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NONLINEAR INTEGRAL OPERATORS

AND CHAOS IN BANACH SPACES

PHIL DIAMOND

Sufficient conditions are given for chaotic behaviour of

continuous transformations on Banach spaces. The conditions

avoid the requirement that mappings be expanding on compact sets

and are probably easier to verify for many classes of operator

equations than existing criteria. Two classes of integral operators

on CLOjll are considered in the light of these results: one

nonlinear but compact, the second noncompact.

1. Introduction

The study of chaotic dynamical behaviour on Banach spaces is

relatively recent. Only a few theoretical papers have appeared which

deal with the genuinely infinite dimensional case, although it is well-

known that the centre manifold theorem implies that many infinite

dimensional processes have finite dimensional invariant attractors [9].

The self-reproductive cell PDE generates a chaotic semiflow on C[0,2]

([7], [/], [2]) i but this analysis is for a specific model, albeit

surprisingly linear. Zaslavskii [ H ] has given general sufficient

conditions involving "strong recursion structures" which depend on the

character of the Frechet derivative of a Banach space mapping. Kloeden

[5] describes wide sufficient conditions which are formally alike the
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2 7 6 Phil Diamond

reasonably well-understood finite dimensional result [4].

Unfortunately, the criteria of these last two authors are hard to

check and examples are difficult to come by. Zaslavskii provides a model

with a strong recursion structure, but it is finite dimensional. On the

other hand, Kloeden requires that a map be expanding on a compart set. It

is not always easy to demonstrate expansivity of integral operators in, for

example, the sup norm on C\_0,2] , while compact sets are not always

natural objects of study within the context of noncompact operators. Here

these conditions are weakened to a point where they can be more readily

verified. The theorems are applied to nonlinear compact operators of the

form T : = (Tx) (t) = L ^t+8 ¥s) m(x(s))d8 . A nonlinear and generally

noncompact class of the form LxKx: = (Tx)(t) = (Lx)(t) \Q v+t+a m(x((s))ds

where L is affine, is also discussed. Although the theorems appear to be

only mild generalisations of other results, their virtue lies in the fact

that they can actually be applied to mappings such as those above.

The following section 2 sets out definitions and states results.

Corollaries to theorems 2 and 3 provide classes of chaotic mappings. The

theorems are proved in section 3 and the examples discussed in sections

4 and 5.

2. Definitions, notations and results

Denote by Q the cone of non-negative functions in CIO, 11 and

write S(a;t) = {x c 010,11 : \ \x - a \ \ < z) • For a, 3 e C+ and a < 0

(that is e - a e C+) • define the a. 6- slice D{a#8) = ix e C+ •

a < x £ 6> • Suppose T maps C+ to itself. If for u e D{a,&} there

exists v e Z){a,(5} such that u = Tv , we say that u has a

T-representation in D{a,B) - If a»B have ^-representations , define

the slice

IT {a,6} = fa e 0{a,&} ; x has a T-representation}

and when there is no ambiguity use the abbreviations D,U .

If X = D {o,B> j, a e X and 0 < X < 1 define
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X(a,\) = ix e X : \x(t) - a(t) \ > x| \x-a\ \ , 0 < t <, 1 ,

and either x - a e C, or a - x e C+}

Clearly X is closed, but possibly empty.

DEFINITION 1. Let T : CIO,11 •* CLO,1] be a continuous map and A

be a closed bounded set in C . T is said to be partially expansive

on A if T has a fixed point a e A and there exists X e (0,1)

and u > 1 such tha t A(a,\) i s nonempty and \(Tx)(t) - a\ z \i\\x-a\\

for each x e A (a, \) and al l t e LO, 1 ] .

DEFINITION 2. Let X be a Banach space and 4 be a bounded subset

of X . Following Kuratowski [6] define y(A) , the measure of non-

compactness of A , to be inf{6 > 0 : A can be covered by a finite

number of sets of diameter not greater than 6} . Suppose T maps X

continuously into i tself and that T takes bounded sets to bounded sets.

If, for some k e 10,1) , y(T(A)) 2 k y(A) for every bounded subset A of

X , we say that T is a strict set contraction. Analogously, if

y(T(A)) £ k y(A) for every bounded subset A of X and some fixed

k > 1 we say that T is a strict set dilation. If T is a s t r ic t set

dilation and T exists, then T i s a s t r ic t set contraction.

The first result uses ideas of Leggett [S] and shows that the non-

compact maps LxKx are in some cases s t r ic t set dilations.

