SUBEXPONENTIAL DISTRIBUTION FUNCTIONS

E. J. G. PITMAN

(Received 20 August 1979)
Communicated by R. L. Tweedie

Abstract

A distribution function F on $[0, \infty)$ belongs to the subexponential class \mathscr{S} if and only if $1-F^{(2)}(x) \sim 2(1-F(x))$, as $x \rightarrow \infty$. For an important class of distribution functions, a simple, necessary and sufficient condition for membership of \mathscr{S} is given. A comparison theorem for membership of \mathscr{S} and also some closure properties of \mathscr{S} are obtained.

1980 Mathematics subject classification (Amer. Math. Soc.) : primary 60 E 05 ; secondary 60 J 80.
Keywords and phrases : subexponential distributions.

1. Introduction

Throughout this paper all distribution functions will be distribution functions F on $[0, \infty)$ such that $F(0)=0, F(x)<1$ for all $x>0, F(\infty)=1 . F$ is said to belong to the subexponential class \mathscr{S} if

$$
\lim _{x \rightarrow \infty} \frac{1-F^{(2)}(x)}{1-F(x)}=2
$$

where $F^{(2)}$ is the convolution of F with itself. Subexponential distribution functions are of interest in the theory of branching processes, and in queueing theory; see Athreya and Ney (1972), Chover, Ney and Wainger (1974), Pakes (1975) and Teugels (1975).

We define the function F^{c} by $F^{c}(x)=1-F(x)$. It will sometimes be convenient to denote the convolution of the distribution functions F_{X}, F_{Y} by F_{X+Y}, and the convolution of F_{X} with itself by F_{X+X}. We have then

$$
F_{X+\mathrm{r}}(x)=\int_{0}^{\infty} F_{X}(x-y) d F_{\mathrm{Y}}(y)=\int_{0}^{\infty} F_{Y}(x-y) d F_{X}(y),
$$

and therefore

$$
F_{X+Y}^{c}(x)=\int_{0}^{\infty} F_{X}^{c}(x-y) d F_{Y}(y)=\int_{0}^{\infty} F_{Y}^{c}(x-y) d F_{X}(y)
$$

Thus

$$
\begin{aligned}
\frac{F_{X+X}^{c}(x)}{F_{X}^{c}(x)}=\int_{0}^{\infty} \frac{F_{X}^{c}(x-y)}{F_{X}^{c}(x)} d F_{X}(y) & =\int_{0}^{x}+\int_{x}^{\infty} \frac{1}{F_{X}^{c}(x)} d F_{X}(y) \\
& =\int_{0}^{x} \frac{F_{X}^{c}(x-y)}{F^{c}(x)} d F_{X}(y)+1
\end{aligned}
$$

and so

$$
\begin{equation*}
F \in \mathscr{S} \text { if and only if } \lim _{x \rightarrow \infty} \int_{0}^{x} \frac{F^{c}(x-y)}{F^{c}(x)} d F(y)=1 \tag{1}
\end{equation*}
$$

It is well known (Athreya and Ney (1972), p. 148) that if $F \in \mathscr{P}$,

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{F^{c}(x+y)}{F^{c}(x)}=1 \quad \text { for all } y . \tag{2}
\end{equation*}
$$

The class of distribution functions for which (2) is true is denoted by \mathscr{L}, and so $\mathscr{L} \supset \mathscr{S}$. If $F \in \mathscr{L}, F^{c}(\log x)$ is a slowly varying function of x at ∞, because for $k>0$, $F^{c}(\log k x) / F^{c}(\log x) \rightarrow 1$ as $x \rightarrow \infty$. Hence for $\alpha>0, x^{\alpha} F^{c}(\log x) \rightarrow \infty$ as $x \rightarrow \infty$. Replacing x by e^{x}, we obtain $e^{-\alpha x} / F^{c}(x) \rightarrow 0$. It is this property that suggested the name subexponential; but as all members of \mathscr{L} possess it, it would be logical to call all distribution functions in \mathscr{L} subexponential. However, the name has been restricted to the subclass \mathscr{S}. Note that if we define the tail function G by

$$
\begin{aligned}
G(x) & =F(x), \quad x<0 \\
& =1-F(x), \quad x \geqslant 0
\end{aligned}
$$

we may write (1) as

$$
F \in \mathscr{S} \text { if and only if } \lim _{x \rightarrow \infty} \int_{0}^{\infty} \frac{G(x-y)}{G(x)} d F(y)=1
$$

