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Abstract 

We discuss problems related to the electronic and ionic structure of fluid 
Hydrogen, for equation of state calculations in the domain where a "plasma 
phase transition" (PPT) may occur. It is argued that the ionization of 
an electron bound to a particular nucleus proceeds through a progressive 
derealization involving "hopping" electron states (i.e. cluster states). A de­
scription of the plasma containing pseudoatoms, pseudomolecules and free 
electrons is proposed. The PPT, if it exists, might be a mobility edge tran­
sition across a percolation threshold. It is shown how the effect of electron 
density, field-particle distributions and temperature on the binding energy 
of these pseudoatoms and pseudomolecules, can be included. Finally the 
abundances of these objects is determined by a minimization which allows 
the self-consistent optimization of ionic as well as electronic parameters 
contributing to the total free energy. 

On discute les problemes associes a la structure electronique et ionique 
de l'Hydrogene en phase fluide, en vue de calculs d'equation d'etat dans le 
domaine d'une eventuelle transition de phase vers l'etat de plasma (TPP). 
L'argument essentiel est que l'ionization d'un electron lie attache a un atome 
se produit par une delocalisation progressive mettant en jeu des "etats de 
grappe" (cluster states). La TPP pourrait etre une transition de la mobilite 
se produisant au seuil de percolation. On propose une description du plasma 
ou "pseudoatomes", "pseudomolecules" et electrons libres coexistent. On 
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montre comment la densite electronique, le profil des particules de champ et 
la temperature peuvent etre pris en compte dans l'energie de liaison de ces 
pseudoparticules. Finalement, l'abondance de celles-ci doit etre determined 
par une minimisation qui assure l'optimisation simultanee des parametres 
ioniques et electroniques, de maniere autocoherente. 

12.1 Introduction 

Density functional theory (DFT) is a very effective many-body technique 
(Hohenberg and Kohn 1964, Kohn and Sham 1965) for calculating the 
electronic and structural properties of atoms, solids, liquids and plasmas 
(Lindqvist and March 1983, Gross and Dreizler 1994). Finite tempera­
ture DFT (Mermin, 1965) proceeds via the Mermin-Kohn-Sham variational 
principle which asserts that the thermodynamic potential (TP) is a unique 
functional of the one-particle densities of the system and that the TP is a 
minimum for the true (physical) densities. Thus a DFT calculation should 
provide all the ingredients needed for a microscopic calculation of the equa­
tion of state (EOS) of a given system. In an elemental plasma, e.g., an 
Al-plasma at high temperatures, one of the complications is the existence 
of several ionization states, e.g., Alz< , with Z{ = 0,1,2, ...,Z. Thus there 
are Z + 1 ionic species and electrons, i.e., a Z + 2 component system, with 
concentrations X{ and a mean ionic-charge Z* = < X{Zi >. In the "average 
neutral-pseudoatom" approach the Z + 1 ionic species are replaced by one 
ionic species with "average" charge Z* and the EOS is determined in that 
simplified model. The name "neutral pseudo-atom" (NPA) refers to the 
neutral object consisting of an ion in a suitable profile (e.g., a Wigner-Seitz 
cavity) plus its cloud of bound and free electrons that form a neutral object 
(a more rigorous definition is given in terms of a sum rule on the phase 
shifts). The bound and free-electron distribution etc., at the NPA are de­
termined by the self-consistent solution of Kohn-Sham equations for the 
electrons and ions in the plasma (Dharma-wardana and Perrot, 1982, and 
1987). In the average-NPA approach the individual species concentrations 
x,- are not evaluated and hence Z* is fixed by other considerations, e.g., as 
in the studies of the EOS of dense Al (Perrot 1990) and Be (Perrot 1993). 
Recently we have implemented a DFT calculation of the EOS of the Z + 2 
component mixture without appealing to the so called "chemical pictures", 
hard-sphere models etc. In this approach we construct Z + 1 different neu­
tral pseudoatoms (each self-consistently determined for the given plasma 
conditions) and use their interactions with one another and with electrons, 
instead of a single average-NPA which interacts with the electrons. 
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The above discussion of metallic plasmas takes on a new dimension of 
difficulty at lower densities and temperatures when molecule formation be­
comes important. Alkali metal vapors and Hydrogen plasmas have some 
similarities in this regard. Thus, a hydrogen plasma at 0.25 Mbar and leV 
could contain H2, H, H + , e~ and possibly H - , H* , and small amounts of 
other clusters. As the density is increased the identity of these" chemical" 
objects becomes "blurred". Thus an excited H2 molecule having a "bond 
length" R begins to resemble two unbound hydrogen atoms separated by a 
distance R. In effect, if mean distances become comparable to bond lengths 
the simple "chemical" picture breaks down. Even if chemical species like 
H2, H + , etc., could be identified, their electronic energy levels, vibrational 
spectra etc., have to be calculated self-consistently, including the interac­
tions with the medium, i.e., the field-particles (FP) that surround a given 
"molecule-like" entity. 