THEOREM 1. Let A be a subset of the Banaah algebra 8 and

suppose that T : A -*- 8 is of the form Tx = (Lx) (Kx) where

(i) L : A -* 8 satisfies \(Lx)(t) - (Ly)(t)\ * v\\x-y\\ for some \t>0,

each t e 10,1] and all x, y e A ; and

(ii) K : A •*• 8 is compact

Suppose v = infi(Kx)(t) :xeA,0^t^l)>0. Then if yv > 1 , T

is a strict set dilation. If, additionally, T has a fixed point a £ A

and uv _ \\la\\ \\K\\ > 1 , then T is partially expansive on A.

DEFINITION 3. Let T : X -»• X be a continuous mapping of the Banach

space X and suppose there exist nonempty closed bounded subsets A, B
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of X and integers n~, n? 5 1 such that

(1) B c A c rU) , and T i s injective on A ;

(2) 31 (B) n i4 = 0 ;

(3) T is injective on B and T (B) ^ A .

Then we say that T e CffOO . In the particular case X = B , replace

A and B by the compact intervals T, J respectively.

Kloeden [4], [5] has shown that if T e C#(X) , that if A and B

are compact and T expanding on A , and if A is convex, then T is

chaotic (see [4] for a definition of chaos) . Theorem 1 will be applied

to show the following theorems and corollaries which generalise Kloeden1 s

result and demonstrate classes of chaotic operators.

THEOREM 2. Let X be a Banach space and T a continuous mapping

from X to itself. Suppose that

(1) T £ CH(X) ;
(2) T is partially expansive on the set A of Definition 3 ;
(3) The sets A3 B of Definition 3 are compact, and A is convex.

Then T is a chaotic mapping on X.

COROLLARY 2. Let the mapping T : CIOt11 * 010,11 be defined by

(1) (Tx)(t) = j2
0 J H ^ TJ>(S) mCxCs)) ds 3

where r > 0 3 \\> is a positive continuous function and m : \_0,11 •*• [0,11
is continuous and such that m > 0 and

(1) m e CE[O,U ;

(2) m is expanding on the interval I of Definition 3;

(3) m is strictly monotone on I .

Then there exist r and ^ for which T is chaotic on C •
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THEOREM 3. Let X be a Banaoh space and T a mapping from X to

itself. Suppose that

(1) T e Cff(K)

(2) T is a strict set dilation on, and partially expansive on, the set

A of definition 3;

(3) A is convex.

Then T is a chaotic mapping on X .

COROLLARY 3. Let the mapping T : 010,11 •*• 010,11 be defined by

(2) (Tx)(t) = Ul-x(t)) j20 --—^ i\>(s)m(x(s))ds ,

where r > 0 , i|» is a positive continuous function, I is a positive real

and m : 10,11 •*• 10,11 is continuous and such that m > 0 and

(1) M : = Kl-t)m(t) € CHLO,11 ;

(2) M is expanding on the interval I of Definition 3 ;

(3) m is strictly monotonic on I ;

(4) inf m(t) > sup(l-t) .
tel tel

Then there exist I, r, I|J for which T is chaotic on C .

3. Proofs of theorems

Proof Of Theorem 1. Let C be a bounded subset of A , let e > 0

and set o> = sup | \Lu\ \ . Since K(C) is relatively compact, there exist
ueC

finitely many sets 27,. En,..., 2?j, in 8 such that diam E. < 3z/2m ,

k
1 £ i z k and K(C) = .u E. . Sets C-, Co,..., C may be so chosen that

diam C. 2 y(C) + e/2wv for at least one i = i*, 1 <, i* < n, and
if

k
C = -U.C- . D e f i n e S . • = L ( C . ) E ., i = 1 , . . . , n , 0 = 1 , . . . , k a n d n o t e

If—1 t* 1fQ L> Q

that T(C) is covered by the S... If W, z e S.A . , then there exist

u, V e C-4 and x, y e E. such that w = xLu and z = yLv . Then
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\w(t)-z(t) | = | (xLu) (t)-(yLu) Ct)+(yLu) Ct)-(yLv) (t) \

;> | (ylu) (t)-Cylv) (t) | - | CxLul Ct)-(yLu) (t) \

= | y(t)((Lu)(t)-(Lv)Ct))\-\(x(t)-y(t))(Lu)(t)\

= | y(t)\ \(Lu)(t)-(Lv)(t)\-\(Lu)(t)\\x(t)-y(t)\

* v | (lu)(t)-(Lv)(t)\-\\Lu\\ \\x-y\\

>v | (Lu)(t)-(Lv)(t)\-3e/2

Thus | | u - 3 | | + 3e/2 > v\\Lu-Lv\\ > \i\>\ \u-v\ \ and i t follows that

diam S.*.> ]i\>y(C)-e . Thus y(T(O) > \ivy(C) and IT is a s t r ic t

set dilation. Also, \(KxLx)(t) - aCt)\ = \(KxLx)(t) - (KaLa)(t)\

> \(Kx)Ct)\\(Lx)(t) - (La)(t)\ - \ (La)(t) \ \(Kx)(t) - (Ka)(t)\ > yv

- | \K\ I | | l a | | | |a;-a| | , and T is partially expansive.