Since

$$
\int_{0}^{\infty}\left|\frac{G(x-y)}{G(x)}-1\right| d F(y)=\int_{0}^{x} \frac{G(x-y)}{G(x)} d F(y)-\int_{0}^{x} d F(y)+\int_{x}^{\infty} d F(y),
$$

it is evident that $F \in \mathscr{S}$ if and only if $G(x-y) / G(x) \rightarrow 1$ in mean F, as $x \rightarrow \infty$. The requirement for membership of \mathscr{L} is the weaker $G(x-y) / G(x) \rightarrow 1$ everywhere as $x \rightarrow \infty$. Note that

$$
\frac{G_{X+x}(x)}{G_{X}(x)}-1=\int_{0}^{x} \frac{G_{X}(x-y)}{G_{X}(x)} d F_{X}(y) \geqslant \int_{0}^{x} d F_{X}(y)=F_{X}(x),
$$

which $\rightarrow 1$ as $x \rightarrow \infty$. Hence

$$
\lim _{x \rightarrow \infty} \inf \frac{G_{X+X}(x)}{G_{X}(x)} \geqslant 2 .
$$

(This result can also be found in Chistyakov (1964) and in Pakes (1975), equation 8.)

2.

Theorem I. If $F_{X} \in \mathscr{L}$, and $G_{Y}(x) / G_{X}(x) \rightarrow c$, as $x \rightarrow \infty$, then

$$
\begin{equation*}
\left\{\frac{G_{X+\mathrm{Y}}(x)}{G_{X}(x)}-1\right\} /\left\{\frac{G_{X+X}(x)}{G_{X}(x)}-1\right\} \rightarrow c, \quad \text { as } x \rightarrow \infty \tag{3}
\end{equation*}
$$

and, if $c>0$,

$$
\begin{equation*}
\frac{G_{Y+Y}(x)}{G_{Y}(x)}-2=\left(c+\eta_{1}\right)\left\{\frac{G_{X+X}(x)}{G_{X}(x)}-2\right\}+\eta_{2} \tag{4}
\end{equation*}
$$

where $\eta_{1}, \eta_{2} \rightarrow 0$ as $x \rightarrow \infty$.
Corollary 1. If $F_{X} \in \mathscr{S}, G_{Y}(x) \sim c G_{X}(x), x \rightarrow \infty, c>0$, then $F_{Y} \in \mathscr{S}$.
Corollary 2. If $F_{X} \in \mathscr{P}, G_{Y}(x)=o\left\{G_{X}(x)\right\}, x \rightarrow \infty$, then $G_{X+Y}(x) \sim G_{X}(x), x \rightarrow \infty$, and $F_{X+\boldsymbol{Y}} \in \mathscr{S}$.

Proof.

$$
\frac{G_{X+Y}(x)}{G_{X}(x)}-1=\int_{0}^{x} \frac{G_{Y}(x-y)}{G_{X}(x)} d F_{X}(y)=\int_{0}^{x-A}+\int_{x-A}^{x}
$$

The last integral is

$$
\leqslant \int_{x-A}^{x} \frac{d F_{X}(y)}{G_{X}(x)}=\frac{G_{X}(x-A)-G_{X}(x)}{G_{X}(x)}, \quad \text { which } \rightarrow 0 \text { as } x \rightarrow \infty
$$

Thus

$$
\frac{G_{X+Y}(x)}{G_{X}(x)}-1-\int_{0}^{x-A} \frac{G_{Y}(x-y)}{G_{X}(x)} d F_{X}(y) \rightarrow 0 \quad \text { as } x \rightarrow \infty .
$$

