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Dairy Productivity and Technical

Change: An Analysis of Confinement
and Management Intensive Grazing
Dairies in Maryland for 1995-2009

Kota Minegishi and Dale M. Johnson

U.S. dairy production has been consolidating into large-scale confinement
operations. Large numbers of small- to medium-scale dairies have disappeared in
the last two decades, and many more are disappearing. This article analyzes
small- to medium-scale dairy operations in Maryland during 1995-2009 for
changes in technology and efficiency through a novel two-stage DEA approach to
examine productivity changes. Conventional confinement dairy operations and
management-intensive grazing dairies are analyzed separately. The results show
that both dairy systems have become more productive on the technological
frontiers, yet the rate of technical change for graziers was less than half the rate
for confinement.
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grazing, technical change, technical efficiency

The U.S. dairy industry has gone through significant structural changes in the
last few decades and toward ever larger operations. The total output of milk
has increased by 33 percent from 150.8 billion pounds in 1992 to 200.6
billion pounds in 2012, despite a 4.7 percent decline in the total stock of
dairy cows. The innovations in milking, animal housing, improved animal
care, and advances in dairy genetics have allowed some dairies to expand
rapidly, whereas many dairies that remained at small scales chose to leave
the industry (McDonald et al, 2007). The total number of dairy farms (with
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20 or more cows) has declined by about 60 percent during 1992-2012, down to
about 44,000 farms (USDA-NASS, 2012).

Amid the structural change, a movement to advance the ancient practice
of grazing milk cows has emerged. Management-intensive grazing (MIG), or
rotational grazing, as it is known in the dairy science literature, is a
low-input, low-output dairy system with the potential to become a
viable alternative to the small- to medium-scale conventional confinement
operations. Compared to confinement dairies, MIG dairies rely less on feed
purchases and mechanically harvested feed, two factors that help reduce the
environmental footprint due to reduced soil erosion (DiGiacomo et al., 2001)
and phosphorous run-off (Bishop et al. 2005). MIG dairies have lower capital
requirements, also appealing for new entrants. The challenge for MIG dairies,
on the other hand, is to meet the nutritional requirements of the herd. The
producer must adhere to strict pasture management, primarily by rotating
the animals among partitioned pasture paddocks on a daily basis to fully
use the regenerative potential of pastures. Milk production per cow, along
with the use of conventional inputs, substantially declines under MIG
practices. Therefore, the economic competitiveness of MIG dairies depends on
the relative decline in inputs to the decline in milk production, the relative
prices of milk and production inputs, and the efficiency of the operation.
Some studies suggest MIG dairies can be as competitive as confinement
operations at relatively small scales (Elbehri and Ford 1995, Dartt et al. 1999,
Gloy, Tauer, and Knoblauch 2002, Hanson et al. 2013).1

Whether it is a confinement or a MIG operation, the economic viability of most
dairies likely depends on whether they can compete against a growing number
of large-scale confinement operations. So far, the evidence that economies of
scale are the main drivers of consolidating milk production is mixed; some
studies found increasing returns to scale in dairy production (Tauer and
Mishra 2006, Kumbhakar, Tsionas and Sipilinen 2009, Mosheim and Lovell
2009, Nehring et al. 2009),% while others found otherwise (Byma and Tauer
2010, Cabrera, Solis and del Corral 2010, Mayen, Balagtas and Alexander,
2010, Mukherjee, Bravo-Ureta and De Vries 2013, Key and Sneeringer, 2014).

1 The relevant literature consists of field experiments in Minnesota (Rust et al,, 1995), Virginia
(Soriano, Polan, and Miller 2001), Mississippi (Tucker, Rude, and Wittayakun 2001), North
Carolina (White et al, 2002), and Pennsylvania (Tozer et al, 2003) and economic analyses of
data from Pennsylvania (Elbehri and Ford, 1995), Michigan (Dartt et al., 1999), New York (Gloy
et al, 2002) and Maryland (Hanson et al,, 2013).

2 Tauer and Mishra (2006) conclude that smaller farms can be competitive if they are technically
efficient based on the smaller cost of size inefficiency compared to the cost of technical inefficiency.
The analysis by Kumbhakar et al. (2009) on Finnish dairies with an average herd size of 31 cows
has very limited relevance to U.S. dairies. The estimates of Mosheim and Lovell (2009) show
relatively large effects of scale economies. A potential issue may be that the authors
constructed a capital stock variable, which is central to their analysis, as net operating profits
divided by the opportunity cost of capital. While it is deduced from economic theory, it appears
at odds with the reality of fluctuating dairy income, depending on milk price.
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Nevertheless, the analysis of over 1500 operations with 500 or more cows by
Nehring et al. (2009) presents the most compelling evidence of scale
economies to this date. Greater clarity may be achieved by the research into
the relationship between the emergence of large-scale confinement
operations in certain production areas and the factors contributing to rapid
dairy expansions such as the abundance of land, feed, and labor (Blayney
2002, McBride and Green 2009). If producers in certain regions are at a
disadvantage in exploiting scale economies, the success of large-scale
operations in places such as California, Washington, Idaho, New Mexico, and
Florida would not be easily replicated elsewhere. This is particularly
important for traditional dairy communities in the Upper Midwest and the
Northeast, where many small- and medium-scale dairies have disappeared,
but there has not been a dramatic expansion in large-scale confinement
operations.

This article contributes to the ongoing discussions of structural change in the
U.S. dairy industry by providing an analysis of technical change for confinement
and MIG dairies that operated in Maryland during 1995-2009. The rate of
technical change is a key indicator for the fundamental performance of the
industry, and the comparison of this rate provides implications for the mid-
term prospects of the two dairy systems. Discussion of the affects of specific
technological innovations that transformed dairy operations is beyond the
scope of this article. Instead, our analysis is centered on the estimation of a
technological frontier and its intertemporal shift. Building on the Malmquist
Productivity Index (MPI) decomposition using data envelopment analysis
(DEA; Fare et al. 1994), we devise a novel approach to decompositional
measures that can be estimated from unbalanced panel data. Our estimation
model, a variant of two-stage DEA analysis, also accounts for some noninput
factors that may influence production outcomes. The article proceeds as
follows: Section 2 describes the methodology, Section 3 presents the data and
empirical analyses, and Section 4 concludes the study.

2. Model
2.1. Measurement of Technical Change
Consider a model of milk production y; in which producer i € | = {1,..,1}

chooses L-dimensional inputs x; in time t € T ={1,..,T}. A canonical
representation of that model is

(1 Yie = fe(Xie) - exp(—uic + vie)

where f; : IR{fr — R, is the technological frontier in time t, exp(—u;) is
multiplicative technical efficiency TE;, € (0, 1], and exp(v;) is a random error.
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Our interests are to analyze intertemporal structures of the technological
frontier f,(.) and the efficiency TE;,.

