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Abstract

A distribution function F on [0, oo) belongs to the subexponential class y if and only if
1 -Fi2)(x) ~ 2(1 -F{x)), as x -» oo. For an important class of distribution functions, a simple, necessary
and sufficient condition for membership of £f is given. A comparison theorem for membership of & and
also some closure properties of y are obtained.
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1. Introduction

Throughout this paper all distribution functions will be distribution functions F on
[0, oo) such that F(0) = 0, F(x) < 1 for all x > 0, F(oo) = 1. F is said to belong to the
subexponential class y if

= 2 'J1-^ l - F ( x )

where F(2) is the convolution of F with itself. Subexponential distribution functions
are of interest in the theory of branching processes, and in queueing theory; see
Athreya and Ney (1972), Chover, Ney and Wainger (1974), Pakes (1975) and Teugels
(1975).

We define the function Fc by Fc(x) = 1 — F(x). It will sometimes be convenient to
denote the convolution of the distribution functions Fx, FY by Fx+Y, and the
convolution of Fx with itself by Fx+X. We have then

Fx+r(x)= !XFx(x-y)dFriy)= \FY(x-y)dFx(y),
Jo Jo
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338 E. J. G. Pitman [2]

and therefore

Jo

Thus

and so

(1) Fe^ if and only if lim I '-£r^dF(y)=l.
x-oo J o t (X)

It is well known (Athreya and Ney (1972), p. 148) that if Fey,

hm - ^ 7

(2) lim £ ' = 1 f o r a11 y-
' x-*oo FC(X) }

The class of distribution functions for which (2) is true is denoted by £f, and so
S£ => y. If F e i£, Fc(log x) is a slowly varying function of x at oo, because for k > 0,
Fc(log/cx)/Fc(logx) -> 1 as x ->• oo. Hence for a > 0, x"Fc(logx) -> oo as x -> oo.
Replacing x by ex, we obtain e'^/F^x) -»0. It is this property that suggested the
name subexponential; but as all members of £C possess it, it would be logical to call
all distribution functions in S£ subexponential. However, the name has been
restricted to the subclass y. Note that if we define the tail function G by

G(x) = F(x), x < 0 ,

= 1-F(x), x^O,
we may write (1) as

Fey if and only

Since

if lim I"
x-oo J o

it is evident that F e y if and only if G(x - y)/G(x) -> 1 in mean F, as x -» oo. The
requirement for membership of S£ is the weaker G(x — y)/G(x) -> 1 everywhere as
x -> oo. Note that

G*+*M , [XGikx-y)iv , ^^ f*
— — 1 = 1 —— — dFr(y) ^ I

Gx(x) Jo Gx(^) Jo
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which -> 1 as x -» oo. Hence

(This result can also be found in Chistyakov (1964) and in Pakes (1975), equation 8.)

THEOREM I. IfFxeif, and G^xJ/G^x) -> c, as x -> oo, t/ien

and, i / c > 0,

where t]u rj2 -»0 as x -> oo.

COROLLARY 1. IfFxe^, G^x) ~ cG^x), x -> oo, c > 0, t/ien

COROLLARY2. IfFxe£f, Gy(x) = o{Gx{x)}, x -> oo, then Gx+Y(x) ~ G^x), x -> oo,
am/

PROOF.

The last integral is

Thus

Jx-

i o

If e > 0, and 0 < y < x — A, then when A is sufficiently great,
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' • / * C ( )

where i/1(i|2 -»0 as x -» oo. Therefore for any e > 0, when x is great,

This proves (3).
Let Ku K2,... denote functions of x which -»0 as x -* oo.

Hence

Similarly, if c> 0,

Combining these, we obtain

(c-' c~l+K3

where ( / [ , ^ 2 -»0asx->co .
If FxeSf, the right side of (5) -»0 as x -* oo, and so Gy+y[x)IGy(x) -*2.Fye <f.

This proves Corollary 1. This result was given in Pakes (1975), and the particular
case, c = 1, in Tengels (1975). Corollary 2 follows immediately from (3). //

It turns out that the theory is simpler in terms of the logarithms of tail functions.
For any tail function G, we shall write g = — logG, G = e~9. Thus g is a
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nondecreasing function of x such that g(0) = 0. g(cc) = oo, and we shall reserve the
symbols g, gu etc. for such functions. The set of g functions corresponding to
distribution functions in £C will be denoted by Jf.

We also define

JT = {g;\-e-<>e<?}.

Note that g e J f if and only if, for every a, e ~ gix)/e ~ 9{x+a) -> 1 as x -» oo, that is if and
only if

Obviously gedf, <h(x) — g(x) ->0 as x -> oo => g^e Jlf. We shall say that the
functions g, gt are equivalent, and write g^g^ It follows from Corollary 1 above
that g e Jf, g «-> g i => g x e Jf.