If $\varepsilon>0$, and $0<y<x-A$, then when A is sufficiently great,

$$
c-\varepsilon \leqslant \frac{G_{\mathbf{Y}}(x-y)}{G_{X}(x-y)} \leqslant c+\varepsilon,
$$

$$
\begin{aligned}
(c-\varepsilon) \int_{0}^{x-A} \frac{G_{X}(x-y)}{G_{X}(x)} d F_{X}(y) & \leqslant \int_{0}^{x-A} \frac{G_{Y}(x-y)}{G_{X}(x)} d F_{X}(y) \\
& \leqslant(c+\varepsilon) \int_{0}^{x-A} \frac{G_{X}(x-y)}{G_{X}(x)} d F_{X}(y) \\
(c-\varepsilon)\left\{\frac{G_{X+X}(x)}{G_{X}(x)}-1-\eta_{1}\right\} & \leqslant \frac{G_{X+Y}(x)}{G_{X}(x)}-1-\eta_{2} \\
& \leqslant(c+\varepsilon)\left\{\frac{G_{X+X}(x)}{G_{X}(x)}-1-\eta_{1}\right\}
\end{aligned}
$$

where $\eta_{1}, \eta_{2} \rightarrow 0$ as $x \rightarrow \infty$. Therefore for any $\varepsilon>0$, when x is great,

$$
(c-2 \varepsilon)\left\{\frac{G_{X+X}(x)}{G_{X}(x)}-1\right\} \leqslant \frac{G_{X+Y}(x)}{G_{X}(x)}-1 \leqslant(c+2 \varepsilon)\left\{\frac{G_{X+X}(x)}{G_{X}(x)}-1\right\} .
$$

This proves (3).
Let K_{1}, K_{2}, \ldots denote functions of x which $\rightarrow 0$ as $x \rightarrow \infty$.

$$
G_{X+X} / G_{X}-1=\left(c+K_{1}\right)\left(G_{X+X} / G_{X}-1\right) .
$$

Hence

$$
\frac{G_{X+\boldsymbol{Y}}-G_{X}-G_{Y}}{G_{X}}=\left(c+K_{1}\right)\left(G_{X+X} / G_{X}-2\right)+K_{2}
$$

Similarly, if $c>0$,

$$
\frac{G_{X+Y}-G_{X}-G_{Y}}{G_{Y}}=\left(c^{-1}+K_{3}\right)\left(G_{Y+Y} / G_{Y}-2\right)+K_{4}
$$

Combining these, we obtain

$$
\begin{align*}
\frac{G_{Y+Y}}{G_{Y}}-2 & =\frac{\left(c+K_{1}\right) G_{X}}{\left(c^{-1}+K_{3}\right) G_{Y}}\left\{\frac{G_{X+X}}{G_{X}}-2\right\}+\frac{K_{2} G_{X}}{G_{Y}}-\frac{K_{4}}{c^{-1}+K_{3}} \tag{5}\\
& =\left(c+\eta_{1}\right)\left\{\frac{G_{X+X}}{G_{X}}-2\right\}+\eta_{2}
\end{align*}
$$

where $\eta_{1}, \eta_{2} \rightarrow 0$ as $x \rightarrow \infty$.
If $F_{X} \in \mathscr{S}$, the right side of (5) $\rightarrow 0$ as $x \rightarrow \infty$, and so $G_{Y+\gamma}(x) / G_{Y}(x) \rightarrow 2 . F_{Y} \in \mathscr{S}$.
This proves Corollary 1. This result was given in Pakes (1975), and the particular case, $c=1$, in Tengels (1975). Corollary 2 follows immediately from (3). //

3.

It turns out that the theory is simpler in terms of the logarithms of tail functions. For any tail function G, we shall write $g=-\log G, G=e^{-g}$. Thus g is a
nondecreasing function of x such that $g(0)=0 . g(\infty)=\infty$, and we shall reserve the symbols g, g_{1}, etc. for such functions. The set of g functions corresponding to distribution functions in \mathscr{L} will be denoted by \mathscr{H}.

$$
\mathscr{H}=\left\{g ; 1-e^{-g} \in \mathscr{L}\right\} .
$$

We also define

$$
\mathscr{K}=\left\{g ; 1-e^{-\boldsymbol{g}} \in \mathscr{S}\right\} .
$$

Note that $g \in \mathscr{H}$ if and only if, for every $a, e^{-g(x)} / e^{-g(x+a)} \rightarrow 1$ as $x \rightarrow \infty$, that is if and only if

$$
g(x+a)-g(x) \rightarrow 0
$$

Obviously $g \in \mathscr{H}, g_{1}(x)-g(x) \rightarrow 0$ as $x \rightarrow \infty \Rightarrow g_{1} \in \mathscr{H}$. We shall say that the functions g, g_{1} are equivalent, and write $g \leftrightarrow g_{1}$. It follows from Corollary 1 above that $g \in \mathscr{K}, g \leftrightarrow g_{1} \Rightarrow g_{1} \in \mathscr{K}$.