There are two major approaches to making equation (1) operational:
parametric and semiparametric frontier models. In the parametric approach,
the intertemporal patterns of a frontier and efficiency can be distinguished
by imposing different functional assumptions. For instance, the pattern of
frontier transitions may be specified as equiproportional shifts, in the forms
of smooth interactions between the time variable and production inputs, or
nonsmooth interactions via time-specific technological parameters. The
pattern of efficiency may be modeled through a specific functional form
(Battese and Coelli 1992, Cuesta 2000), a function of non- input-output
variables (Battese and Coelli 1995), or producer-specific effects (Schmidt and
Sickles 1984, Cornwell, Schmidt and Sickles, 1990, Kumbhakar 1990, Lee and
Schmidt 1993, Karagiannis, Midmore and Tzouvelekas 2002, Roll 2013). The
empirical challenge is to select appropriate specifications for these patterns
that are both conceptually compelling for the case at hand and compatible
with the data.

In the semiparametric approach, a prominent method is MPI decomposition
using DEA (Fare et al, 1994). With its roots in the economic theory of
production index numbers (e.g., Samuelson and Swamy 1974, Diewert 1976,
Caves, Christensen and Diewert 1982), the MPI decomposition offers a
general framework to analyze productivity trends such as those related to
technical change. The method proceeds in two stages: in the first stage a
semiparametric frontier is estimated separately for each time period, and
technical efficiency is measured accordingly; in the second stage are obtained
the shifts of the frontier and efficiency.

One shortcoming of the method is that its deterministic estimation (ie.
exp(vie) =0 in (1)) can be sensitive to extreme data points and measurement
errors. Another is that the method presumes a balanced panel data structure
in calculating the producer-level MPI decomposition. Simply eliminating the
data of producers whose observations are not available for the entire survey
period can lead to biased estimates through nonrandom additions and
attritions (Kerstens and Van de Woestyne, 2014).

The proposed estimation below is based on the MPI decomposition, while
addressing the latter shortcoming. Specifically, to accommodate the use of
unbalanced panel data, producer-level calculations of the MPI decomposition
are replaced with a sample-level regression analysis of a frontier and
efficiency. We derive statistical inferences based on the approach developed
by Kneip, Simar and Wilson (2015) for the class of second-stage analysis
estimators on DEA efficiency measures.

2.2. Two-stage Analysis of Distance Functions

Central to the MPI decomposition are the concepts of the distance between a
production decision (i.e., an input-output bundle) and a technological frontier
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and the distance between two technological frontiers of two time periods. These
distances are analyzed in two stages.

A conceptual framework is provided through the three types of distances that
are derived from technical/pseudotechnical efficiency measurements. The
output-oriented technical efficiency is the relative distance between decision
(xi, yie) and frontier f;(.), or TE;.=y;/f:(xir). The envelopment of f,(.) across
time t € T is referred to as a metafrontier (Battese, 2002; Battese, Rao, and
O’Donnell 2004) representing the maximum attainable outputs of all time
periods T, or fM(x) = max.er{f;(x)}. Then, two pseudotechnical efficiency
measures are obtained: the technological gap ratio (TGR) defined for the
relative distance between the time-t frontier and the metafrontier, or TGR;, =
fux:i)/f"(x;), and the metatechnological efficiency (MTE), defined as the
relative distance between the decision and the metafrontier, or MTE; =
Vie/ f1(%ie) 2

Figure 1 illustrates these concepts in a single-input single-output case;
the three distance measurements for decision (x;, y;;) are depicted as TE;,=
AQ/BQ, MTE;;=AQ/CQ, and TGR;,=BQ/CQ. Note that MTE; = TGR;,- TE;,*
and the intertemporal change of MTE provides a version of the MPI
decomposition; A;In MTE;, = A;In TGR;. + A.In TE;, where A,In MTE;, (i.e., an
intertemporal, percentage change in MTE) is a measure of productivity
change, A.In TGR;, is a measure of technical change (TC), and A;In TEj; is a
measure of technical efficiency change (TEC).

In the first stage, we approximate time-t frontiers by DEA.5 Under the
nonincreasing returns to scale (NIRS) assumption,® the DEA approximation to
the technology (i.e., a set of all technically feasible input-output bundles) is
the smallest free-disposal convex hull that envelops relevant data points of
input-output decisions, including the origin. Under the assumption v;;=0 in
equation (1), the boundary of that approximation is the estimate of
technological frontier defined by

Recent applications of TGR include productivity comparisons of aggregate agricultural outputs
across 97 countries (0’'Donnell, Rao and Battese, 2008), banking industries in China and Taiwan
during 1993-2007 (Chen and Song, 2008), and farm-level dairy production in Argentina, Chile,
and Uruguay (Moreira and Bravo-Ureta, 2010). While most of these applications use Stochastic
Frontier Analysis (SFA), O’Donnell, Rao and Battese (2008) formalize the concept of
metatechnology with the distance function and apply it to both DEA and SFA analyses.

* A possible extension is to include scale efficiency (SE) in the decomposition;
MTE;, = TGR;, - SE;, - TE;; where SEj; = f'* (x;,) /f®S(x;), or the ratio of frontier outputs under
constant and variable returns to scale, and TE; :y,-t/fVRS(X,-t). Subsequently, InSE; may be
analyzed in a regression similar to the one for In TGR;.

> In Appendix B, we consider alternative specifications using parametric frontiers.

 Replacing constraint ZJI A; <1 with equality yields a variable returns to scale (VRS)
technology, whereas omitting the constraint yields a constant returns to scale (CRS) technology.
NIRS and VRS yield more conservative estimates of technology than CRS. VRS, however, is not
always compatible with out-of-sample technical efficiency measurement used in the MPI
calculation.
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Figure 1. Time-specific frontiers and the meta-Frontier

(2) Vx € RL, f(x)
N N N
= maX{y/ & R+! E A]X] S X/, E A]y] Zy/, E Aj S 1}
AERY - - -
* j=1 j=1 J

for cross-sectional data of N observations. Based on (2), we obtain time-t
frontier fi(.) using N, reference data points in time ¢t € T. Given the relatively
small sample size, we modify (2) with the assumption of no technological
regress, implemented through the constraint fi()>f,_1() for t=2,.,T.7
Enveloping all such frontiers fi(.) across time te& T yields our estimate of
meta-frontier f()).

In the second stage, the above distance measurements are analyzed in a
system of linear equations. By ordinary least squares (OLS), we estimate

(3) In ’fG\R(Xitr.yit; t) = 26 R + wyy TR +- ﬁgGR + ﬁIGR t+ EiTtGR

In ﬁ(xit: Vie; ) = 2 8™F + wiy ™" + BIE - BIE ¢ 4 TF

SQWTE = SZGR 4 SZE‘ yﬁ/lTE = YZGR 4 YZ'E’ 5\/1TE = BITGR +B]TE forl € {0’ 1}

where ﬁ(x,-b Yie; t) is the efficiency of time-t frontier relative to the

metafrontier; ﬁ?(x,-t, yir; t) is the efficiency of decision it relative to the
time-t frontier; z; is producer-specific characteristics; w;, is environmental

7 This amounts to estimating f;(.) by referencing 22:1 Ny data points in time Vk < t. Under no
technological regress, f(.) = fr(.) for the final time period T.
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variables; [8 ¥ Bo 1] are parameters to be estimated; and ¢}, is an error term.
We set StTGR = 0 since, conceptually, producer characteristics z; do not alter the
definition of underlying technical feasibility in the input-output decision.
Additionally, to mitigate the potential bias of producer characteristics z;,
that apparently influence efficiency through the choices of inputs x;; (Johnson
and Kuosmanen 2011), we use the orthogonal projection of z; on x; as

regressors.8 The parameters for MTE (xit, Yie; T) in the last line follow from
the identity MTE;.= TGR;.- TE;.. Then, specification (3) yields a version of
sample-level MPI decomposition

(4) E[InMPI] = Y5, E[InTC] = BI°*, E[InTEC] = BI*

that can be estimated from unbalanced panel data or repeated cross-sectional
data.