Proof Of Theorem 2. The much weaker condition of part ial expansivity

replaces the requirement that f be s t r ic t ly expanding - otherwise the

conditions are those of [4] , [5] . Consequently, a l l the chaotic properties

follow from the usual constructions, except that i t remains to show the

existence of a scrambled subset Sn for which lim inf | \I^x - 1ky\ \ = 0
0 k - »

for all x3 y e SQ . This is a consequence of the following lemma.

LEMMA 2a. Under the conditions of Theorem 2, given e > 0 there

exists a positive integer T(EJ and a nonempty closed subset E of B

k ~
such that T. (E) <= A n S(a; z) for all k > i(z) 3 where a e A is a

fixed point of T.

nl+n2
Proof. Since T (B) 2 A , by the continuity of T there exists

nl+n2
a nonempty compact subset E of B such that T (E) = A . From (1)

of Definition 3 there exists a continuous inverse T. : A -*• A and so by

the Schauder fixed point theorem there is a e A with T~ a = a3 that is

Ta = a . From the definition of partial expansivity there exists

X e (0,1) such that \(Tx)(t) - a\ t y||x-a|| , \i > 1 , for all
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a; e A(a,\) . Now A is closed in A , hence compact. Denote by TA

the restriction of the inverse to A , which is continuous on A . Then

for any x e E(a,\) c A , \\T^ x-a\ | <, \T \ \x-a\ | for each integer

k > 1 . Hence for any e > 0 there exists an integer j = j(x,z) such

that

J e A n S(a;z) c A n

From continuity there exists 6 = 6(.x3z) > 0 such that

(3) T~J(A n int S(x,6)) ̂  A n S(a;z) .

The collection {int S(xj6) : x e E} is an open cover of E . It is

easy to see that E is closed in A , so compact, and thus there is a

finite subcover {int S(x.;6.) : 1 < i < n] . Let \(z) = max j(x.,z)
% v i v

and note that T~. (x) e A n S(a;e) for all x e E . From relation (3)

T~ (E) c A n S(a;c) for all fe ̂ rfej .

Proof Of Theorem 3. As in Theorem 2, most of the construction of

[4] goes through. Only two things need to be checked vis-a-vis the

weakened conditions : first that strict set dilations on closed convex

sets provide the fixed points needed by the construction; secondly that

an analogue of Lemma 2a holds so that SQ exists. These are the substance

of the following two lemmas.

nl+n2
LEMMA 3a. Let g be the continuous inverse of T on A and

let T~ be the continuous inverse of T on A . Then for each integer

k > 0, T~ o g : A -*• A has a fixed point y, e A.

Proof. Since J7 is a strict set dilator, T~. is a strict set
A

-kcontractor, and hence so are 1 and g . A theorem of Darbo [3]

states : if a strict set contraction f leaves invariant a closed,

bounded convex subset C of a Banach space, then f has a fixed point in

C . Thus T~ o g has a fixed point in A .
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LEMMA 3b. Under the conditions of Theorem 33 given e > 0 there

exists a positive integer x = r(e) and a nonempty closed bounded subset

E of B such that T~* (E) c A n S(a;z) for all k > T(C) .

nl+n2Proof. Since T (B) 2 A , there ex i s t s a nonempty closed

nl+n2bounded subset E of B such that T (E) = A . By Darbo's theorem

~-lthere i s a fixed point a e A of the inverse T. of. T on A . As in

~-kLemma 2a, i t follows tha t T. x •*• a as k •*• °° for a l l x e E(a,\) c A

Hence for any e > 0 there e x i s t s an integer j = j(x,z) such tha t

T~jP(x) e A n SCaje.) c A n SCaje) • From continuity there ex i s t s

6 = 6(x,z) > 0 such that

T~J (A n in t S(x;6)) c A n 5fa;ej

The co l lec t ion {int S(xjS) : x e E) i s an open cover of E . Consequently

T~y (int. S(XJSI)) i s an open cover of T. E . So 6 may be chosen so

small t h a t

diam T~°'(int S(xj&)) <. y(T~3' E) + e/2

<• p"*7' y(E) + e/2

where p > 1 is the constant of strict set dilation. Let T = i(c)

= min {j : p~J y(E) < c/2} . Then 2\T (x) e S(a;e) n A for all x e E .