If $g \in \mathscr{H}$, and $\lim _{x \rightarrow \infty} g^{\prime}(x)$ exists, this limit must be 0 . Also, if g is any function in \mathscr{H}, we can construct a function g_{1}, which is equivalent to g, and which has a continuous derivative g_{1}^{\prime} with limit 0 at ∞. Define g_{0} by $g_{0}(x)=g(x)$ at $x=0,1,2, \ldots$, and g_{0} linear in $[n-1, n], n=1,2, \ldots$. Clearly $g_{0} \leftrightarrow g$, and in the set of points at which it exists, $g_{0}^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. We obtain g_{1} from g_{0} by rounding off the corners, if any, at the points $x=1,2, \ldots$, by circular arcs. Thus, \mathscr{H} consists of those g with a continuous derivative g^{\prime} which $\rightarrow 0$ at ∞, and their equivalents. We shall therefore consider only g having a continuous derivative g^{\prime} with limit 0 at ∞. If $G=e^{-g}$, the density function of the distribution is $f=-G^{\prime}=e^{-g} g^{\prime}$. Denoting the tail function of $F^{(2)}$ by $G^{(2)}$, we have

$$
\begin{aligned}
\frac{G^{(2)}(x)}{G(x)}-1 & =\int_{0}^{x} \frac{G(x-y)}{G(x)} d F(y) \\
& =\int_{0}^{x} \exp \{g(x)-g(x-y)-g(y)\} g^{\prime}(y) d y .
\end{aligned}
$$

Theorem II. If g has a derivative g ' which eventually $\downarrow 0$, a necessary and sufficient condition for $g \in \mathscr{K}$ is

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \int_{0}^{x} \exp \left\{y g^{\prime}(x)-g(y)\right\} g^{\prime}(y) d y=1 \tag{6}
\end{equation*}
$$

and a sufficient condition is

$$
\begin{equation*}
\exp \left\{y g^{\prime}(y)-g(y)\right\} g^{\prime}(y) \tag{7}
\end{equation*}
$$

integrable over $[0, \infty]$.

Proof. If g^{\prime} is not monotonic over the whole range [$0, \infty$], there is an equivalent g_{0} with a derivative g_{0}^{\prime} which is so. We may therefore assume that g^{\prime} is nonincreasing over the whole range.

$$
\begin{aligned}
\frac{G^{(2)}(x)}{G(x)}-1 & =\int_{0}^{x} \exp \{g(x)-g(x-y)-g(y)\} g^{\prime}(y) d y \\
& \geqslant \int_{0}^{x} \exp \left\{y g^{\prime}(x)-g(y)\right\} g^{\prime}(y) d y \\
& \geqslant \int_{0}^{x} \exp \{-g(y)\} g^{\prime}(y) d y=F(x)
\end{aligned}
$$

This shows that the condition (6) is necessary, since if $g \in \mathscr{K}$, the first and the last $\rightarrow 1$ as $x \rightarrow \infty$.

$$
\begin{aligned}
\int_{0}^{x} \exp & \{g(x)-g(x-y)-g(y)\} g^{\prime}(y) d y \\
& =\int_{0}^{\frac{1}{2} x}+\int_{\frac{1}{2} x}^{x} \\
= & \int_{0}^{\frac{1}{2} x} \exp \{g(x)-g(x-y)-g(y)\} g^{\prime}(y) d y \\
& \quad+\int_{0}^{\frac{1}{2} x} \exp \{g(x)-g(x-y)-g(y)\} g^{\prime}(x-y) d y .
\end{aligned}
$$