The OLS estimate of equation (3) is statistically consistent, given the
consistent estimates of TGR;; and TE; and the orthogonality of error terms
E[el®lwy, t] = 0 and E[e[F|z;, wi, t] = 0. The estimate would be, however,
biased because the first-stage estimates of TGR;, and TE;; are biased due to a
finite sample property of the DEA frontier approximation (i.e., the most
efficient decisions in the universe are likely unobserved in a finite sample).
To address this issue, we employ the bias-correction technique of Kneip,
Simar and Wilson (2015) that exploits the difference in convergence rates
between DEA estimators under the full sample and subsamples in the
following section.

2.3 Statistical Inferences

Statistical inferences are derived in three steps. First, through the TE equation
of (3), we correct for the finite-sample bias of the first-stage DEA. Second, given
the bias correction, we obtain the estimates of frontiers f,, f* and their ratio TGR
(;t) =f./f™. Third, we estimate the full model of (3), while accounting for
serially and contemporary correlated errors. Note that in the third step the
measurement errors in dependent variables would reduce the estimation
precision but do not cause bias.

Following Kneip, Simar and Wilson (2015), we correct for the bias in the
parameters B'E = [6"F yTF BIE BTE] of the TE equation in (3). Under the
homoskedasticity of the error term and the so-called separability assumption
(that producer characteristics z; do not shift the underlying technological
frontier f;) along with the regularity conditions described in that article, the

limiting distribution of B can be expressed as

8 Monte Carlo evidence for its effectiveness is available from the authors.
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(5) N“(B™ — B" — Q"1CN " — Ry,) — N(0, 0%Q)

where N = ", .1 N¢/T is the average sample size of DEA-frontier estimations
across time periods; Q =E[(ZZ)"'] is the variance-covariance matrix of Z;
k=2/(L+ M+ 1) is a constant given the dimension of input-output variables
L+ M;° C is the set of constants that represent upper bounds of the finite-
sample bias, and Ry, is the remainder. The theoretical rate of convergence is

N* when k< 1/2 and N'? otherwise.

Subtracting a consistent estimate of the bias term Q"1CN " from B yields an
unbiased estimator

(6) B = B — (2 — 1) (B}, — B™)

where BTE* is a jackknife estimate of B'* using a subsample Xy, of size N/2
drawn from the sample Xy = {(Xit, Vit)}ieser- Following the authors’

approach, we use randomly partitioned half samples val/]z and Xz(vz/)z and the

corresponding partitioning of Z, which yields BE = (Z'Z) (Z(l) InTEW +

N/2 N/2 1v/2
z{), InTEZ) )10
Next, blas corrected_TE and TGR_measurements are derived. Let the

bias-corrected TE be ‘I(E,t = exp(In TE,t blas(z,t, wi, 1, t)), where the bias
is the product of the estimated bias in coefficients and the corresponding
variables. Then we obtain /f\t(xit) E}Gt/ﬁiit, fM(x,-t) = maXtET{ft(x,-t)}, and
TOR; = T/

Finally, we regress TL(E,t and 1’63?%” according to the second-stage model (3).
In our application, error terms &/ and R are likely serially correlated across
time periods among producers and to a lesser extent, contemporaneously
correlated within a production year. We apply the Prais-Wenstein
transformation to accommodate an autoregressive process (AR(1)) and
cluster standard errors at each production year to address these issues.

3. Application
3.1. Data

We use unbalanced panel data on annual revenues and expenses of 63 dairy
farms that operated in Maryland or near its state border with Pennsylvania

9 k= 2/(L + M) for constant returns to scale. Our model is M = 1.

O We draw half samples containing half the number of observations in each time period. We use
the average results of 100 repetitions.
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during 1995-2009. The dataset, derived from individual farmer’s tax return
form Schedule F, is a nonrandom sample but representative of the state of
Maryland and has been previously analyzed by Hanson et al. (2013). Each
operation is categorized as either a conventional confinement dairy or MIG
dairy, referred to as confinement or grazier, respectively. Grazing operations
tend to be smaller than their confinement counterparts in terms of herd size
and milk output per cow. The relative profitability of the two systems varies
across production years and producers, depending on the prices in relevant
agricultural markets and the technical efficiency of individual producers.

On average, however, no statistically significant difference is found in their
profits (Hanson et al, 2013). The two dairy systems may be directly
comparable in budget analyses but not in production analyses, for which
production inputs must be relatively homogeneous. Given the different
breeds of cows and capital equipment used by the confinement and graziers,
we analyze the two systems of dairy operations separately.!® There are four
farms that have switched from confinement to grazing during the survey
period, but their influence on our analysis is very small.’> As an
observational study, the possibility that farms of certain characteristics might
have selected into grazing is beyond our control. However, its influence on
our analysis would be limited because most farms in our data are relatively
small and similar in their backgrounds and operating environments.

Given the scarcity of economic data on MIG operations, to our knowledge the
current analysis is the first study to compare the productivity of confinement
and graziers over a relatively long time period. The long time horizon is
particularly important to studying dairy productivity, which is affected by
fluctuating weather conditions and market prices over time. Our data set is
focused on a particular geographic location, which means that the data
consist of highly comparable farms of a relatively small sample size. It is
unbalanced panel data, given the entry and exit from our survey, that contain
the average of 20.9 confinement and 10.7 grazing farms per year!'?® The
sample size limits the scope of input-output variable specification and
reduces the precision of the analysis. However, for the purpose of examining
the trends in productivity, the total sample size of 314 confinement and 161
grazier data-points appears sufficient, and our robustness analysis shows
consistent results in general (see Appendix A).

™ The failure to account for the precise composition of breeds may reduce the accuracy of
efficiency analysis for graziers. Some graziers were still in transition by gradually altering the
herd composition in the early years of the study period.