That is, T~^ (it) c A n S(aje) for all k > tfej .

4. Proof of Corollary 2

A general proof involves a daunting number of constants depending

on J t|i , distances between the end points of the intervals J and ,7 ,

distances between slices in C , and on n + n0. However all the ideas

of the proof are clearly displayed in the following specific example.
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COROLLARY 21. Let R(t) = / 2t , 0 < t <, 1/2 , Then there
<• 2-2t, 1/2 < t < 1 .

exist a positive constant constant z> and a positive continuous function
i|i such that the mapping T : 010,1] -»• 010,1] defined by

(4) (Tx)(t) = / J -g^ Us) H(x(s)) ds

is chaotic.

A series of Lemmas (Lemma 2'j, 1 < j < 5) will show that the

operator (4) satisfies the conditions of Theorem 2. At one point only

(Note 2.3) will it be necessary to indicate how and why anything extra

need be done to extend the treatment to the operator defined by (1).

The following notation is used throughout the remainder of this

section : ty(8,t) /

ds , p = 1+q = /J Us) ds,

q2 = Cqr-l)/(r+l) , p2 = pr/(r+l) , A = D
T {17/^/32,

S = Dr{S$/4, 7$/8) , a =

Note that Pj < $ <, p for a l l T 2 0 .

LEMMA 2 . 1 . The slices u {o,B} are compact convex sets.

Proof. Let x, y e IT {a, 6}. and n e iO,l~\ . Clearly

a < nx +(l-w)y < g . Since a:., y are T-representations there are

elements u t u e 0{a>B} such that x = Tu, y = Tu and sox y x y

nx +(l-r\)y = [Q Usyt) (nHfuJs) )+(l-r\)H(u(s)) )ds . Since p ; s ||((,|| < p

for s u i t a b l e r, $ [ | | a | | , | | B | | ] C [1/2,11 and so

n Htu ) + (l-n)B(u ) = A(2-2u )+(l-n)(2-2u ) = H(r\u +(l-r\)u ) , so* y x y x y

nx +(1-J\)y is also a ^-representation and thus in if {a, 8} • For

t, t' eLO,n ,
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xCtl - xCt'l = /J tHZZffjtfi,, H(ux(8))ds

and so the s l i c e LT {a,B} i s equicontinuous since I |ff°w,J I S 2 - 2 | | a | |

x

NOTE 2.1. For the general mapping (1) , define a-, 3, appropriately

so that [ | | Oj | | , | | Bj | | ] c J . Then m i s in jective on [ | | â  | | , | | B̂  | | ]

and there exists v e 0[a , , B-,] such that m(v (t)) - r\m(u (t))
x,y 1 1 x,y x

+ (l-r\)m(u (t)) and this extends the convexity argument of Lemma 2.1 to
y

the general case.

LEMMA 2.2. There exist a positive constant r and a positive
continuous function \ji such that

A c .T(A) , T(B) n A = 0 and f2(B) = A .

Proof. Define A_ = DC{17p/321 7p1/8
ys c A c A+ = DF{17p1/32, 7p/8) ,

B. = l?{3p/4, 7p1/8) c B c B+ = l^{.Zp1/4t 7p/8} .

I t wil l be shown that T(AJ => A , T(B+) n A = 0 and IZ^fB.; => i4 .

We say that T i s isotone on a slice if x^ <. x~ implies that Tx~ <. Ta\, ,

and that T is anti-isotone if x. £ x~ implies that Tx. t Tx* • Now

T i s anti-isotone on a l l the sets A+, B+ for 1 < p <. 8/7 and r

sufficiently large. Moreover, every element of T(A+), T(B+) has a

T-representation and so i t suffices to consider only the images under T
of the "end-functions" of each slice (provided T i s in jective, see
Lemma 2.3). Suppose i|> i s so chosen that 0 < q S 1/3S , and that
r ^ 48 . Then

(T 17p/32)(t) = j2
0 Us,t) (2-17(l+q)/16ids

= (15/16 - 17q/16)$

> 29 W'32 since q £ 1/35 , and
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(T 7pJ/8)(t) = (1/4 + 7/4(r+l) - 7qr/4(v+l)i>

< <j>/2 since r > 48 .

