one which appeared in [J] and the

techniques vised there can be applied in the present case. Except when

a = o , it does not appear possible to evaluate x in terms of elementary

functions, however the asymptotic forms of the derivatives of x c a n ̂ e

found for y2, + y2^ » t2 and y| + y2^ « t2 . When y2, + y2^ » t2 the

substitutions z^ - tz, , s, = tx, can be made into the integral (5.2).

The integrand may then be expanded in a power series in t and integrated

term by term. It then follows that

(5.3) X

Bxact error bounds can be given when x ^s approximated by truncating the
ser ies . Combining th is result with the corresponding ones from [ J ] the .
expansions of M and u_ take the form

(5.U) u2, u3 = (^10/2V3)+O(t2)] + (k-h)[t\{y2, y3)+O

A similar technique can be applied to the pressure to give

(5.5) p 1 2 3 ^ , j ^ j

The functions (J). and IT. are l inear in u_ and w, . Each can be

calculated explici t ly i f required; TT. and $•, are given in [ / ] . For t

small the operations of differentiation and series expansion commute.

The important results implied by equations (5-M and (5.5) are that :

(a) for small times, to f i r s t order the displacements do not differ

between those for a Mooney material and one with a more general

s t ra in energy function;

(b) for small times, a term of order t , which i s absent for a

Mooney material, appears in the pressure when the generalisation

to any strain energy function i s made.

( 2 2l*When t » u/o+2/J t h e problem i s considerably more dif f icul t . The

field point (i/2, j/_) l i e s inside 0. , the domain of integration of
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equation (5*2). The differentiations needed to calculate u? and u

cannot be taken under the integral sign since divergent integrals resu l t ,
nor is the scaling of the variables to remove the dependence on t from
the domain D. of any assistance. The expansion of the derivatives of )

in inverse powers of t is accomplished by proving that

„ 2 «~2 % r

^K^S

where £„ i s the in ter ior of the el l ipse + —* = + —•*• . Note

that the dependence on t i s removed from the domain of integration so
2

tha t the term t2-
a

can be expanded immediately in powers of

t . The lemma implied by the statement of equation (5-6) corresponds to

a similar resul t in [ / ] • The proofs of the two lemmas have identical

s t ructures . An outline of the proof of (5.6) i s given in the las t section;

for fuller deta i ls the reader i s referred to [ I ] .

When the square root in equation (5-6) is expanded in inverse powers

of t the integrals obtained can a l l be evaluated in terms of elementary

functions. I t i s found that

(5-7) fe- = n > 2 ' y3)
t + ^2' » 3 ) t » 3 f' 3 + ••• .

O, i s l inear in j / 2 and j / _ , ru i s homogeneous of degree 3 in j / 2

and u_ , and so on. An identical statement applies to T ^ - . The

displacements u_ and u. are linear combinations of the fourth

derivatives of X > thus the leading term in equation (5-7) i s eliminated

When the results from U ] are combined with these results the asymptotic
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form of u_ and u, is obtained thus:

Similar techniaues can be used to show that the pressure is given by

(5.10) p ^ - ^ ( e . ^ , j/3)k+e2(i/2, y3)h) ,

vt

where

The important features of these results are:

(a) that the displacements are independent of position to order

t" 1 .

(b) that the responses to the forces are uncoupled to order t~ ,

(c) that the distinction between a Mooney material and an arbitrary

hyperelastic material
in the displacements,
hyperelastic material is detectable in the coefficient of t

(d) that the pressure behaves as t~ so that the t~ term
remains absent in the pressure for an arbitrary hyperelastic
material.

The properties (c) and (d) invert those noted in the case of t small.

6. Differentiation of the function x °f equation (5.2) under
the integral sign

It i s clear that (5.6) follows from (5-2) i f i t can be proved that the
contribution to x ° f the integral taken over the e l l ipt ic annulus
D. - 2?2 i s constant. For convenience the substitutions !/„ = a x ,
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h k h
a Z? ' ^3 = 3 ' 33 = 3 are aa^e» t n e n it suffices to prove

that

(where A i s the annulus Z+Z^. < pt ) i s constant.
2 3

o-aSuppose 0 < a < a (a, a £ 0 by assumption). Then -1 < < 0

and

(6.2)

Now

- 5

so (6.2) may be used to expand the integrand of (6.1). The series may

legitimately be integrated terrorise and a series of terms of the form

frV f
i s obtained. Such terms arose in the corresponding proof in [ / ] . I t was

proved there that each F i s independent of ^2 and 3^ . This proves

the assertion about XA t since \. being the sum of a series of

constants, i s i t s e l f constant.

The property of the P stated above depends on the form of the

difference function in the integrand on the right hand side of (6.3). An
examination of the proof given in [/] reveals that i f the difference
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function is homogeneous of degree zero in (^2~Z2^ a n d ^3~Z3^ ' t n e n &n

is necessarily constant. Hence the property vised in this paper and in [/]
i s true for any integral which can be expanded in a series of terms F

provided only that the resulting series of constants i s convergent.
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