Progress in this type of problem is easier for vapors of simple metals 
for which pseudopotential theory is applicable. The problem is more dif­
ficult for protons where the full non-linear consequences of a point-charge 
(with no moderation effect arising from a finite core size) have to be taken 
into account and no meaningful construction of pseudopotentials is possi­
ble. Thus in our study of ionized hydrogen plasmas (Dharma-wardana and 
Perrot 1982) we retained electron- and ion- coordinates at every stage of 
the calculation, and avoided pseudopotentials or linear response. 

The objective of this paper is to examine a tractable microscopic approach 
to EOS of hydrogen fluid in the proposed plasma phase transition (PPT) 
regime (Saumon and Chabrier 1992) where molecular species exist. It is 
useful to examine not just the thermodynamics, but also the dynamical 
process of ionization. Such a study sharpens our concepts about the P T T 
and leads the way for a future numerical study of this difficult regime of 
hydrogen fluids. 

12.2 T h e mechani sm of ionization 

Wigner and Huntington (1935) noted the similarities between hydrogen and 
the alkalis and sowed the seeds leading to the concept of a plasma phase 
transition (Stevenson and Salpeter 1977, Ebeling and Richert 1985). The 
most elaborate study of the P P T is due to Saumon and Chabrier (1992). 
They considered a hydrogen fluid containing the four species H2, H, H+, 
e~ and found that a fluid phase which was predominantly H2, with very 
low ionization (x//+ < 0.5%) and low monatomic H concentration under­
goes a first order phase transition to a significantly ionized (xH+ « 25%) 
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fluid phase, still containing H2, H, H + , e~, at Tc = 1.3 eV and Pc = 0.614 
Mbar corresponding to a critical density of 0.347 g/cc. Since a sharp in­
crease in ionization is proposed, it is important to understand the process 
of ionization. 

Ionization of a single atom in the vacuum is the promotion of an electron 
from some bound state 1/ = n , l , m o f energy — \eu\ to a continuum state 
fc,/,m with energy k2/2 (here we use atomic units: h = 1, |e| = 1, me = 1). 
In Hummer and Mihalas (1988), and in Mihalas, Hummer and Dappen 
(MHD, 1988) the ionization process is modeled by assuming that the field 
particles (FP) create a microfield which Stark ionizes the atom. However, if 
an effectively spherically symmetric potential were applied to the atom (this 
could happen from a cubic packing of a coordination shell of F P around the 
atom) the microfield is zero but a very large destabilization of the atomic 
bound state could arise. Thus the MHD model is incorrect from the outset. 
The MHD-estimates of the "critical fields" for ionization of atoms do not 
contain effects of possibly large potential fluctuations and electron-exchange 
effects which nevertheless have small microfields (note that the fields are 
vectors, while the potentials are scalars). Ionization from metal clusters, and 
the workfunction of metal surfaces are known to be strongly determined by 
the exchange energy of the ionizing electron, i.e., a quantum effect unrelated 
to the Stark effect. The discussion given below suggests that the ionization 
process involves cluster states of the F P in a fundamental way. 

