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If G{ and G2 are locally compact groups and the algebras Ll(Gx) and Ll(G2) are
isometrically isomorphic, then G, and G2 are isomorphic (Wendel, 1952, [8]). There is
evidence that the following generalization of Wendel's result is true.

If Tis an algebra isomorphism of L^G,) onto L\G2) with | |r | | < V2, then G, and G2

are isomorphic.
This was proved for abelian groups and for connected groups in [1], but in the

general case, it is still unproved. Some partial results have been obtained. That Gx and G2

are isomorphic when ||T|| < 1-246 was proved in [1]. This was improved to the condition
||r | | < (1 + V3)/2 in [8], and the number (1 + V3)/2 has some special significance, as we
shall see later.

In this paper, we prove the conjecture for a large class of non-abelian groups when T
is a *-isomorphism. We also show that, for groups outside this class, the existence of a
•-isomorphism between their group algebras with norm <V2 means that the groups are
"nearly" isomorphic. (See Propositions 14, 15, and 16). Corresponding results are also
true for the algebra M(G) and for C(G) when G is compact.

It was shown in [8] that the problem reduces to the discrete case. Let Gx and G2 be
discrete groups and let Tbe an algebra isomorphism of /'(G,) and /'(G2) with ||T|| <y/2.
Then there exists a map t of G, into G2 defined by the equation Tx = at(x)+f, where
\a\ > 1/V2. (See [1, Proposition 2.1].)

If | |r | | <(1 + V3)/2, then / is a group isomorphism. (This was proved for abelian
groups in [1, Theorem 2.6], and in the general case in [8, Theorem 2.2].) For

(1 + V3)/2, / need not be a isomorphism.

EXAMPLE. Let G be a cyclic group of order 6 with generator x. Define Tx =
-x/2 + J'V3*4/2, and extend to an algebra isomorphism of CG onto CG. Then

V 4

Even though / need not be an isomorphism, it is always true that t(x~l) = t(x)~\ (See
Lemma 2.1 in [8].)

We now assume that T is a *-map. If Tx = E a,^,, then Tx'1 = E aj~\ It follows
that T is an isometry for the I2 norm. Comparing the coefficient of the identity in
(Tx)(Tx~l) gives E |a,-|2 = l. It is this property that makes the case of *-isomorphisms
more tractible than the general case. This fact, together with the V2 bound on the norm
gives inequalities for the coefficients independent of the group structure.

LEMMA 1 ([6, Lemma 1]). / / ( a , ) e / ' with E|«,-| = K<V2, E k | 2 = l, and |a,|s=
\a2\ 3= \a3\ , . . . , then

(a) |a2|3«(l-|fl,|2)/(K-|flil).
(b) \a2\ >{K- |fl,|)/2 + V((l - l«.|2)/2 ~{K- |a,|)2/4),

whenever the expression under the square root sign is positive; i.e. when |a,|=£K73 +
(2/3)V((3 - K2)/2),

(c) \a3\ ^ KIT, - V((3 - K2)/2)/3.

As in [1], we consider the two cases—whether or not t(x2) = t(x)2.
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LEMMA 2. //t(x2) = t(xf and Tx =^Hx) +f, with \a\ > 1/V2, then \a\ > 0-907.

Proof. Let Tx = at(x) + bw +f, where \b\ is greater than all the coefficients in /. We
consider two cases:

(1) If w commutes with t(x), then the coefficient of t(x)w in Tx2 has modulus
2 \ab\ - \\f\\\ = (|a| + \b\)2 - 1. Since this is not the largest coefficient in Tx2, (\a\ + \b\)2 -
1 < 1/V2 i.e.

|a| + |fc|<V(l + l/V2)< 1-307.

(2) If w does not commute with t(x), then the coefficient of t(x)w in Tx2 has
modulus> \ab\ — (\a\ + \b\)(\/2 — \a\ — \b\). The same is true for the coefficients of wt(x).
Since one of these is neither the first nor second largest coefficient in Tx2, by Lemma l(c),
we have

\ab\ - (\a\ + \b\)(\/2 - \a\ - \b\) < 1/(3V2).

Now |a|2 + |6 | 2 < l and so

(|a|2 + \b\2)/2 + \ab\ - (\a\ + |&|)(V2 - \a\ - \b\) < 1/2 + 1/(3V2).