The first integral is $\geqslant F\left(\frac{1}{2} x\right)$ which $\rightarrow 1$ as $x \rightarrow \infty$. On the other hand, $y \leqslant \frac{1}{2} x$, and therefore $x-y \geqslant \frac{1}{2} x, g(x)-g(x-y) \leqslant y g^{\prime}(x-y) \leqslant y g^{\prime}\left(\frac{1}{2} x\right)$. Thus the first integral is $\leqslant \int_{0}^{\frac{1}{2} x} \exp \left\{y g^{\prime}\left(\frac{1}{2} x\right)-g(y)\right\} g^{\prime}(y) d y$, which $\rightarrow 1$ as $x \rightarrow \infty$ if (6) is true. The first integral then $\rightarrow 1$. Moreover, as $x \rightarrow \infty$, the first integrand $\rightarrow e^{-g(y)} g^{\prime}(y)=f(y)$ everywhere, and the integral $\rightarrow 1=\int_{0}^{\infty} f(y) d y$. Thus the first integrand coverges in mean to $f(y)$. The second integrand $\rightarrow 0$ everywhere. It is dominated by the first integrand since $g^{\prime}(x-y) \leqslant g^{\prime}(y)$. Therefore the second integral $\rightarrow 0$ as $x \rightarrow \infty$, and $G^{(2)}(x) / G(x)-1 \rightarrow 1 ; g \in \mathscr{K}$. The second part of the theorem follows by dominated convergence, since $g^{\prime}(x) \leqslant g^{\prime}(y)$.

Example. Suppose $G(x) \sim \exp \left\{-x(\log x)^{-m}\right\}, m>0, x \rightarrow \infty$. We may take

$$
\begin{aligned}
g(x) & =x(\log x)^{-m} \quad \text { when } x \text { is great }, \\
g^{\prime}(x) & =(\log x)^{-m}-m(\log x)^{-m-1}
\end{aligned}
$$

When y is great

$$
\exp \left\{y g^{\prime}(y)-g(y)\right\} g^{\prime}(y)=\exp \left\{-m y(\log y)^{-m-1}\right\}\left\{(\log y)^{-m}-m(\log y)^{-m-1}\right\}
$$

and is therefore integrable over $[0, \infty]$. Therefore $g \in \mathscr{K}, F \in \mathscr{S}$. Teugels (1975), p. 1001, states that $F \in \mathscr{S}$ if and only if $m>1$.

The necessary condition (6) enables us to define distribution functions which belong to \mathscr{L} but not to \mathscr{S}. Thus \mathscr{S} is a proper subset of \mathscr{L}. Let $\left(x_{n}\right)$ be an increasing sequence of numbers, to be defined later, with $x_{0}=0$. Define g by $g\left(x_{0}\right)=g(0)=0 ; g$ is continuous and piecewise linear so that for $x_{n-1}<x<x_{n}, g^{\prime}(x)=1 / n$. Consider

$$
\int_{0}^{x_{n}} \exp \left\{y g^{\prime}\left(x_{n}\right)-g(y)\right\} g^{\prime}(y) d y>\int_{x_{n-1}}^{x_{n}}
$$

For $x_{n-1}<y<x_{n}$,

$$
y g^{\prime}\left(x_{n}\right)-g(y)=y / n-\left\{g\left(x_{n-1}\right)+n^{-1}\left(y-x_{n-1}\right)\right\}>-g\left(x_{n-1}\right)
$$

and $g^{\prime}(y)=n^{-1}$. Therefore

$$
\begin{aligned}
\int_{x_{n-1}}^{x_{n}} \exp \left\{y g^{\prime}\left(x_{n}\right)\right. & -g(y)\} g^{\prime}(y) d y \\
& >\int_{x_{n-1}}^{x_{n}} \exp \left\{-g\left(x_{n-1}\right)\right\} n^{-1} d y \\
& =\exp \left\{-g\left(x_{n-1}\right)\right\}\left(x_{n}-x_{n-1}\right) / n
\end{aligned}
$$

Choose the x_{n} so that

$$
\begin{gathered}
\exp \left\{-g\left(x_{n-1}\right)\right\}\left(x_{n}-x_{n-1}\right) / n=2 \\
\left(x_{n}-x_{n-1}\right)=2 n \exp \left\{g\left(x_{n-1}\right)\right\}
\end{gathered}
$$

We then have

$$
\begin{aligned}
g\left(x_{n}\right) & =g\left(x_{n-1}\right)+\left(x_{n}-x_{n-1}\right) / n=g\left(x_{n-1}\right)+2 \exp g\left(x_{n-1}\right) \\
x_{0} & =0, \quad g\left(x_{0}\right)=0, \quad x_{1}=2, \quad g\left(x_{1}\right)=2, \ldots
\end{aligned}
$$