Consider an atom in a plasma. For simplicity, let the inner shells of the 
atom be full and let the last occupied electron (in the ground state) be 71s 
where n is a principle quantum number. The "radius" of the atom is about 
n2 atomic units (a.u.). Consider a dilute plasma of atom density pa where 
the mean separation rws = (3pa/4w)1/3 is large, say 100 n2 a.u. An ionizing 
electron acquires energy from the FP via thermal and random fluctuations 
of the particle distribution. Most collisions are long-range, weak, multiple 
collisions which slowly raise the electron to higher energy levels. When the 
electron reaches the excited state with nj = lOn the electron is still in a 
bound state but the "size" of the atom is comparable to the inter-atomic 
distance rwa. From then on the electron gains energy by hoping to orbitals 
which span several atomic centers (i.e, clusters) prior to ionization. That 
is, the atomic electron becomes a "hopping electron" before it passes into 
the continuum to become a fully delocalized ("free") electron. 

Thus the ionization process involves three types of electrons, viz., bound, 
hopping and free electrons. The discussions in terms of only bound electrons 
and free electrons apply only in situations where hopping electron concentra­
tions are negligible. Unfortunately, hopping electrons are important except 
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in fully ordered solids at zero temperature, or in very hot strongly ionized 
plasmas. The theory of hopping electrons, and the relationship of the ion­
ization process to the concept of the "mobility edge" transition (see Davis 
and Mott 1975) present in disordered materials apply to plasma situations 
as well (Dharma-wardana and Perrot 1992). The same ideas are relevant 
for an understanding of the P P T . 

The cluster ionization picture can be restated as a local-band theory of 
disordered materials. Consider a Hydrogen fluid in the weakly ionized pre-
P P T phase of Saumon and Chabrier (to be denoted the prephase, while the 
phase with a higher ionization will be called the postphase). The prephase 
is mostly H2 molecules. If we sit on an H2 molecule (the origin), then there 
is local order as defined by the range Rc beyond which particle correlations 
die-off and the pair function g(r) becomes essentially unity. This is effec­
tively the "cluster" to consider. We could either think of cluster states or 
of a local bandstructure in the region r < Rc around the molecule at the 
center. Electron hopping will be determined by a matrix element T{T{J) 

linking atomic centers i and j , and determines the local bandwidth. In 
H2 this band is fully occupied at T = 0 K and hopping occurs by transfer­
ring to the unoccupied conduction band, or via an upper "Hubbard band" 
if that is energetically more favorable (the upper Hubbard band of H2 is 
approximately the valence band of H^) . However, the situation becomes 
radically different if even a small amount of H*, H + , etc., and electrons 
are also present, as in the prephase. Then we have a small number of holes 
in the H2 local-valence band, a few electrons in the local-conduction band, 
as well as "impurity gap states" of H J , H* , H + , H and H~ structures (the 
H and H~ bandstructures are essentially like the lower and upper Hubbard 
bands of H). The gap states provide a degree of hopping conductivity via 
overlapping localized states, but the mean free path of the hopping electron 
remains smaller than the cluster size Rc. However, when the percolation 
threshold (e.g. Stauffer 1979) is reached the hopping paths "percolate" 
through the whole volume and provide at least one electronic state which 
carries the electron out of the cluster. This is the onset of the so-called 
mobility edge and amounts to a phase transition in the sense that localized 
carriers have now become delocalized. The idea of the mobility edge was 
first presented by Mott and further developed by many authors (see Davis 
and Mott 1975). It is very likely that if the proposed P P T exists, then it is 
essentially a transition across the mobility edge, and its existence depends 
on the sharpness of the mobility edge. Note that crossing the mobility edge 
to reach the more conductive postphase does not require that the carriers 
have reached the conduction band - they have merely crossed into the per-
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colating impurity states in the local band gap. The postphase need not to 
be a fully ionized phase, as has been assumed by some authors. 