If 3 e Jf, and l i m ^ „„ g'(x) exists, this limit must be 0. Also, if g is any function in Jtif,
we can construct a function gu which is equivalent to g, and which has a continuous
derivative g\ with limit 0 at oo. Define g0 by go{x) = gf(x) at x = 0,1,2,..., and g0

linear in [n— l,n], n = 1,2,.... Clearly go*-+g, and in the set of points at which it
exists, g'0(x) -* 0 as x -> oo. We obtain gx from g0 by rounding off the corners, if any,
at the points x = 1,2,..., by circular arcs. Thus, Jf consists of those g with a
continuous derivative g' which -> 0 at oo, and their equivalents. We shall therefore
consider only g having a continuous derivative g' with limit 0 at oo. If G = e~s, the
density function of the distribution i s / = — G' = e~9 g'. Denoting the tail function of
F(2) by G(2), we have

G(x) J o G(x)

= e*p{g(x)-g(x-y)-g(y)}g'(y)dy.
Jo

THEOREM II. Ifg has aderivative g' which eventually 4- 0, a necessary and sufficient
condition for geJf is

(6) lim f exp {yg'(x) - g(y)} g'(y) dy = 1,
*-» Jo

a sufficient condition is

(7)

integrable over [0, oo].
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PROOF. If g' is not monotonic over the whole range [0, oo], there is an equivalent
g0 with a derivative g'o which is so. We may therefore assume that g' is nonincreasing
over the whole range.

- 1 = ^p{g(x)-g(x-y)-g(y)}g'(y)dy

e*p{yg'(x)-g{y)}g'(y)dy

\xp{-g(y)}g'(y)dy =

Jo

\
JoI 0

This shows that the condition (6) is necessary, since if g e Jf, the first and the last -»1
as x -> oo.

ix

exp {g(x) - g(x -y)- g(y)} g'(y) dy
o

-F
Jo

exp {gf(x) - g(x -y)- g(y)} g'(y) dy

exp {g(x) - g(x -y)- g(y)} g'(x - y) dy.

The first integral is ~^F(\x) which -* 1 as x -> oo. On the other hand, y ^ ^x, and
therefore x — y > ^x, ^(x) — ̂ (x — y) ^ y3'(x~>') ^ y3'(ix)- Thus the first integral is
< Jo* exp {yg'i^x) — g(y)} g'(y)dy, which -> 1 as x -> oo if (6) is true. The first integral
then -»1. Moreover, as x -> oo, the first integrand -* e~*y)g[(y) =/(y) everywhere,
and the integral -• 1 = \$ f(y) dy. Thus the first integrand coverges in mean to f(y).
The second integrand -> 0 everywhere. It is dominated by the first integrand since
g'(x — y) ^ g'(y). Therefore the second integral ->0 as x ->• oo, and
G(2)(x)/G(x) — 1 -»1; ge JT. The second part of the theorem follows by dominated
convergence, since g'{x) < g'(y). //

EXAMPLE. Suppose G(x) ~ exp{ —x(logx) m } , m > 0, x -> oo. We may take

#(x) = x(logx)~m when x is great,

g\x) = (logx)"m-m(logx)~m"' .

When y is great

1-1} {(logyym-m(logyy
m-1}
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and is therefore integrable over [0, oo]. Therefore getf,Feif. Teugels (1975), p.
1001, states that F e y if and only if m > 1.

The necessary condition (6) enables us to define distribution functions which
belong to i£ but not to if. Thus if is a proper subset of if. Let (xn) be an increasing
sequence of numbers, to be defined later, with x0 = 0. Define g by g(x0) = g(0) = 0;g
is continuous and piecewise linear so that for xn_ t < x < xn, g'{x) = \jn. Consider

exp {yg'(xn) - g(y)} g'(y) dy >
J0 J1.-1

xn_! < y < x n ,

f'
J Xn-X

>

and g'(y) = n '. Therefore

expl^ 'W-^lfif ' ly)^

fXn - i
J Xn-l

= exp {-g(xn_ J} (xn-xn_ 0/n.

Choose the xn so that

exp{-g(xn_,)}(xw-xn_1)/n = 2,

(^n-^n-i) = 2nexp{3(xB_1)}.

We then have

x o = 0 , ^(xo) = 0, x t = 2 , g((x1) = 2,....

Clearly g(x) t oo as x f oo. Also g'(x) i 0, and so g e Jf. However,

f
J

exp {yg'(xn)—g(y)} g'(y)dy > 2,
o

and so

1 does not -»1 as x -• oo.I:I 0
Thus g e Jf but

The following theorem shows how the general case may often be reduced to the
case g'(x) 10. We need to consider only distribution functions F with continuous
derivatives /
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THEOREM III. Iff2/fi is bounded, and G2/G1 bounded away from 0, then

and

PROOF. Suppose/2/^i < C < oo, G2/Gl > c> 0, then c < G2/Gl < C.