Clearly $g(x) \uparrow \infty$ as $x \uparrow \infty$. Also $g^{\prime}(x) \downarrow 0$, and so $g \in \mathscr{H}$. However,

$$
\int_{0}^{x_{n}} \exp \left\{y g^{\prime}\left(x_{n}\right)-g(y)\right\} g^{\prime}(y) d y>2
$$

and so

$$
\int_{0}^{x} \exp \left\{y g^{\prime}(x)-g(y)\right\} g^{\prime}(y) d y \text { does not } \rightarrow 1 \text { as } x \rightarrow \infty
$$

Thus $g \in \mathscr{H}$ but $g \notin \mathscr{K}$.

The following theorem shows how the general case may often be reduced to the case $g^{\prime}(x) \downarrow$. We need to consider only distribution functions F with continuous derivatives f.

Theorem III. If f_{2} / f_{1} is bounded, and G_{2} / G_{1} bounded away from 0 , then

$$
F_{1} \in \mathscr{L} \Rightarrow F_{2} \in \mathscr{L} \quad \text { and } \quad F_{1} \in \mathscr{S} \Rightarrow F_{2} \in \mathscr{S}
$$

Proof. Suppose $f_{2} / f_{1}<C<\infty, G_{2} / G_{1}>c>0$, then $c<G_{2} / G_{1}<C$.

$$
0 \leqslant \frac{G_{2}(x-y)-G_{2}(x)}{G_{2}(x)} \leqslant \frac{C}{c} \frac{G_{1}(x-y)-G_{1}(x)}{G_{1}(x)}
$$

If $F_{1} \in \mathscr{L}$, the last $\rightarrow 0$ as $x \rightarrow \infty$. Therefore so does the other. $G_{2}(x-y) / G_{2}(x) \rightarrow 1$, and $F_{2} \in \mathscr{L}$.

$$
F_{1} \in \mathscr{S} \Rightarrow F_{1} \in \mathscr{L} \Rightarrow F_{2} \in \mathscr{L} .
$$

Hence

$$
\frac{G_{2}(x-y)}{G_{2}(x)} f_{2}(y) \rightarrow f_{2}(y), \quad \text { as } x \rightarrow \infty .
$$

Also

$$
\frac{G_{2}(x-y)}{G_{2}(x)} f_{2}(y) \leqslant \frac{C^{2}}{c} \frac{G_{1}(x-y)}{G_{1}(x)} f_{1}(y),
$$

which converges in mean to $C^{2} c^{-1} f_{1}(y)$. Therefore $\left(G_{2}(x-y) / G_{2}(x)\right) f_{2}(y)$ converges in mean to $f_{2}(y)$, and

$$
\int_{0}^{x} \frac{G_{2}(x-y)}{G_{2}(x)} f_{2}(y) d y \rightarrow 1
$$

In terms of the g functions we may state the corollary : if $g_{2}-g_{1}$ and $g_{2}^{\prime} / g_{1}^{\prime}$ are both bounded, $g_{1} \in \mathscr{H} \Rightarrow g_{2} \in \mathscr{H}, g_{1} \in \mathscr{K} \Rightarrow g_{2} \in \mathscr{K}$.

Example. Consider the case, when x is great

$$
\begin{aligned}
& g_{1}(x)=x / \log x, \quad g_{1}^{\prime}(x)=1 / \log x-1 /(\log x)^{2} \\
& g_{2}(x)=x / \log x+\sin (x / \log x) \\
& g_{2}^{\prime}(x)=\left\{\left(1 / \log x-1 /(\log x)^{2}\right\}\{1+\cos (x / \log x)\}\right.
\end{aligned}
$$

The derivative $g_{2}^{\prime}(x)$ is zero when $x / \log x$ is an odd multiple of π and positive - everywhere else. It is not monotonic in any infinite interval.

$$
g_{2}(x)-g_{1}(x)=\sin (x / \log x), \quad g_{2}^{\prime}(x) / g_{1}^{\prime}(x)=1+\cos (x / \log x)
$$

which are both bounded. As shown above, $g_{1} \in \mathscr{K}$, and so $g_{2} \in \mathscr{K}$.