The cluster picture of ionization involves a gradual derealization of a 
bound electron on a given atomic site to occupy increasingly larger-sized 
bound states defined on a local transient cluster (hopping states) and fi­
nally in the whole plasma (full ionization). This picture is more convenient 
than the local-band picture with gap states. However, the two models com­
plement and clarify the nature of the ionization process and the PPT. 

In an earlier study (1982) we considered a hydrogen plasma where each 
proton supported only one bound state. A significant feature of the bound 
ls-state reported in that study was that its average radius was larger than 
the mean proton-proton separation i.e., a hopping state. The bound state 
was calculated with the proton interacting with an "average" cluster of 
field ions (FI) and electrons around a proton. The Fl-cluster is modeled 
by the ion distribution pg(r), where p is the average (bulk) nuclear density. 
Although such an "average cluster" is incorrect at short time scales, it is 
valid for thermodynamics which depend only on space and time averaged 
quantities. To treat the molecular species present in the prephase and the 
postphase, a multi-center model is needed and will be taken up next. 

12.3 Construct ion of pseudoatoms and pseudomolecules 

In the so called "chemical" picture for EOS calculations one assumes (by 
"chemical intuition") that certain well defined chemical species, e.g., H2, 
H, etc., exist in a given fluid and that their "internal" electronic coordi­
nates do not appear in the discussion. Instead, energy spectra and weights 
of isolated molecules appear in "internal" partition functions. The inter­
nal partition functions of isolated atoms or molecules contain divergencies 
which are removed by various prescriptions. In a more fundamental anal­
ysis (sometimes called the "physical picture") electrons and nuclei interact 
via the Coulomb interaction, and the interplay between the electron coor­
dinates and the nuclear coordinates is retained right up to the final stage of 
free energy minimization which determines the mixture composition, par­
ticle distributions and the thermodynamics. Even in the physical picture 
we can talk of molecular species noting that these are "pseudomolecules" 
(PM) which are "coupled to each other" since the internal structure of a PM 
depends on the environment around it, i.e., the self-consistent distribution 
of field particles around it. In the low density limit these PM reduce to the 
molecules of the chemical picture. Also, the pair-interactions of the PM will 
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be a function of the particle distributions in the medium which have to be 
generated in situ while the free-energy is minimized. 

If we consider the prephase and the postphase of the P P T , then we need 
to construct pseudomolecules like H2, H, H*, H + , H~, HJ in the pres­
ence of the equilibrium concentration of electrons, at a given temperature 
and total density. Here an H + is really a proton carrying no bound elec­
trons, plus a distribution of electrons, ions, and other molecular species 
(the field-particles), while H and H~ carry a singly or doubly occupied 
bound state which spills into the respective self-consistent FP-distribution 
(FPD) . These field-ion distributions are given by the classical form of the 
Kohn-Sham equations, while the boundstates and field-electron distribu­
tions are given by the (quantum) Kohn-Sham equations which are coupled 
to the classical equations. The electron coordinates and the ion coordi­
nates are retained through out the energy minimization. Unfortunately, 
this procedure is numerically too arduous since we need to self-consistently 
resolve a multi-center, multi-species problem as well as quantum mechani­
cal problems for bound and continuous spectra. Hence we consider a less 
ambitious procedure based on using single-center DFT calculations to con­
struct a tight-binding-type model to account for the molecular states of the 
pseudomolecules. 

12.3.1 Tight binding model 

A hydrogen atom placed in a given field-particle distribution (FPD) will 
have a finite set of bound states 0„ , v — n, l,m and energy eu as well 
as a spectrum of scattering states v = k,l,m with e„ = fc2/2. From our 
previous work (single center calculations) we know how to determine this 
Kohn-Sham energy spectrum of bound and free states for a given FPD. 
To simplify the discussion we assume that there is only one bound state, 
u\3, but several bound states would be needed in many applications. We 
fit the ul3(r) function to the form u(Z*,r) = (Z* 3 /7r ) 1 / 2 exp(-Z*r) . This 
simple form where Z* is the only fit-parameter is probably adequate for the 
plasma-problem. Although we are concerned with H-plasmas, we also carry 
out single-center calculations for the H e + + and He + ions in the given FPD 
and determine their Kohn-Sham spectra. H e + + and He + correspond to the 
"zero bond length" limit of two protons, or a proton and an H atom. This 
"united-atom" limit of the molecular species is required to correctly recover 
the interaction energies at smaller particle separations. Now we consider 
the construction of pseudomolecules. 
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12.3.2 iifj" pseudomolecule 