G2(x-y)-G2(x) CG1(x-y)-G1{x)
U ^ G2(x) ^ c G,(x)

If F! € if, the last -> 0 as x -» oo. Therefore so does the other. G2(x — y)/G2(x) -* 1,
andF 2 e i f .

Hence

*; . f 2 { y ) —>f2(y), as x -> oo.

Also

V G,(x) / l W '

which converges in mean to C2 c ~ ViC )̂- Therefore (G2(x - >')/G2(x))/2(>') converges
in mean to f2(y), and

In terms of the g functions we may state the corollary : if g2 — gx and g'2/g\ are both
bounded, g^eJ^f => g2ej^, g^e^T => g2ejf.

EXAMPLE. Consider the case, when x is great

0,(x) = x/logx, ^(x) = I / logx- l/(logx)2,

#2(x) = x/log x + sin (x/log x),

02(x) = {(l/logx-l/(logx)2}{l+cos(x/logx)}.

The derivative g'2{x) is zero when x/logx is an odd multiple of n and positive
• everywhere else. It is not monotonic in any infinite interval.

g2i
x)-0i(x) = sin (x/logx), g'2{x)lg\(x) = 1 +cos(x/logx),

which are both bounded. As shown above, gl e Jf, and so g2ejf.
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THEOREM IV. IffY/fx is bounded, then

(8) 0 < p < l , Fxey => pFx+{\~p)FYe9',

(9) F

PROOF. If F = PFX+(1 -p)Fr,f= p/»+(l -p)fr.

Jx Jx

Thus//fx is bounded away from 0 and from oo. The conditions of Theorem HI are
fulfilled, and Fx€^ => Fe6f.

Suppose / y < Cfx-

fx+ri*) = \fYix-y)My)dy < C \ fAx~y)f,&y)dy = Cfx+X(x),
Jo Jo

If Fx^y, Gx+xixyGxix)^! as x -»• oo. Therefore Gx+X/Gx is bounded, and
Gjr+x/Gx+y als0» smce Gx+r> Gx- Thus Gx + y/Gx+x is bounded away from 0, and
fx+r/fx+x is bounded. FxeSf => Fx+Xe^ *- Fx+re^. //

THEOREM V.

(10) gl,92eJr =>

(11) m> l.gfeJf => mgeJf.

PROOF. If 0 < U < X,

exp (#(x) - g(x - y) - g(y)} g'(y) dy -
Jo Jx-u

= exp{g(x)-3(x-y)
Jo

(12) cxp{g(x)-g(x-u)-g(u)}

= 1 + exp {g(x) - g(x - y) - g(y)} g'(y) dy -
Jx-u Jo

1 + exp (gf(x) - g(x - y) -
Jo
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which -»2 as x -*• oo if ge X, and so is bounded. Therefore g(x) — g(x — u) — g(u) is
bounded for all x, and all u < x.

Suppose gug2 e X, g = gx + g2.

exp{g(x)-g(x-y)-g(y)}g'(y)dy = I(x,y)dy,
Jo Jo

where

I(x,y) = exp{gl(x)-g1(x-y)-gl(y) + g2(x)-g2(x-y)-g2(y)}

x {g'i(y) + g'2(y)} < exp{gi(x)-gi(x-y)-gi(y) + C2}g\(y)

+ exp{Cl+g2(x)-g2(x-y)-g2(y)}g'2(y),

which converges in mean to e.xp{-gl(y) + C2}g\{y)+c\p{Cl-g2(y)}g'2(y), as
x -> oo.
Also /(x, y) -• e '^VOO- Hence / converges in mean, and ^I(x,y)dy -»1. ge Jf.

If u, x —u are both ^ A > 0, we have from (12)

exp {g(x) - g(x - u) - #(M)}

^ 1 + exp {fl<x) - g(x -y)- g(y)} g\y) dy -
JA J

o Jo

which->2-2F(/l) = 2G(/l) if geJf. Choose A so that G(A) < \, then
exp{3(x) — ̂ (x — u) — ^(M)} < 1 when x — u, u^ A, and x is great. Consider

i; exp {mg(x) - mg(x - y) - mg(y)} mg'(y) dy.

When x is great, the integrand < exp { (̂x)—g(x — y)—g(y)} mg'(y), which converges
in mean. Therefore, as x -> oo,

'x-A

exp {mg(x) - mg(x -y)- mg(y)} mg'(y) dy

f
J A

exp {- mg(y)} mg'(y) = exp {- mg(A)}.

As shown above, $*_A ~> 0, and it may easily be shown by dominated convergence
that jo1 -* 1 -exp{-mg(A)}. Thus

exp {mg(x) - mg(x -y)- mg(y)} mg\y) dy->l,
o

so that mg e 3f. //
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If y denotes the set of tail functions G corresponding to distribution functions F
in y , the above results may be written

m>\, G e y => Gm e <f.
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