2 Dairy farms rarely switch between grazing and confinement operations, given transition
costs.

*" The numbers of graziers in our data is 4, 7, 8,9, 9, 11, 11, 11, 12, 12, 12, 14, 15, 14, 12 for
years 1995-2009. Year 1996, instead of 1995, is used as a base year for this group.
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We specify milk production (y;)'* with four inputs (x;): herd size, capital
equivalent, crop acreage, and pasture acreage. Capital equivalent is defined as
the total dairy expenditure deflated by an observation-specific production
cost index, which is the share-weighted average of price indices that
correspond to expense items. Price indices are obtained from the Prices Paid
Indexes of National Agricultural Statistical Service, USDA. The total
expenditure is the sum of all expenses in Schedule F, including expenses for
feed purchases and feed production, veterinary care, hired labor, fuels and
maintenance, and user-costs of capital such as rents, interests, and
depreciation of buildings and machinery. Note that the labor expense, which
does not account for unpaid labor and is less than 5 percent of the total
production cost in our data, is included in the capital equivalent variable.
With regard to the use of Schedule F data, changes in inventories may
introduce measurement errors in the reported annual expenses for crop
production.’> Nonetheless, it is unlikely to cause substantial bias in our
analysis for the dairy productivity trends over a 15-year period. Statistical
properties of the milk output and input variables are presented in Table 1.
For the second-stage regressions, we include binary indicators of farm-
ownership and off-farm income (z;;) and a regional heat index (w;,).1°

Table 2 shows the average production data by dairy system and calendar year.
The average production of confinement dairies has nearly doubled from 1.53
million pounds of milk in 1995 to 3.04 million pounds in 2009, which can be
attributed to the increased scale of operation from 85 cows to 150 cows and
a 8.6 percent increase in output per cow from 18,300 pounds to 19,900
pounds. The increase in herd size was matched by an increase in capital
input of similar proportion, while few changes occurred in land acreage used
for crop production and pasture at around 300 acres and 50 acres, respectively.

In contrast, milk output for an average grazing operation has remained stable
at around 1.30 million pounds, despite an increase in herd size from 79 cows to
101 cows. Due to the small sample size of this group, the average production
fluctuates with entries and exits in our data (i.e., likely the cause of the
apparent dip in production in 2005). Overall, grazier’s milk output per cow
has declined by 28.3 percent from 17,300 pounds to 12,400 pounds, along

1 Milk output used in this article does not account for the quality difference in milk, including
organic certification that applies to a handful of MIG operations in the dataset. The sales of animals
and crops, which account for less than 15 percent of the total revenue, are also excluded from the
output. The analysis using the total revenue from milk, cattle, and crop sales yields qualitatively
similar results.

S Barnard, Ellinger and Wilson (2010) point to the possibility that the reported expenses in
Schedule F may not correspond to the actual input decisions of that year when farms
accumulate or sell inventories or use accelerated depreciation methods for tax purposes.

6 In our sample, 91.1 percent of confinement and 71.4 percent graziers owned the farm, and 6.7
percent of confinement and 21.1 percent of graziers had some off-farm income. The heat index is
the number of days above 30 degrees Celsius (based on the daily maximum temperature at
Martinsburg Eastern Regional Airport), which varies with time but is fixed across producers.
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Table 1. Summary Statistics of Production Variables

Confinement (Obs. 314) Graziers (Obs. 161)
Variable Mean S.D. Min Max Mean S.D. Min Max
Milk (million pounds) 241 1.76 0.38 11.07 1.24 0.56 0.27 4.30
Capital Equivalent 416 308 71 1,781 205 92 58 645
Cow 122 76 22 468 87 29 37 195
Crop Acre 289 155 60 704 132 108 0 600
Pasture Acre 50 39 0 141 152 60 53 280

Capital equivalent is the total cost of production ($1,000), deflated by a farm production cost index (2009 base). For more information on the dataset, see
Hanson et al. (2013).
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Table 2. Average Production Practices By Dairy System and Year, Selected
Years

Crop Pasture

Year N.Obs Milk (M1b) Cows Capital Eq. Acre Acre
Confinement

1995 21 1.53 85 256 273 55
2000 21 2.46 121 404 292 48
2005 22 2.76 137 498 297 51
2009 19 3.04 150 505 316 53
Graziers

1996 7 1.36 79 208 133 165
2000 11 1.33 85 215 130 164
2005 12 1.11 84 182 109 144
2009 12 1.32 101 211 138 135

Graziers had only four observations in 1995, and hence year 1996 is shown as a base year for this group.

with a slight reduction in pasture acreage from 165 acres to 135 acres. Notably,
the assumption of equiproportional shifts in production frontiers, known as the
Hicks-neutral technical change, is unlikely to hold for these transitions. The
analysis in the following section looks beyond these changes in average inputs
and outputs to investigate underlying changes in technology and efficiency.

3.2. Results

In Table 3, we summarize the first-stage estimation results for meta-technical
efficiency (MTE) against the meta-frontier, technical efficiency (TE) against
year-specific frontiers, and technology gap ratios (TGR) as the ratio of the
two. At the median of these estimates, confinement and MIG producers are
83.6 percent and 74.5 percent efficient respectively in a given year and 76.6
percent and 69.3 percent efficient, compared to their all-time, meta-frontiers.

Table 4 contains the second-stage estimation results for confinement in
columns (1)-(2) and for graziers in columns (3)-(4). The coefficients
represent marginal effects in percentage-points. The estimates of linear
time trends indicate, on average, TGR grew 1.21 percent per year and TE
declined —0.56 percent per year for confinement operations. This translates
into the MPI decomposition of a 0.65 percent annual growth of MPI that
consists of 1.21 percent TC (technological progress) and —0.56 percent TEC
(declines in technical efficiency). Similarly, the estimates for graziers translate
into a 1.22 percent annual decline of MPI that decomposes to 0.59 percent
TC and —1.81 percent TEC. These estimates are generally robust to
alternative assumptions under panel-consistent standard errors, potential
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Table 3. Summary of DEA Efficiency and TGR Scores

Summary Statistics

System Min 25th Median Mean 75th Max
A. Efficiency at meta-frontiers (MTE)

(1) Confinement 0.380 0.709 0.766 0.770 0.839 0.942
(2) Graziers 0.315 0.617 0.693 0.699 0.809 0916
B. Efficiency at year-specific frontiers (TE)

(3) Confinement 0.434 0.750 0.834 0.822 0.908 0.942
(4) Graziers 0.315 0.630 0.745 0.732 0.858 0.926
C. Technology Gap Ratios (TGR)

(5) Confinement 0.710 0.905 0.957 0.937 0.982 1.000
(6) Graziers 0.736 0.939 0.978 0.959 1.000 1.000

1. Technical efficiencies (TE) and meta-technical efficiency (MTE) are measured against year-specific frontiers and meta-frontiers respectively. Technology gap
ratio (TGR) is the ratio of those efficiency measurements (i.e, MTE/TE) at observation level.

2. The reported results are obtained with the bias-correction discuss in the methodology section.
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Table 4. Estimation Results for the Determinants of Productivity

Confinement Graziers
) ) 3) “@
In TGR In TE In TGR In TE
Year 1.27%** —0.56%** 0.59%*** —1.81%**
(0.13) (0.12) (0.07) (0.27)
Heat Index —0.16 0.35 -0.12 —0.81
(0.26) (0.43) (0.21) (0.94)
Farm Ownership 3.16** 7.08**
(1.29) (3.05)
Off-farm Income —5.40** —3.62
(2.12) (3.36)
Constant —2431.94%** 1102.91*** —1188.00*** 3593.15%**
(259.46) (238.60) (142.35) (547.59)
Adj. R Squared 0.836 0.599 0.427 0.583

1. Standard errors in parentheses. Statistical significance: *** a = 0.01, ** « = 0.05, * « =0.1.

2. Heat index is the number of days above 30 degrees Celsius, divided by 10.

3. Dependent variables (In TGR and In TE) are scaled by the factor of 100, so that the marginal effects are
presented in percentage terms.

technological regress, omission of the bias-correction step, and constant returns
to scale specifications (see Appendix A).