The electron Kohn-Sham equation for the Hjj" molecule in the fluid is : 

^ - 7- - 7- + i - vP{?M^Kf)) 
2 rA rB K 

+ Vxc{f,n(r),p(r)} ^(r,R)~ Eip(r,R) 

Here R is the internuclear separation between the protons labeled A and 
B; the electron coordinate r referred to the midpoint, and to the centers 
A and B are related by rA = r + R/2 and fg = r — R/2. Also Vp and 
Vxc are the Poisson potential and the exchange-correlation potential due 
to the FPD. The xc-potential is a density-functional potential which brings 
in the many-body effects of exchange and correlation with electrons, and 
correlations with ions. Their formulation has been discussed in our earlier 
work (e.g., see Perrot, Furutani and Dharma-wardana, 1990). An approxi­
mate construction of Vp and Vxc for the two-center problem is given below. 
Consider the isolated molecule where Vp and Vxc — 0. In the limit where R 
is large we have two (gerade and ungerade) solutions : 

V»(r,Z\ R)g,u = HZ*,rA) ± u(Z*7rB)}/2^2 large R limit (2) 

with Z* = 1 and the energy 

_x [(1 + R)e~2R ± (1 - 2r2/3)e"f i] 

Eg,u-els + R [ i ± ( l + r + # 7 3 ) e - * ] ( 3 ) 

However, this is a poor solution for small R. In the R « 0 limit we use a 
value of Z* = ZQ consistent with the solution of the He+ problem, i.e., the 
"united atom" obtained from H^. That is, we find Z*(R) variationally for 
each R for the isolated H2 problem so that 

Z* = Z0f(R)+Zoo{l-f(R)} (4) 

interpolates from R = 0 to R = 00, with Z^ = 1. The minimum of Eg(R) 
at R = i?o is the binding energy with the optimal Z*(RQ). This approach 
provides an excellent solution to the H2 problem (i.e., to the accuracy 
we needed for the plasma-fluid problem) since the experimental (Herzberg 
1954) binding energy Eb = Eg(R0) - e i s = -2.79 eV and R0 = 2.003 a.u., 
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while this method (Bransden et al 1983) gives Eb = -2.25 eV and R0 = 2.0 
a.u. with the optimal Z*(RQ) = 1.23. The vibration- and rotation- spectra 
can be calculated as usual from Ei,(R). 

Now consider the pseudomolecule H* in the presence of the FP (e.g., H2, 
H , H ^ , H + , H - , H ^ e t c ) . A given FPD can be rewritten as a density p(f) of 
protons and a density n(f) of electrons. The p(r) and n(f) interacting with 
the pseudomolecule whose mid-point is at the origin of coordinates produce 
the potentials Vp(f) and Vxc(r). These potentials are constructed from the 
one-center functions Vp(f,H),Vp(F,He+) and Vxc(r,R),Vxc(r,Ke+) which 
are known from the single center calculation for H and He+. In effect we 
define 

Vp(r) = Vp(fA,He+)F(R) 