Theorem IV. If f_{Y} / f_{X} is bounded, then

$$
\begin{equation*}
0<p<1, \quad F_{X} \in \mathscr{S} \Rightarrow p F_{X}+(1-p) F_{Y} \in \mathscr{S}, \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
F_{X} \in \mathscr{S} \Rightarrow F_{X+Y} \in \mathscr{S} . \tag{9}
\end{equation*}
$$

Proof. If $F=p F_{X}+(1-p) F_{Y}, f=p f_{X}+(1-p) f_{Y}$.

$$
p \leqslant \frac{p f_{X}+(1-p) f_{Y}}{f_{X}}=\frac{f}{f_{X}}=p+(1-p) f_{Y} / f_{X} .
$$

Thus f / f_{x} is bounded away from 0 and from ∞. The conditions of Theorem III are fulfilled, and $F_{X} \in \mathscr{S} \Rightarrow F \in \mathscr{S}$.

Suppose $f_{Y} \leqslant C f_{X}$.

$$
\begin{gathered}
f_{X+Y}(x)=\int_{0}^{x} f_{Y}(x-y) f_{X}(y) d y \leqslant C \int_{0}^{x} f_{X}(x-y) f_{X}(y) d y=C f_{X+X}(x), \\
f_{X+Y}(x) / f_{X+X}(x) \leqslant C .
\end{gathered}
$$

If $F_{X} \in \mathscr{P}, G_{X+X}(x) / G_{X}(x) \rightarrow 2$ as $x \rightarrow \infty$. Therefore G_{X+X} / G_{X} is bounded, and $G_{X+\boldsymbol{X}} / G_{\boldsymbol{X}+\boldsymbol{Y}}$ also, since $G_{\boldsymbol{X}+\boldsymbol{Y}} \geqslant G_{\boldsymbol{X}}$. Thus $G_{\boldsymbol{X}+\boldsymbol{Y}} / G_{\boldsymbol{X}+\boldsymbol{X}}$ is bounded away from 0 , and $f_{X+\boldsymbol{Y}} / f_{\boldsymbol{X}+\boldsymbol{x}}$ is bounded. $F_{\boldsymbol{X}} \in \mathscr{S} \Rightarrow F_{\boldsymbol{X}+\boldsymbol{x}} \in \mathscr{P} \Rightarrow F_{\boldsymbol{X}+\boldsymbol{Y}} \in \mathscr{S}$.

Theorem V.

$$
\begin{gather*}
g_{1}, g_{2} \in \mathscr{K} \Rightarrow g_{1}+g_{2} \in \mathscr{K} . \tag{10}\\
m>1, g \in \mathscr{K} \Rightarrow m g \in \mathscr{K} . \tag{11}
\end{gather*}
$$

Proof. If $0<u<x$,

$$
\begin{aligned}
\int_{0}^{u} \exp & \{g(x)-g(x-y)-g(y)\} g^{\prime}(y) d y-\int_{x-u}^{x} \\
\quad= & \int_{0}^{u} \exp \{g(x)-g(x-y)-g(y)\}\left\{g^{\prime}(y)-g^{\prime}(x-y)\right\} d y \\
\quad= & 1-\exp \{g(x)-g(x-u)-g(u)\} .
\end{aligned}
$$

$$
\begin{align*}
\exp \{g(x) & -g(x-u)-g(u)\} \tag{12}\\
& =1+\int_{x-u}^{x} \exp \{g(x)-g(x-y)-g(y)\} g^{\prime}(y) d y-\int_{0}^{u} \\
\leqslant & 1+\int_{0}^{x} \exp \{g(x)-g(x-y)-g(y)\} g^{\prime}(y) d y
\end{align*}
$$

which $\rightarrow 2$ as $x \rightarrow \infty$ if $g \in \mathscr{K}$, and so is bounded. Therefore $g(x)-g(x-u)-g(u)$ is bounded for all x, and all $u \leqslant x$.