To examine year-by-year changes in technology and efficiency, we additionally
estimate a specification with year fixed effects. We plot the estimated fixed effects
in Figure 2 along with its 95 percent confidence intervals and linear trends. The
result shows that the year fixed-effects generally follow linear trends, particularly
for confinement producers.

The positive technical change and increasing efficiency gaps in both systems
suggest that some producers have successfully adopted new technologies
and improved their management, while others have struggled to keep up with
these changes. In particular, the different trends observed for the two systems
seem to indicate that a greater share of confinement operations have benefitted
from recent technological advances, compared to graziers. This is consistent with
a common perception that confinement dairy operations generally follow
standardized industry production techniques, while MIG operations involve highly
localized and idiosyncratic production practices (mainly due to local soil and
microclimate conditions that require experimentation by individual producers).1”

17" See, for example, Khanal, Gillespie and MacDonald. (2010) for recent technological adoption
in the US dairy sector. Discussions on the improvement of rotational grazing are found in Kriegel
and Frank (2005); Taylor and Foltz (2006); Winsten et al. (2010); Nelson et al. (2014).
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Figure 2. Technical change and technical efficiency change

Declining technical efficiency for both groups means that the productivity
gaps among dairy producers are increasing. Dairy producers traditionally
have pursued expansions and upgrades in times of high milk prices. However,
with the emergence of ever-larger, capital-intensive operations, the standard
for efficient operation appears to be raised more frequently and rapidly than
before. Those who wait for the next boom to reinvest in their operation are
increasingly at risk of being left behind. For graziers, exploring the low-input
production system under MIG can risk forgoing an unexpectedly large share
of outputs. Rapid reductions in output may in part be a consequence of
complying with organic production standards (e.g., about a quarter of the
graziers in our sample produced organic milk in all or some of the survey
years), which can explain particularly rapid declines in efficiency among
graziers. The current analysis ignores the difference in milk quality for the
sake of comparability between the two systems.

Turning to the coefficient estimate for the heat index, we find little evidence
that warmer summer temperatures negatively affect dairy production of
efficient or less-than-efficient producers in Maryland, a result generally
consistent with a cross-sectional analysis by Key and Sneeringer (2014). Under
multiple climate change scenarios, those authors predict that the annual
fluctuation of summer temperatures can on average decrease dairy production
across states by 0.60 percent to 1.35 percent by 2030, with varying degrees
ranging from less than 0.5 percent in Idaho to about 2.0 percent to 4.5 percent
in Texas. Their prediction suggests a very limited impact of about 0.60 percent
to 1.00 percent in Pennsylvania, a neighboring state of Maryland.

As for producer characteristics, we find that farm ownership suggests higher
efficiency, whereas the impact of having off-farm income is mixed. Higher
efficiency for owner-operators in dairy operation is previously reported in
Mayen, Balagtas and Alexander (2010). The renter-operator may have lower
incentives to invest in on-site production facilities or rent land of
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lower qualities. In our estimate, having off-farm income is associated with lower
efficiency among confinement operations but not among graziers. Theoretical
prediction of this effect would be ambiguous, given the complexity of the
decision to work off-farm that can be influenced by operator’s talents in
nonfarming activities as well as his/her tolerance to downside income risks.

In the relevant literature, previous studies find that technical efficiency is
associated with operational scale (Kumbhakar, Ghosh, and McGuckin 1991,
Tauer and Mishra 2006 Byma and Tauer 2010, Key and Sneeringer 2014,);
the share of total forage purchases (Mosheim and Lovell, 2009, Cabrera, Solis
and del Corral 2010, Mayen, Balagtas and Alexander 2010); the use of total
mixed ration (TMR) and daily milking frequency of three times or higher
(Cabrera, Solis and del Corral 2010); producer’s education (Stefanou and
Saxena 1988, Kumbhakar 1993, Byma and Tauer 2010); producer’s experience
(Stefanou and Saxena 1988 Mosheim and Lovell 2009); managerial ability,
measured by producer’s subjective value of labor or by lagged net income
(Byma and Tauer 2010); the proportion of irrigated area (Kompas and Che
2006); the use of consulting services (Mukherjee, Bravo-Ureta and De Vries
2013); and a share of family-labor in the total-labor input (Cabrera, Solis and
del Corral 2010). Also, the output of efficient producers may increase with the
use of recombinant bovine somatotropin (rBST) (Cabrera, Solis and del Corral
2010; Mukherjee, Bravo-Ureta and De Vries 2013) and the presence of off-farm
income (Kumbhakar 1993 Mayen, Balagtas and Alexander, 2010). Some of
these characteristics describe the attributes of typical large-scale confinement
operations. To be competitive, dairy producers of smaller scales need to keep
pace with rising industry standards set by large dairies and, whenever
possible, learn from their efficient peers.

4. Conclusions

Amid the increasing consolidation of U.S. dairy production, MIG has been
gaining popularity among small- to medium-scale dairies as a low-input, low-
output system. This article investigates the nature of technological progress
and the technical efficiency of the producer using data on Maryland dairy
farms during 1995-2009, a period in which confinement dairies scaled up
their operations across the country. On average, technology progressed at
1.21 percent per year for conventional confinement operators and 0.59
percent per year for MIG dairies. Given the difference in the rate of technical
change, increased research and development in MIG is needed if it is to be a
viable alternative to the confinement dairy system. Examples include
investigations into improved breeds of grazing cows, high-yielding varieties
of forage crops, and pasture management specific to local microclimates.
Additionally, the declining average efficiency for both dairy systems needs to
be addressed, for instance, through extension programs that support
technology adoption.
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On the technical side, by building on the concept of MPI decomposition in a
regression framework, we have developed a novel approach to analysis of
productivity changes. The method can be used to study production
heterogeneity such as the influence of production environments across
geographical regions or the impacts of regulations at various phases of
implementation. Investigating the properties of the proposed estimator and
extending its concept are left for future research. One particular area to add
would be an extension of scale efficiency change to the MPI decomposition,
which was not pursued in this article due to the limited range of observed
operational scales in our data.

References

Barnard, F.L,, Ellinger, P.N., and Wilson, C.A. 2010. “Measurement issues in assessing farm
profitability through cash tax returns.” Journal of the ASFMRA 207-217.

Battese, G.E. 2002. “Technology gap, efficiency, and a stochastic metafrontier function.”
Journal of Business and Economics 1(2): 87-93.

Battese, G.E. and Coelli, T.J. 1992. “Frontier production functions, technical efficiency and
panel data: With application to paddy farmers in India.” Journal of Productivity Analysis
3(1): 153-169.

Battese, G.E. and Coelli, T.J]. 1995. “A model for technical inefficiency effects in a stochastic
frontier production function for panel data.” Empirical Economics 20(2): 325-332.