+ \{Vp(rA,K) + Vp(rB,K)}{Vp(rA,K+) + Vp(rB,K+)} (5) 

x {1 - F(R)} 

where the superposition takes place in the independent atom limit for very 
large R, while for small R we recover the united-atom limit of He+. The 
interpolation function F(R) could be modeled by f(R) of Eq. (4) or a better 
form can be constructed. The same interpolation scheme can be used for 
constructing Vxc{r) from the results of the one-center calculation and hence 
all the potentials need in the two-center Kohn-Sham equation, i.e., Eq.(l) 
are known. Now in variationally determining Z* appearing in ifrir, Z*) we 
do not use just Eq.(3) but include also the FP-energy contribution, i.e. 
< ^(r , Z*)\Vp(r) + Vxc(r)\4>(r, Z*) >. This will give us a new Z*(R,p,n) 
to replace Eq.(4), where the limiting forms ZQ and Z^ correspond to the 
He+ and H atom wavefunction-exponents from the one-center calculations 
with the field particles self-consistently included. A new binding energy 
curve Ef,(R,p,n) dependent on the FP-distributions p(r), and n(r) and a 
new intermolecular equilibrium distance RQ will result from this calculation. 
If there are no H2 molecules in the system under the assumed conditions, 
then there will be no stabilizing minimum and E\,(R) > 0. Thus the method 
by itself determines the pseudomolecules found in the fluid, independently 
of any "chemical intuition". The binding energy curve Eb(R,r,n) of H2 
calculated here is basically the interaction potential between an H atom 
and an H+ ion separated by a distance R in the fluid, inclusive of all the 
fluid effects. Given Ef,(R,r,n), the vibrational and rotational spectra and 
the "internal partition function" can be calculated as usual. 

The concept of an internal partition function has a meaning only if an 
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"internal part" and an "external part" can be defined. Since the Kohn-
Sham calculation includes the whole "correlation sphere" or cluster defined 
by the FPD, this issue is non-trivial. In the usual neutral-pseudoatom cal­
culations (e.g. Perrot 1993) for simple metallic fluids, it is sufficient to use a 
spherical Wigner-Seitz cavity to represent the FPD at the pseudo-ion. The 
effect of the cavity is corrected for using linear response theory applied to 
the electron gas. In more complicated pseudomolecular systems the simpli­
fications available for "simple metallic" fluids are not present. However, the 
effect of the FPD can be allowed for and factored out consistently by using 
a response function constructed from the Kohn-Sham basis of the pseu-
domolecule, instead of the response function constructed with plane wave 
states. Then the numerical work is more demanding. Simplified approaches 
using Wigner-Seitz volumes for each pseudomolecule and projecting out the 
contributions from neighboring cells according to some physical scheme etc 
may also be used. Since the electronic spectra contain only finite numbers of 
bound states, there are no spurious degeneracies appearing in the partition 
function summation. 

The electron density n(f) will be adjusted to self-consistence but the 2-
center FPD is not reevaluated except in the singe-center step. That is, the 
electron density results, bond lengths etc., of the two-center step are inputs 
to recalculate the self-consistent FPD of the one-center step. This approach 
is valid to second order in the density corrections, and has given good results 
in other problems (e.g., see Harris 1987). 

12.3.3 Hi pseudomolecule 

Here again we begin with a simple one-parameter model of the isolated H2 
molecule and re-optimize this parameter as a function of the field-particle 
potentials Vp{r) and Vxc{r). For constructing the H2 pseudomolecule we 
use as our tight-binding basis a generalization of the solutions ip(r, Z*, R) 
of the H* system. The simplest symmetric form for the spatial part of the 
H2 wavefunction (singlet spin state) is : 

*(ri,r2) = ^{TUZ\R)^{TXIZ\R)9 

This can be rewritten in terms of the atomic ls-functions as 

$(ri,r2) = $cov(ri,r2) + $ion(ri,r2) (6) 

where 
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$cov(n,r2) - [uis(rAl)uis(rB2) + uis(rA2)uu(rBi)] 

$ion(ri,r2) = [uis(rAi)ula(rA2) + uis(rB2)ula(rBi)] 

Instead of Eq.(6) we use the trial form 

$ ( n , r 2 , Z * , A ) = (1 - A ) $ c o „ ( n , r 2 ) + (1 + A)S, - o n (n , r 2 ) (7) 

where A is the new variational parameter. That is, Z*(R) is the value 
determined to be optimal for the H* problem and A is specific to the H2 

problem. We may also optimize both Z* and A, with improved results. Us­
ing this approach for isolated II2 a binding energy Ei,(Ro) = —4.00 eV and 
an equilibrium bond distance Ro = 1.5 a.u, are obtained (cf. experimental 
values (Herzberg 1954) Eb = - 4 . 7 eV, R0 = 1.4 a.u.). 