Putting \a\ + \b\ =A, we have

A2/2 - A(^/2 -A)< 1/2 + 1/(3V2);
i.e.

3.42/2 - y/2A < 1/2 + 1/(3V2),
i.e.

A2 - (2V2M/3 < 1/3 + V2/9,
or

(A - V2/3)2 < (5 + V2)/9.

Hence A < V2/3 + V(5 + V2)/3< 1-316. Thus in both cases, we have >4 < 1-316, and
using Lemma l(b), \a\ > 0-907, as required.

If we have this condition for all x in Gu then t is a homomorphism.

THEOREM 3. If t(x2) = t(x)2, for all x in Gu then t is a homomorphism.

Proof. Let Tx = at(x)+f and Ty = bt(y) + g. By Lemma 2, \a\>0-907 and \b\>
0-907. Hence the coefficient of t(x)t(y) in Txy has modulus greater than

\ab\ - H/IU ||*||2 = \ab\ - V(l - |a|2)(l - \b\2).

But this is greater than (0-907)2 - (1 - (0-907)2) > 0-65. Now the largest coefficient in Txy
has modulus >0-907 by Lemma 2. Since (0-64)2 + (0-907)2 > 1, t(xy) = t(x)t(y). Since this
is true for all x and y, t is a homomorphism.

We now turn to the case when t(x2) i= t(x)2.

THEOREM 4. / / Tx = at(x)+f and t(x2) i= t(x)2, then u = t(x2)t(x)~2 has order 2,
commutes with t(x), and we have Tx = at(x) + but(x) +g with \a\ + \b\> 1-29.

Proof. Let u = t(x2)t{x)~2. Then ut(x)2 has the largest coefficient in Tx2. Let
Tx = at(x) + but(x) + g. If u does not commute with t(x), the coefficient of ut(x)2 in Tx2

has modulus at most
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Since 1/V2< |a|*£ 1,
\ab\ + (\a\ + |6|)(V2 - M - \b\) < (1/V2) \b\ + (1/V2 + |£»|)(1/V2 - \b\)

= 5/8-(|6|-l/(2V2))2

<5/8.

This contradicts the fact that ut(x)2 has the largest coefficient in Tx2. The rest of the proof
now follows as in the abelian case (Lemma 2.4 of [1]). However, there is a minor error in
that part of the proof that shows u has order 2. This is rectified as follows. In estimating
the coefficient of u~\ the inequality should be

which implies that \b\ < 0-195, but this still gives a contradiction to \b\ >0-37.

COROLLARY 5. Under the hypothesis of Theorem 4, if Tx2 = aiut(x)2 + b\t{x)2 + fx,
then either \a\ + \b\ s= 1-36 or \ax\ + \bx\ s= 1-36.

Proof. Since \a\ + \b\ > 1-29, it is clear that \b\ is the second largest coefficient in Tx.
Now if |a| + |6|<l-36, then, by Lemma l(b), |a|>0-87 and |6|<0-49, and so
|a,| « 2 \ab\ + H/Hl = 2 \ab\ + (1 - \a\2 - \b\2) = 1 - (\a\ - \b\)2 < 1 - (0-38)2 < 0-86. Now

so is certainly the second largest coefficient in Tx2. Thus, by Lemma l(b) again,
|o,| + |6,|&l-36.

We now show that only one element u of order 2 can arise in this way.

LEMMA 6. The set [t(x2)t(x)~2:x in G{] contains at most one non-trivial element.

Proof. Suppose that u = t(x2)t(x)~2, v = t(y2)t(y)~2, where u^v, and both have
order 2. Then, by Corollary 5, we may assume that Tx = ait(x) + bit(x)u +/, , and
Ty = a2t(y) + b2t(y)v +f2 with |a,| + |6,| s= 1-36 and \a2\ + \b2\ 3= 1-36. Now

Txy = ala2t(x)t(y) + atb2t(x)t(y)v + a2b{t(x)ut(y)

+ b>b2t(x)ut(y)v + («,*(*) + bst{x)u)*f2

Since t(x)t(y), t(x)t(y)v, t(x)ut(y) and t(x)ut(y)v are all distinct, we have

\\Txy\\ ^ \ata2\ + |a,62| + \a2b2\ + |6,&2|

& (1-36)2 - 2(1-36)(V2 - 1-36) - (V2 - 1-36)2

= (1-36)2 - (V2 - 1-36)(V2 + 1-36)

= 2(l-36)2-2

> 1-69.