Battese, G.E., Rao, D.S.P., and O’Donnell, C.J. 2004. “A metafrontier production function for
estimation of technical efficiencies and technology gaps for firms operating under
different technologies.” Journal of Productivity Analysis 21(1): 91-103.

Bishop, P.L., Hively, W.D,, Stedinger, ].R,, Rafferty, M.R,, Lojpersberger, ].L., and Bloomfield, ].A.
2005. “Multivariate analysis of paired watershed data to evaluate agricultural best
management practice effects on stream water phosphorus.” Journal of Environmental
Quality 34(3): 1087-1101.

Blayney, D. 2002. “The Changing Landscape of U.S. Milk Production.” U.S. Department of
Agriculture, Washington, DC.

Byma, ].P. and Tauer, L.W. 2010. “Exploring the role of managerial ability in influencing dairy
farm efficiency.” Agricultural and Resource Economics Review 39(3): 505-516.

Cabrera, V., Solis, D., and del Corral, J. 2010. “Determinants of technical efficiency among dairy
farms in Wisconsin.” Journal of Dairy Science 93(1): 387-393.

Caudill, S.B. and Ford, ].M. 1993. “Biases in frontier estimation due to heteroscedasticity.”
Economics Letters 41(1): 17-20.

Caves, D.W,, Christensen, L.R, and Diewert, W.E. 1982. “Multilateral comparisons of output, input,
and productivity using superlative index numbers.” The Economic Journal 92(365): 73-86.

Chen, Z. and Song, S. 2008. “Efficiency and technology gap in china’s agriculture: A regional
metafrontier analysis.” China Economic Review 19(2): 287-296.

Cornwell, C,, Schmidt, P,, and Sickles, R.C. 1990. “Production frontiers with cross-sectional
and timeseries variation in efficiency levels.” Journal of Econometrics 46(12): 185-200.

Cuesta, R.A. 2000. “A production model with firm-specific temporal variation in technical
inefficiency: With application to Spanish dairy farms.” Journal of Productivity Analysis
13(2): 139-158.

Dartt, B.A, Lloyd, J.W., Radke, B.R, Black, J.R.,, and Kaneene, ].B. 1999. “A comparison of
profitability and economic efficiencies between management-Intensive grazing and
conventionally managed dairies in Michigan.” Journal of Dairy Science 82(11): 2412-2420.

Diewert, W.E. 1976. “Exact and superlative index numbers.” Journal of Econometrics 4(2):
115-145.


https://doi.org/10.1017/age.2017.4

https://doi.org/10.1017/age.2017.4 Published online by Cambridge University Press

572 December 2017 Agricultural and Resource Economics Review

DiGiacomo, G., Iremonger, CJ., Kemp, L., van Schaik, C., and Murray, H. 2001. “Sustainable
Farming Systems: Demonstrating Environmental and Economic Performance.” Report,
St. Paul, MN: Minnesota Institute for Sustainable Agriculture.

Elbehri, A. and Ford, A. 1995. “Economic analysis of major dairy forage systems in Pennsylvania:
the role of intensive grazing.” Journal of Production Agriculture 4: 501-507.

Fare, R, Grosskopf, S, Norris, M. and Zhang, Z. 1994. “Productivity growth, technical
progress, and efficiency change in industrialized countries.” The American Economic
Review 84(1): 66-83.

Gloy, B.A,, Tauer, L.W., and Knoblauch, W. 2002. “Profitability of grazing versus mechanical
forage harvesting on New York dairy farms.” Journal of Dairy Science 85(9): 2215-2222.

Hadri, K. 1999. “Estimation of a doubly heteroscedastic stochastic frontier cost function.”
Journal of Business & Economic Statistics 17(3): 359.

Hadri, K., Guermat, C., and Whittaker, J. 2003. “Estimation of technical inefficiency effects
using panel data and doubly heteroscedastic stochastic production frontiers.” Empirical
Economics 28(1): 203-222.

Hanson, ], Johnson, D. Lichtenberg, E. and Minegishi, K. 2013. “Competitiveness of
management-intensive grazing dairies in the mid-Atlantic region from 1995 to 2009
Journal of Dairy Science 96(3): 1894-1904.

Johnson, A.L. and Kuosmanen, T. 2011. “One-stage estimation of the effects of operational
conditions and practices on productive performance: Asymptotically normal and
efficient, root-n consistent StoNEZD method.” Journal of Productivity Analysis 36(2):
219-230.

Karagiannis, G., Midmore, P., and Tzouvelekas, V. 2002. “Separating technical change from
time-varying technical inefficiency in the absence of distributional assumptions.”
Journal of Productivity Analysis 18(1): 23-38.

Kerstens, K. and Van de Woestyne, 1. 2014. “Comparing Malmquist and Hicks-Moorsteen
productivity indices: Exploring the impact of unbalanced vs. balanced panel data”
European Journal of Operational Research 233(3): 749-758.

Key, N. and Sneeringer, S. 2014. “Potential effects of climate change on the productivity of U.S.
dairies.” American Journal of Agricultural Economics 96(4): 1136-1156.

Khanal, AR, Gillespie, J., and MacDonald, ]J. 2010. “Adoption of technology, management
practices, and production systems in US milk production.” Journal of Dairy Science 93
(12): 6012-6022.

Kneip, A, Simar, L., and Wilson, P.W. 2015. “When bias Kills the variance: Central limit
theorems for DEA and FDH efficiency scores.” Econometric Theory 31(02): 394-422.
Kompas, T. and Che, T. N. 2006. “Technology choice and efficiency on Australian dairy farms.”

Australian Journal of Agricultural and Resource Economics 50(1): 65-83.

Kriegel, T. and Frank, G. 2005. “A ten-year economic look at Wisconsin dairy systems.”
Madison, WI: Center for Dairy Profitability.

Kumbhakar, S.C. 1990. “Production frontiers, panel data, and time-varying technical
inefficiency” Journal of Econometrics 46(12): 201-211.

Kumbhakar, S.C. 1993. “Short-run returns to scale, farm-size, and economic efficiency.” The
Review of Economics and Statistics 75(2): 336-341.

Kumbhakar, S.C., Ghosh, S, and McGuckin, ].T. 1991. “A generalized production frontier
approach for estimating determinants of inefficiency in U.S. dairy farms.” Journal of
Business & Economic Statistics 9(3): 279-286.

Kumbhakar, S.C., Tsionas, E.G., and Sipilinen, T. 2009. “Joint estimation of technology choice
and technical efficiency: An application to organic and conventional dairy farming”
Journal of Productivity Analysis 31(3): 151-161.

Lee, Y.H. and Schmidt, P. 1993. “A production frontier model with flexible temporal variation
in technical efficiency.” In Fried, H.O., Lovell, C.A.K,, and Schmidt, P., eds, The Measurement
of Productive Efficiency: Techniques and Applications: Techniques and Applications p. 442.
Oxford University Press.


https://doi.org/10.1017/age.2017.4

https://doi.org/10.1017/age.2017.4 Published online by Cambridge University Press

Kota Minegishi and Dale M. Johnson Dairy Productivity and Technical Change 573

Mayen, C.D. Balagtas, ].V,, and Alexander, C.E. 2010. “Technology adoption and technical
efficiency: Organic and conventional dairy farms in the United States.” American
Journal of Agricultural Economics 92(1): 181-195.