In the pseudo-H2 system inclusive of FPD we have to construct the two-
center potentials Vp(f) and Vxc(r). We interpolate between the infinite-
R limit where Vp(r) is a superposition of two single-center Vp(f) H-atom 
potentials calculated using the single-center DFT equations, and the R — 0 
united-atom limit which is the He-atom. The interpolation function F(R) is 
similar to that of Eq.(5), and constructed using results of trial calculations. 
Once the potentials Vp(r) and Vxc(f), and the limiting Z*(R,r,n) values 
for R = 0 and R = 00, are prepared from the one-center calculations for H 
and He pseudoatoms, A is now minimized (for each R) including the FP-
term, i.e. < <j>{rx,r2, Z*, X)\Vp(f) + Vxc{f)\4>{T1,r2, Z*, A) > . The resulting 
binding energy curve Et,(R,n,p) of pseudo-H2 in the fluid can be used to 
obtain the vibrational and rotational spectra and the "internal partition 
function" inclusive of the effects of the fluid environment. If the binding 
energy function Eb(R, n, p) has no minimum at some RQ then the fluid does 
not support the existence of H2 molecules. 

12.3.4 Other pseudo-molecules and clusters 

These methods can be applied to almost any simple hydrogenic cluster. 
We begin with a simple tight-binding model for the cluster in isolation 
and then include the FPD via the optimization of a relevant parameter in 
the Kohn-Sham functions used in the tight-binding model. The method 
also yields interaction potentials between pseudomolecules without resort­
ing to perturbation theory. Thus we may consider the interaction between 
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an H2-pseudomolecule with an H + ion in the fluid. The H + ion has a 
FPD around it. The construction of the potential around the pseudo-H2 
molecule was already discussed. Hence if we have to consider the interac­
tion potential between a pseudo-H2 molecule and a pseudo-H+ ion, we use 
the $ ( r i ,T2 ,Z* , A) solutions of the previous problem and taking a linear 
combination involving $AB, $BC, and $CA where A, B, and C are the 
three nuclei of the H2 and H + interacting system. This includes the bind­
ing due to electrons hopping among the three nuclei and goes beyond the 
usual polarization potential models for the H2-H+ interaction. A three-body 
interaction-potential (which is what the HVH"*" system is) can be reduced 
to a 2-body potential either by imposing an equilibrium bond distance RQ 
to one of the three inter-nuclear separations (valid if the other two distances 
are > > Ro), or by averaging with pair-distributions functions, as in Aers 
and Dharma-wardana (1984). 

The method proposed here is free of hard-sphere models, cutoffs in the 
partition function etc. It provides a microscopic approach which is capable 
of (i) determining the stability of a given pseudo-molecular cluster in the 
fluid and hence deciding whether we need to include it in the thermody­
namics, (ii) providing environment-dependent binding energy functions and 
interaction energy functions, (iii) providing the "internal partition function" 
of each species taking account of interactions with the plasma, (iv) obtain­
ing triplet and singlet spin states, ]T], H momentum states etc., and their 
correct thermal averages. 

12.4 Minimizat ion of the free energy function 

It is convenient to rewrite the free-energy minimization step outside the 
multispecies density functional calculation which involves the self-consistent 
resolution of a set of coupled Kohn-Sham equations for each species, as well 
as electron spectra for each species. Then the proposed procedure is as 
follows: 

(i) We prepare a trial "mixture" of species like H2, H, H*, H + , H - , H J , 
e~ at mean nuclear density pn and compositions x,. The electron density 
is constrained by charge neutrality. 