Suppose $g_{1}, g_{2} \in \mathscr{K}, g=g_{1}+g_{2}$.

$$
\int_{0}^{x} \exp \{g(x)-g(x-y)-g(y)\} g^{\prime}(y) d y=\int_{0}^{x} I(x, y) d y
$$

where

$$
\begin{aligned}
I(x, y)=\exp & \left\{g_{1}(x)-g_{1}(x-y)-g_{1}(y)+g_{2}(x)-g_{2}(x-y)-g_{2}(y)\right\} \\
& \times\left\{g_{1}^{\prime}(y)+g_{2}^{\prime}(y)\right\} \leqslant \exp \left\{g_{1}(x)-g_{1}(x-y)-g_{1}(y)+C_{2}\right\} g_{1}^{\prime}(y) \\
& +\exp \left\{C_{1}+g_{2}(x)-g_{2}(x-y)-g_{2}(y)\right\} g_{2}^{\prime}(y),
\end{aligned}
$$

which converges in mean to $\exp \left\{-g_{1}(y)+C_{2}\right\} g_{1}^{\prime}(y)+\exp \left\{C_{1}-g_{2}(y)\right\} g_{2}^{\prime}(y)$, as $x \rightarrow \infty$.
Also $I(x, y) \rightarrow e^{-g(y)} g^{\prime}(y)$. Hence I converges in mean, and $\int_{0}^{x} I(x, y) d y \rightarrow 1 . g \in \mathscr{K}$.
If $u, x-u$ are both $\geqslant \mathrm{A}>0$, we have from (12)

$$
\begin{aligned}
& \exp \{g(x)-g(x-u)-g(u)\} \\
& \leqslant 1+\int_{A}^{x} \exp \{g(x)-g(x-y)-g(y)\} g^{\prime}(y) d y-\int_{0}^{A} \\
&=1+\int_{0}^{x}-2 \int_{0}^{A}
\end{aligned}
$$

which $\rightarrow 2-2 F(A)=2 G(A)$ if $g \in \mathscr{K}$. Choose A so that $G(A)<\frac{1}{2}$, then $\exp \{g(x)-g(x-u)-g(u)\}<1$ when $x-u, u \geqslant A$, and x is great. Consider

$$
\int_{A}^{x-A} \exp \{m g(x)-m g(x-y)-m g(y)\} m g^{\prime}(y) d y
$$

When x is great, the integrand $<\exp \{g(x)-g(x-y)-g(y)\} m g^{\prime}(y)$, which converges in mean. Therefore, as $x \rightarrow \infty$,

$$
\begin{aligned}
& \int_{A}^{x-A} \exp \{m g(x)-m g(x-y)-m g(y)\} m g^{\prime}(y) d y \\
& \rightarrow \int_{A}^{\infty} \exp \{-m g(y)\} m g^{\prime}(y)=\exp \{-m g(A)\} .
\end{aligned}
$$

As shown above, $\int_{x-A}^{x} \rightarrow 0$, and it may easily be shown by dominated convergence that $\int_{0}^{A} \rightarrow 1-\exp \{-m g(A)\}$. Thus

$$
\int_{0}^{x} \exp \{m g(x)-m g(x-y)-m g(y)\} m g^{\prime}(y) d y \rightarrow 1
$$

so that $m g \in \mathscr{K}$.

If \mathscr{P}^{\prime} denotes the set of tail functions G corresponding to distribution functions F in \mathscr{S}, the above results may be written

$$
\begin{aligned}
G_{1}, G_{2} \in \mathscr{S}^{\prime} & \Rightarrow G_{1} G_{2} \in \mathscr{S}^{\prime}, \\
m>1, \quad G \in \mathscr{S}^{\prime} & \Rightarrow G^{m} \in \mathscr{S}^{\prime} .
\end{aligned}
$$

References

K. B. Athreya and P. E. Ney (1972), Branching processes (Springer-Verlag, Berlin).
V. P. Chistyakov (1964), 'A theorem on sums of independent positive random variables and its applications to branching random processes', Theory Prob. and Appl. 9, 640-648.
J. Chover, P. E. Ney and S. Wainger (1974), 'Degeneracy properties of subcritical branching processes', Ann. Probability 1, 663673.
A. G. Pakes (1975), 'On the tails of waiting-time distributions', J. Appl. Prob. 12, 555-564.
J. L. Teugels (1975), 'The class of subexponential distributions', Ann. Probability 3, 1000-1011.

301 Davey St
Hebart, Tasmania 7000
Australia