McBride, W. and Green, C. 2009. “Characteristics, Costs, and Issues for Organic Dairy
Farming.” U.S. Department of Agriculture, Washington, DC.

McDonald, J., 0’'Donoghue, E., McBride, W., Nehring, R., Sandretto, C., and Mosheim, R. 2007.
“Profits, Costs, and the Changing Structure of Dairy Farming” U.S. Department of
Agriculture, Washington, DC.

Moreira, V.H. and Bravo-Ureta, B.E. 2010. “Technical efficiency and metatechnology ratios for
dairy farms in three southern cone countries: a stochastic meta-frontier model.” Journal
of Productivity Analysis 33(1): 33-45.

Mosheim, R. and Lovell, C.K. 2009. “Scale economies and inefficiency of U.S. dairy farms.”
American Journal of Agricultural Economics 91(3): 777-794.

Mukherjee, D., Bravo-Ureta, B.E., and De Vries, A. 2013. “Dairy productivity and climatic
conditions: econometric evidence from south-eastern United States.” Australian Journal
of Agricultural and Resource Economics 57(1): 123-140.

Nehring, R, Gillespie, ], Sandretto, C., and Hallahan, C. 2009. “Small U.S. dairy farms: can they
compete?” Agricultural Economics 40(s1): 817-825.

Nelson, K.C., Brummel, R.F,, Jordan, N., and Manson, S. 2014. “Social networks in complex
human and natural systems: The case of rotational grazing, weak ties, and eastern US
dairy landscapes.” Agriculture and Human Values 31(2): 245-259.

O’Donnell, CJ.,, Rao, D.S.P,, and Battese, G.E. 2008. “Metafrontier frameworks for the study of
firm-level efficiencies and technology ratios.” Empirical Economics 34(2): 231-255.
Roll, K.H. 2013. “Measuring performance, development and growth when restricting

flexibility.” Journal of Productivity Analysis 39(1): 15-25.

Rust, ., Sheaffer, C., Eidman, V., Moon, R, and Mathison, R. 1995. “Intensive rotational grazing
for dairy cattle feeding.” American Journal of Alternative Agriculture 10(04): 147-151.

Samuelson, P.A. and Swamy, S. 1974. “Invariant economic index numbers and canonical
duality: Survey and synthesis.” The American Economic Review 64(4): 566-593.

Schmidt, P. and Sickles, R. C. 1984. “Production frontiers and panel data.” Journal of Business &
Economic Statistics 2(4): 367-374.

Soriano, F.D., Polan, C.E.,, and Miller, C.N. 2001. “Supplementing pasture to lactating Holsteins
fed a total mixed ration diet.” Journal of Dairy Science 84(11): 2460-2468.

Stefanou, S.E. and Saxena, S. 1988. “Education, experience, and allocative efficiency: A dual
approach.” American Journal of Agricultural Economics 70(2): 338.

Tauer, LW. and Mishra, AK. 2006. “Dairy farm cost efficiency” Journal of Dairy Science
89(12): 4937-4943.

Taylor, J. and Foltz, ].D. 2006. “Grazing in the dairy state: Pasture use in the Wisconsin dairy
industry, 1993-2003.” University of Wisconsin-Madison.

Tozer, P.R, Bargo, F., and Muller, L.D. 2003. “Economic analyses of feeding systems combining
pasture and total mixed ration.” Journal of Dairy Science 86(3): 808-818.

Tucker, W.B,, Rude, B.J., and Wittayakun, S. 2001. “Case study: Performance and economics of
dairy cows fed a corn silage-based total mixed ration or grazing annual ryegrass during
mid to late lactation.” The Professional Animal Scientist 17(3): 195-201.

Wang, H.-j. and Schmidt, P. 2002. “One-step and two-step estimation of the effects of
exogenous variables on technical efficiency levels.” Journal of Productivity Analysis 18
(2): 129-144.

White, S.L., Benson, G.A., Washburn, S.P., and Green, J.T. 2002. “Milk production and economic
measures in confinement or pasture systems using seasonally calved Holstein and Jersey
cows.” Journal of Dairy Science 85(1): 95-104.

Winsten, ]J.R., Kerchner, C,, Richardson, A, Lichau, A, and Hyman, J. 2010. “Trends in the
northeast dairy industry: Large-scale modern confinement feeding and management-
intensive grazing.” Journal of Dairy Science 93(4): 1759-17609.


https://doi.org/10.1017/age.2017.4

https://doi.org/10.1017/age.2017.4 Published online by Cambridge University Press

Appendix A. Robustness

Table A.1. Marginal Effect Estimates: Panel-Consistent Standard Errors (PCSE)

Confinement Graziers
1 (2) (3) 4
In TGR In TE In TGR In TE
Year 1.27%* —0.56%** 0.59%** —1.81***
(0.11) (0.15) (0.08) (0.31)
Heat Index —0.16 0.35 —0.12 —0.81
(0.29) (0.37) (0.21) (0.89)
Farm Ownership 3.16** 7.08**
(1.30) (3.05)
Off-farm Income —5.40** —3.62
(2.27) (3.42)
Constant —2431.94%** 1102.91%*** —1188.00%** 3593.15%**
(230.48) (298.26) (166.27) (625.48)
Adj. R Squared 0.836 0.599 0.427 0.583

1. Statistical significance: *** @ =0.01, ** ¢ =0.05, * a=0.1.
2. Panel-consistent standard errors are used to allow for contemporaneous correlations for a given year.
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Table A.2. Marginal Effect Estimates: Frontiers with Non-cumulative Data

Points
Confinement Graziers
1) (2) (3) 4)
In TGR In TE In TGR In TE
Year 1.09%** —0.54*** 0.69%** —2.17%%*
(0.15) (0.12) (0.14) (0.26)
Heat Index -0.16 0.28 0.01 —-0.60
(0.33) (0.39) (0.48) (0.77)
Farm Ownership 5.57%** —2.63
(1.09) (2.32)
Off-farm Income —5.90%*x* 4.70
(2.13) (3.15)
Constant —2192.51%** 1051.33*** —1404.13%** 4324.53***
(292.99) (231.01) (290.25) (519.78)
Adj. R Squared 0.791 0.68 0.622 0.586

1. Statistical significance: *** ¢ =0.01, ** «=0.05, * a=0.1.

2. Technological frontier for each year is estimated using observations of the concurrent year (as
opposed to observations up to the concurrent year).

Table A.3. Marginal Effect Estimates: No Bias-corrections

Confinement Graziers
1) (2) (3) 4)
In TGR In TE In TGR In TE
Year 1.32%** —0.66%** 0.53%** —1.67%**
(0.13) (0.12) (0.07) (0.27)
Heat Index 0.00 0.17 -0.18 —-0.87
(0.26) (0.43) (0.21) (0.94)
Farm Ownership 2.63** 2.90
(1.29) (3.05)
Off-farm Income —3.00 0.30
(2.12) (3.36)
Constant —2642.27*** 1305.61*** —1063.11*** 3325.68%**
(262.67) (238.60) (150.00) (547.59)
Adj. R Squared 0.839 0.387 0.312 0.374

1. Statistical significance:

¥** @ =0.01, * a=0.05, * a=0.1.