(ii) Single-center DFT calculations are done for the united-atom and sin­
gle atom limits, viz., for He, H e + , H + , H, H~, and H e - . The FPD can be 
simplified if desired, by replacing the FP-molecules by simpler distributions. 
Thus an H2 molecule is replaced by a distribution of electrons centered at 
the mid-point of the H2-bond and calculated from | $ ( r i , r 2 , Z*, A)|2. The 
electrons contribute n(r)fj2 to the total electron distribution n(r). We also 
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include the two nuclei which contribute P{T)H2 to the proton distribution 
p(f). These contributions n{f)jj21 />(r)//2 have no effect on the Poisson and 
xc-potentials (in the local density approximation) unless n(f)//2 has some 
overlap with the pseudomolecule at the origin whose detailed structure is 
being calculated. The existence of any overlap leads to hopping electronic 
states which cause modifications in the spectrum of the central particle. 

(iii) The output from the single center calculations will be electron dis­
tributions and FP-distributions. 

(iv) These are now fed into the multi-center calculations for pseudo-
molecules. We do not directly solve multicenter Kohn-Sham equations, but 
use the tight-binding approach where one or two carefully chosen parame­
ters determining the bound state wavefunctions are optimized. The FPD 
and the continuous electron spectrum are interpolated from the single- and 
united-atom limits as discussed before, in the spirit of the Harris functionals. 

(v) The new electron distributions are introduced into step number (ii) 
above. 

(vi) Step (iv) is repeated and interaction potentials, binding energy curves 
and the internal partition functions are calculated. 

(vii) A more refined evaluation of the FPD, using the interaction po­
tentials obtained at this stage may be carried out using MD or integrals 
equations (N.B. The DFT equation for classical particles are formulated as 
an effective HNC equation, coupled to the electronic Kohn-Sham equation). 

(viii) A total free energy minimization is carried out to obtain the mixture 
composition x;. 

(ix) These new x, are fed into step (ii) and the procedure is repeated until 
self-consistency is attained. 

(x) At this stage the mixture composition, particle distribution functions, 
interaction potentials etc.. are completely converged. The equation of state, 
electrical conductivity (Perrot and Dharma-wardana 1987), thermal conduc­
tivity and other properties which could serve as a "diagnostic" of a phase 
transition can be calculated at this stage. 

Thus the free-energy minimization step (i.e., step viii) is carried out within 
the large iterative loop (steps ii to viii) where the adjustment of the internal 
electronic coordinate is carried out in consort with the evaluation of FPD 
and the structure and spectra of the pseudomolecules. This is exactly the 
"physical picture" of a microscopic theory. 

In this discussion we have not addressed a number of issues. We as­
sume that the protons can be treated as classical particles. Also, when an 
ion is immersed self-consistently in a fluid containing continuum ("free") 
electrons, the continuum density of states becomes modified. The effec-
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tive masses m* of the electrons near each pseudomolecule change from the 
usual value of m*/Tne = 1, and the existence of finite sized bound cores on 
each ion also affect the compressibility of the electron gas. All these subtle 
effects contribute to the electron partition function and have to be consis­
tently treated. These issues are basically simpler than the pseudomolecular 
problems discussed here, and have been adequately treated elsewhere by us, 
in a recent (unpublished) study of Al-plasmas. 

12.5 Conclus ion 

We have presented a tractable microscopic approach to the study of complex 
fluids containing neutral and charged molecular species and electrons. The 
intuitive "chemical picture" based on data relevant to isolated molecules, 
hard spheres etc., is no longer needed. The model is able to take into 
account the electronic interactions between molecular species and the fluid 
environment. This allows room for three types of electrons, viz., (i) electrons 
fully localized on the molecular species, (ii) electrons which hop between the 
molecular species and the neighboring molecules in the fluid , and (iii) fully 
delocalized (i.e. "free") electrons. It is suggested that the prephase of the 
P P T is a system with a high population of hopping electrons, while the 
postphase is rich in delocalized electrons. The P P T is really a transition 
across the "mobility edge" and its physical reality depends on the sharpness 
of the associated percolation threshold. 
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