This contradicts \T\ < V2 and so u = v.
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We would now like to quotient out by the subgroup [e, u], but to do this we must
first prove that the subgroup is normal—i.e. that u commutes with all elements of G2. We
know already that u commutes with t(x) whenever t{x2)^t(x)2. We will show that u
commutes with l(x) for all x, and then show that t is onto. We need a refinement of
Lemma 6.

LEMMA 7. Let [e, u] = [t{x2)t{x)~2: x in G,]. For y in Gu let Ty = at(y) + bt(y)v +f,
where \a\ > 1/V2 and b is the second largest coefficient. If v ¥=u or if v = u but does not
commute with t(y), then \a\ + \b\ < 1-256 and \a\ >0-933.

Proof. Suppose v^u. As in Lemma 6, choose x in G, such that Tx = a{t(x) +
bxt{x)u+f with |a,| + |fei|>l-36. If |a| + |6|=y4, the final inequality of Lemma 6
becomes

|| Txy || ^ ,4(1-36) - A(\/2 - 1-36) - 1-36(V2 - A)

-(V2-v4)(V2-l-36)

Since | | r | |<V2, we have A<(2 + y/2)/2-72< 1-256. By Lemma l(b), |o|> 0-933 as
required. Now if v = u, but does not commute with t(y), then the second largest
coefficient in Ty cannot be both t(y)u and ut{y). Thus the same argument shows that in
this case we also have \a\ + \b\ < 1-256 and |a| >0-933.

THEOREM 8. t(x)u = ut(x), for all x in G\.

Proof. Suppose that there exists x in Gx such that t{x)u =£ ut(x) and let Tx = at{x) +f
with \a\ > 1/V2. By Lemma 7, |a| > 0-933. Choose y in Gx such that t(y2) * t(y)2, and let
Ty = a1t(y)+fi with |a , |>l /V2. We shall prove that t(xy) = t(x)t(y). Let Txy =
a2t(xy) +f2 with |az| > 1/V2. Now the coefficient of t(x)t(y) in Txy has modulus greater
than

N i l " II/II2 II/1II2 ^ (1/V2)(|a, | - V( l - la.l2)) > 0-4.

Now if t(xy)*t(x)t(y), then \a2\ ^ V(l - (0-4)2) < 0-92. By Lemma l(c), the coefficient
of t(x)t(y) must be the second largest in Txy and so, by Lemma 7, t(x)t(y) = t(xy)u =
ut(xy). But this is a contradiction since w commutes with t(y), but not with t{x). Hence
t{xy) = t(x)t{y). Applying the same argument with xy in place of x, we obtain
t(xy2) = t(xy)t(y), but with y2 in place of y, we get t{xy2) = t(x)t(y2). It follows that
t(y2) = t(y)2, which is a contradiction. This completes the proof that t{x)u = ut(x).

We now prove that t is onto. We know that t maps the identity e{ of Gx into the
identity e2 of G2, but here is a stronger result.

LEMMA 9. If x #e x and Tx = ce2+f then \c\ < l/(2>/2 + 1) <0-262.

Proof. If Tx = ce2 +/ , then T(x - ce,) = / and T(x - cex)
n =/" . Now ||/ | | « K - \c\,

and so \\f\\" ^(K-\c\)n. On the other hand, ||(x -ce,)" | | s=(l + \c\ + \c\2)"12. To see
this, there exists a character 0 on the group generated by x such that |#(x)-c|3=
(1 + |c| + \c\2)m. Thus

https://doi.org/10.1017/S0017089500007990 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007990


GROUP ALGEBRAS 25

Since T has a continuous inverse, this cannot tend to zero. Therefore (X"-|c|)25=
1 + |c| + Id2 or |c| (1 + 2K) ^K2-l. Hence

Id «s (K2 - \)I{2K + 1) < 1/(2V2 + 1) < 0-262.

THEOREM 10. t is one-to-one and onto.