2. Bias-correction step is omitted.
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Table A.4. Marginal Effect Estimates: DEA under Constant Returns to Scale

Confinement Graziers
&) () (3) “4)
In TGR In TE In TGR In TE
Year 1.37%** —0.71%** 0.38%** —1.771%**
(0.11) (0.10) (0.08) (0.29)
Heat Index 0.12 0.22 0.16 —-1.12
(0.21) (0.33) (0.17) (0.91)
Farm Ownership 2.45* 8.34%**
(1.35) (3.02)
Off-farm Income —4.91** —5.49
(2.18) (3.89)
Constant —2742.52%** 1397.75%** —754.71%* 3400.96***
(212.51) (196.08) (170.47) (576.72)
Adj. R Squared 0.868 0.621 0.359 0.534

1. Statistical significance: *** @ =0.01, ** = 0.05, * a=0.1.
2. DEA is estimated under the constant returns to scale (CRS) assumption.

Appendix B. Parametric Frontier Estimation

We estimate parametric frontiers that are comparable to the semi-parametric
frontier in (2). Consider a time-specific Cobb-Douglas production function
with an efficiency component u;, and a stochastic component v;;

(B.1) lnftSF(xit; w,) = Z aglnx; i + ﬁf(wt, t) — uj + Vi
1
Wlth Ujr = Zitsu +ﬁu(wti t) + nit Z 0’

where functions f/(w,, t) and p“(w, t) are specified as either time-specific
intercepts or the combinations of linear time trends and parametric functions
of w,. Once the equation (B. 1) is estimated, we predict TGR(x,t, Yie; t) from

technological parameters and TE(x,t, Yit; t) = exp(E[— uy|vie — u]) from the
residual distribution and re-parametrize them according to specification (3).
The two-stage estimation through (B.1) and (3) accommodates flexible
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specifications for f/(w,t) and “(w,t), which helps identify TC and TEC
without imposing strong distributional assumptions on the error structure.8

We estimate (B.1) using several specifications that differ in assumptions on
inefficiency u;. Following two common specifications of stochastic frontier
analysis (SFA), we estimate the efficiency component model of Battese and
Coelli (1995) (i.e., ux~N"(u,(zi, we, t), 6%)), previously adopted by Tauer
and Mishra (2006), Kompas and Che (2006), Nehring et al. (2009), and
Mukherjee, Bravo-Ureta and De Vries (2013), and the heteroskedastic
inefficiency model of Hadri (1999) (i.e., u;~N" (0, 0%(zi, Wy, t))), employed
by Byma and Tauer (2010), Cabrera, Solis and del Corral (2010), Mayen,
Balagtas and Alexander (2010), and Key and Sneeringer (2014).1° Both cases
assume that the residual components u;; and v;, are uncorrelated with ffF )
and with one another. Additionally, we estimate an OLS specification with
producer-specific fixed effects, say B} (wy, t), and back out parameters of the
frontier and efficiency relative to the smallest producer effect (e.g, Schmidt
and Sickles, 1984; Cornwell, Schmidt and Sickles, 1990). The OLS
specification does not invoke distributional assumptions of SFA but is
influenced on the precision of estimated producer effects.

In Table B.1, we selectively report some results for confinement operations
among our estimates of equation (B.1) under a range of conceivable
specifications. The estimation for graziers was mostly unsuccessful (i.e.
failing to converge under SFA). The three specifications (SFA-1, SFA-2, and
OLS-1) in the table differ in their parameterizations of inputs (i.e., acreage
variables omitted under SFA-1 and SFA-2), time trends (i.e., a linear trend
under SFA-1 and time-specific fixed effects under SFA-2 and OLS-1), and
efficiency (i.e., mean-shifted efficiency under SFA-1, heteroskedastic efficiency
under SFA-2, and producer fixed effects under OLS-1). Two out of three
specifications (SFA-1 and OLS-1) result in qualitatively similar estimates of
TC and TEC to those obtained under the nonparametric model.

In the current study, many parametric specifications fail to converge or are
unable to yield sensible results likely due to the mismatch between the
assumptions of SFA and the nature of heterogeneity in our data. Note that
this is not an issue of small sample size but is a general limitation of the
parametric frontier approach that relies on a presumed shape of the
efficiency distribution. The high importance of relative inefficiency to
stochastic noise, as well as the large heterogeneity in observed decisions,
tends to exacerbate the problem, which may explain particularly unsuccessful
estimation for graziers (unreported).

8 Qur re-parameterization process does not introduce any additional variables through z,
avoiding a well-known problem of inconsistency in the two-stage stochastic frontier model
(Wang and Schmidt, 2002).

° While it was unfit for our data, one may additionally consider heteroskedastic noise, or
vie ~ N(O, 0%(zit, we, t)) (e.g, Caudill and Ford 1993, Hadri et al. 2003).
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Table B.1. Stochastic Frontier Estimates (Confinement)

SFA-1 SFA-2 OLS-1
&) (2) (3) “4) (5) (6)
In TGR In TE In TGR In TE In TGR In TE
Year 1.01%** —0.62%** 0.27%** 0.00 1.37%** —0.59%**
(0.07) (0.16) (0.07) (0.11) (0.05) (0.21)
Heat Index 0.09 —0.38 0.71%** —1.08%** —0.04 0.08
(0.16) (0.38) (0.17) (0.26) (0.15) (0.47)
Farm ownership 1.02 4.76***
(1.07) (1.76)
Off-farm income —6.45%** —8.89**
(1.91) (4.21)
Constant —2037.37*** 1218.22%** —554.46%** 4.17 —2751.98*** 1147.73%***
(133.94) (312.68) (134.18) (210.97) (97.58) (422.65)
R squared 0.459 0.062 0.399 0.181 0.676 0.066
TGR/TE Mean 0.915 0.853 0.935 0.909 0.896 0.774
TGR/TE SD 0.0568 0.0916 0.0449 0.0636 0.0629 0.110

1. Standard errors in parentheses. Statistical significance: *** ¢ =0.01, ** a =0.05, * a=0.1.

2. Frontier: year-specific Cobb-Douglas function for log(Milk) for each year is estimated. Cow and capital are used as inputs for SFA-1 and SFA-2, and cow,
capital, crop acreage, and pasture acreage are used for OLS-1. OLS-1 is a shifted-OLS model where the frontier is defined using the largest producer-fixed
effect and the efficiency is defined relative to that effect.

3. Error components: truncated normal with p, shifted with year dummies is used for SFA-1; truncated normal with heteroskedastic 62 in terms of year
dummies, farm ownership, and off-farm income for SFA-2; and producer-fixed effects for OLS-1. SFA-1 does not include producer characteristics (doing so
leads to a convergence problem).

4. The bottom two rows are the first-stage results for mean and s.d. of TGR and TE in expectation respectively (i.e., direct comparison between observed outputs
to frontier-output levels).

5. Heat index is the number of days above 30 degrees Celsius, divided by 10.
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