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By allowing direct imaging of sub-angstrom atomic spacings for the first time, aberration correction has 
revolutionized electron microscopy. For electron energy loss spectroscopy (EELS) in scanning 
transmission electron microscopy (STEM), the sensitivity for chemical and electronic structure imaging 
has improved, enabling single atom detection [1] and mapping of intricate electronic patterns in strongly 
correlated oxides [2]. Although there are still questions regarding the detailed interpretation at atomic 
resolution, the necessary data analysis can be performed reliably using characteristic inner-shell 
ionization edges [3]. In comparison analysis of the low-loss part of EEL spectra, where low-lying core 
loss edges can overlap strongly with plasmonic excitations, is less straightforward. Here, we 
demonstrate an approach for compositional mapping across interfaces in STEM-EELS using neural 
network algorithms.  
 
The EELS data was acquired using a VG Microscopes HB603U operated at 300 kV equipped with a 
Nion aberration corrector and Gatan Enfina® spectrometer. The EELS compositional mapping at the 
interfaces was performed using principal component analysis combined with neural network 
interpolation [4]. Briefly, the 3D spectrum imaging data set in a given energy interval was decomposed 
into a set of principal components. To perform the mapping, subsets of the spectra far from the interface 
were identified with specific phases and used as a training set for a linear feed-forward neural network 
(5, 10, 3 neurons, linear transfer function)  trained using back propagation. The trained network was then 
used to process the full experimental image.  
 
Figure 1 shows the comparison of the mapping results for the CaTiO3/SrTiO3 interface obtained by (a) 
conventional background subtraction and integration and (b) using a linear neural network analysis. The 
results obtained by the two methods are very similar, showing two components and a transition region of 
a similar (finite) width, thus validating the neural network approach. If a non-linear transfer function is 
used, the network reconstructs a much sharper boundary between the two components (Fig.1(c)), 
possibly reflecting the information limit.  
 
The linear neural network approach was then used to analyze a low-loss EELS image of a 
SrTiO3/(La,Sr)MnO3/BiFeO3 interface (Fig. 2). Depending on the specific energy range used for the 
analysis, the resulting compositional maps had a slightly different appearance. It is noteworthy that for 
the 5-50eV range, a large region around the (La,Sr)MnO3/BiFeO3 interface was not identified as any of 
the components, suggesting an anomaly in the dielectric properties. In comparison, similar training in 
the 70-150eV interval (which only contains core excitations) does not show this feature. Correspondence 
with Kramers-Kronig analysis and implications for material properties will be discussed. [5] 

Microsc Microanal 15(Suppl 2), 2009
Copyright 2009 Microscopy Society of America doi: 10.1017/S1431927609097967

450

https://doi.org/10.1017/S1431927609097967 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927609097967


References 
 
[1] M. Varela, et al., Physical Review Letters 92 (2004).  
[2] M. Varela et al., Annu. Rev. Mat. Res., 35 (2005) 539. 
[3] R.F. Egerton, EELS in the Electron Microscope (2nd ed.), Plenum, New York (1996). 
[4] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan (1994) 
[5] Research sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and 
Engineering, by Laboratory Directed Research and Development (LDRD) funding from Oak Ridge 
National Laboratory, and by appointment (H.J.C.) to the ORNL Postdoctoral Research Program 
administered jointly by ORNL and ORISE. 
 
 

 
 

 

(a) 

(c) (b) 

(d) 

(a) (b) (c)

Figure 1. Compositional mapping on a CaTiO3/SrTiO3 interface by (a) background subtraction 
and integration (Ti – red, Ca – pale blue) (b) linear neural network analysis (SrTiO3 – magenta, 
CaTiO3 –blue) (c) non-linear neural network analysis (SrTiO3 – magenta, CaTiO3 –green).  
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Figure 2. Neural network analysis of a low loss EELS image of SrTiO3/(La,Sr)MnO3/BiFeO3 
interface using (a) zero loss peak (b) energy range of 5 to 50 eV (c) energy range of 70 to 150 
eV. 
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