Proof. Suppose that t is not one-to-one. If x, y in G, satisfy t(x) = t(y) = z, then we
have

Tx = a1z+f1

Ty = a2z+f2

We consider first the case when x and y commute. Then

T(a2x -axy) = azfx - aj2,

Now
ll«2/i - «i/2ll « l«2l (K - |a,|) + |a,| (K - \a2\)

^K(\al\ + \a2\)-2\al\\a2\<l

since |a,| > 1/V2, |a2| > 1/V2 and A" < V2. Also

^ |fl2|" (1 + \aja2\
as in Lemma 9. Thus

This again contradicts the boundedness of T~l.
If x and v do not commute, we have that Ty~x =d2z~] +f2. Thus Txy~* =

( / ) ( / )
By Lemma 9, the coefficient of e2 in Txy ' has modulus less than l/(2\/2+ 1). We

have |fl,a2| - ||/,|| ||/2|| «l/(2>/2 + 1). Therefore

|fl,a2| - (V2 - |fl,|)(V2 - |«2|) ^ 1/(2V2 + 1),

l«il + \a2\ «(4V2 + 3)/(4 + V2) < 1-6.

It follows from Lemma l(b), that |a,|<0-9 and |a2|<0-9, and so, by Lemma 2,
t(x2) =£t(x)2 and t(y2)^t(y)2. By Theorem 4, we have 7x = axz + 6,ZM +g, , with
|a,| + \bx\ > 1-29, and Ty = a2z + 62zu + g2, with |a2| + |62| > 1-29. Now

Txy'1 = (a{a2 + bxb2)e + {axb2 + a2bx)u

where

M) + \gi\ (l«il + |fe2|) + llg

< V2(V2 - 1-29) - (V2 - 1-29)(V2 - 1-29)

= 1-29(V2- 1-29) < 0-17.
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Thus t(xy~l) = u and has coefficient with modulus greater than 0-933. This follows from
Lemma 7 if the second coefficient is not that of e2, and if it is, it is necessarily less than
0-262. Now, by Lemma l(b), the biggest coefficient has modulus greater than 0-94.
Similarly t(y~lx) = u and has coefficient with modulus greater than 0-933. Now
xy~lJ=y~xx, since x and y do not commute. Repeating the argument with xy~l and y~lx
in place of x and y, we obtain a contradiction, since the sum of coefficients is less than
1-6. This completes the proof that t is one-to-one.

To show that t is onto, let K = t{Gx) and P the linear projection of /i(G,) onto l^K).
Define Sx = a(x)t(x) where Tx = a(x)t(x) +f and \a(x)\ > 1/V2. Extend S linearly to a
map from /,(G,) to l^K). Then ||T - 5||/1/V2, so that 5 is invertible with ||S~'|| =£\/2.
PS = S and so

\\PTS-1 -1\\ = | |P(r - S)S~i\\ < (1/V2)V2 = 1.

Thus PTS~l is invertible. In particular P is invertible and K = G2.

REMARK. It seems likely that \(x-cy)"\5sl for all n, even when x and y do not
commute. If this were true, the above proof would be considerably shortened.

We have proved the main theorem.

THEOREM 11. Let G, and G2 be groups and T a *-isomorphism of lx(Gi) onto li(G2)
with \T\< V2. Then either G, and G2 are isomorphic, or there exist elements v in Gy and u
in G2 both of order 2 and a map t: Gj to G2, such that

(i) t is a bijection preserving inverses, /
(ii) t(v) = u, and f.Gi onto G2/[e, u] is a homomorphism.

Using the techniques for abelian groups contained in [1], we can obtain the following
result.

THEOREM 12. Under the hypothesis of Theorem 11, if u does not belong to the
commutator subgroup of G2, then Gt and G2 are isomorphic.

Proof. If I2 is the identity character on G2, then I2°T is a character on G,. By
multiplying T by the inverse of this character, we may assume that I2°T = Ix.

If M does not belong to the commutator subgroup of G2, there exists a character xp
with xp(u) = -l. Then the composition xp°T is a character on Gu and since t(xy) =
t(x)t(y) or t(x)t(y)u, we have xl>(t(xy)) = ±ip(t(x))il>(t(y)). Thus (rp°t)2 is also a
character on Gj. Define q> = (ip°t)~l(xp°T). Then <p2 is a character on Gx. We show that
(p2 has odd order.

If <p2 does not have odd order, there exists x in Gx such that (p2(x) is arbitrarily close
to - 1 . Thus, given e > 0, there exists x in Gx such that \(p{x) + i\ < e. If

Tx = at(x) + bt{x)u + 2 c,yh

then

Thus we have a + b + S ct•. = 1 (since I2°T = IJ, and
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Substituting for a, we obtain

| 2 1(g((x)-1y,) - 1)| < e.
In particular,

Since a > 1/V2, \a\ + |6| + £ |c,| > V2 - e/2, which is a contradiction.
Thus q?2 has odd order, n say. Let 6 — cpn+i, another character on G,, with

6(x) = ±<p(*)- Define s: G, to G2 by

*(*) = *(*) if <?(*) = <p(*),

s(x) = t(x)u if 0(;t) = -<*>(*)•

Then 5 is a homomorphism since cp is, and since t is injective and onto, 5 is also.
This gives us the main theorem.

THEOREM 13. If T is a ^isomorphism of/,(G,) onto /,(G2) with \\T\\ < \/2, and if G,
(or G2) does not contain a central element of order 2 in the commutator subgroup, then G,
and G2 are isomorphic.

If Gi has a central element of order 2 in the commutator subgroup, then the map / in
Theorem 11 has the following two additional properties.

PROPOSITION 14. t maps the centre of Gt into the centre of G2.

Proof. If x is in the centre of Gu it is in the centre of /i(G,), and hence Tx is in the
centre of l\(G2). Therefore if Tx = at(x) + / , with |a| > 1/V2, then for each y in G2,

Tx = y-1(Tx)y = ay-lt(x)y + y'lfy.

No coefficient in y~xfy can have modulus greater than 1/V2, and so y~1t(x)y = t(x) and
t(x) belongs to the centre of G2.

In fact, it can be shown, using similar techniques to those in [1, Theorem 3.4], that
on the centre Zx of G\ either T has the form Tx = y(x)t(x), with t an isomorphism and ip
a character on Z,, or the form

Tx = y(x)[((l + 6(x))/2)s(x) + ((1 - d(x))/2)s(x)u],

where ip, 6 are characters on Z, with 6 of odd order, and s is an isomorphism.

PROPOSITION 15. / maps the commutator subgroup of G, into the commutator
subgroup of G2.

Proof. t(xyx~ly~l) is either t(x)t(y)t(x)~lt(y)~* or t(x)t(y)t(x)~lt(y)~lu, both of
which are in the commutator subgroup of G2.

Under these circumstances, we also have the following result.

PROPOSITION 16. Gx and G2 have the same number of elements of each order.

Proof. Let x be the image of x under the quotient ma£G^-* GJ[e, v]. If x has odd
order n, then one of x and xv has order n, the other 2n. t(x) also has order n, and so, of
the elements t(x) and f(jt)«, one will have order n, the other 2n.
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We next consider elements of order 2. We need to show that

If the implication in either direction is false, then t{x2) =£ t(x)2. But, if Tx = at(x) + / , the
coefficient of t(x)2 in Tx2 has modulus >\a\ - | | / | | 2 > 0 , which gives a contradiction.

Now suppose that x and t(x) have order 2n. For the result to be false, one of two
things must happen.

(a) x and xv have order 2n (i.e. x^^v) and t(x) and t(x)u have order An (i.e.
t{x)2n = u). But then {xnf = eu yet (t{x")f = u, which contradicts (*),

(b) x and xv have order 4n (JC2" = u) and t(x) and f(*)u have order 2"(t(x)2" =£«).
Then (x")2 = v, but (ft*)")2 = e2- This also contradicts (*).

Whether these conditions in themselves mean that the groups are isomorphic is not
clear. Using the book [4] it is possible, though very tedious, to confirm that no
counterexample exists with groups of order up to 32.

The corresponding results for locally compact groups follows easily from the discrete
case. (See [1], [3], and [8] for the details.)

THEOREM 17. Let T be a *-isomorphism of L'(G,) onto LX[G2), [M(Gi) onto M(G2)]
satisfying \\T\\ <\J2. If Gi (or G2) does not contain a central element of order 2 in the
commutator subgroup, then G\ and G2 are isomorphic.

THEOREM 18. Let Gx and G2 be compact groups without central elements of order 2 in
the commutator subgroup. If T is a *-isomorphism of C(Gi) onto C(G2), [La(G{) onto
L°°(G2)], satisfying \\T\\ < V2, then Gx and G2 are isomorphic.
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