In much the same way T(B ) n A = 0 , and T (B) => A i s only s l ight ly

more complicated because of the second i t e ra t ion .

LEMMA 2.3. T is injeative on A and T is injeative on B .

Proof. Tx = Ty for a l l tt, y e A i f and only i f T X = T y 3 where

(T x) (t) - !2
(5) (TjcJ(t) - )0

But (5) is the Stieltjes transform of u(t) = UCt)x(t), 0 < t < 1 ,

\ 0 3 t > 1

translated by r , and is thus injective ([10], chapter VIII, Theorem 5b).

Since ty is positive, x = y . On the other hand T(B) c u {0,1/2}

and since T is injective on B, Tx = Ty for all x, y e B if and only

if TQx = Tif and the same argument prevails.

NOTE 2.3. In the general case T has the form

Suppose that m is strictly monotonic on J and that u {a}$} is such

that [ | |ot| | , | |B| I ] c I . For x, y e lF{ci,i>}, TQX = Tjy if and only

if m(x(t)) = m(y(t)) on [0,1] by the injectiveness of the Stieltjes

transform. Since m is strictly monotonic on I , x = y . To see that

nl+n2 nl+n2
T is injective on B , use the injectiveness of m on J , the
argument of Note 2.1 and the Stieltjes transform.

LEMMA 2.4. There exists a fixed point a e A of T .

Proof. T is injective and continuous on A , so there is a

continuous inverse T. A •+ A . Since A is compact and convex the
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Schauder fixed point theorem may be applied and, any fixed point of

T~ i s also a fixed point of 1 .

LEMMA 2 .5 . Let r , p be as in Lemma 2.2 and choose X > (2p-)~

Then A(at\l is a nonempty compact subset of A and T is partially

expansive on A . Moreover TCA) => A .

Proof. Since | - | and | | ' | | are continuous, i t is obvious from
the definition of A that i t i s closed in A and thus, by Lemma 2.1,
compact. Moreover, if x e A then

\(Tx)Ct)-aCt)\ = \(Tx)(t)-CTa)(t)\

= 2 j ty(s,t) \x(s)-a(s)\ds (see the definition of A )

\x-a\ | ,

these las t two lines explicitly using the definition of A(a3\) , and note
that <J> > p- so take \i = 2\p~ . I t remains to show that A is nonempty.
Observe that distfa, ZA) > 0. For TD{3S$/64, 13^/16} = A , so

distfa , M) Z P-,/64. I t follows that there exists u e A, u / a , since
2 1we may choose V e C (a,c) with (2p ) < c < 1 and | | V - a \ \ < 1/64;

for then u = TV e A satisfies

\(Tv)Ct) - a(t)\ > et(t)\\v-a\\

> cp | \ v -a \ | > A|\v-a\ | .

5. Proof of Corollary 3

As in the previous section the ideas of the proof are more accessible
in

COROLLARY 3". There exist a positive constant r and a positive
continuous function ty such that the mapping T : 010,11 •
defined by

(6) (Tx)(t) = 3.9(l-x(t)) I1 ty(s,t)x(s)ds
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•is chaotic.

Lemma 3.1 - 3.4 below show that (6) satisfies the conditions of
Theorem 3, and Note 3.2 indicates the extension to the more general form
(2). In addition to, and differing slightly from the notations of Section
4, we say that x has a ^-representation if i t has the form (Lu)(Kv)

TVfor u, i) £ D{O31] and write LT {a,(3} as the total i ty of
/^-representations in ZHoijg} . In what follows Lu = 3-9(l-u) }

Kv = Jo \1>V, A =~co u {'6$, -85$} (the closed convex hul l of Er ) ,

B = ~b~0 IT {•79$; • 83<\>) , tt- = 1 and «„ = 3 . Note tha t in general the

u are not compact.

LEMMA 3 . 1 . There exist re.TR and i|i £ C such that

A c T(A) , T?(B} n A = 0 , T4(B) => A .

Proof. Define

A_=~c~o iF1 {-6p, -851?^ c A c "So iF1 {-6pr • 85p] = A+

B_ ;=~c~o TF {-79p, -83^^ c B ^ ~c~o lF {-79p13 -83p} = B+

and we show tha t T(AJ = A, f2 (B ) n A = 0 and tha t T (Bj = A for

sui table r , if> . As in Lemma 2.2, i t suffices to consider only the images

under T of the end functions of each s l i c e . Now T i s ant i - i sotone on

A+, B+ for 1 < p < f-SS;"-2 , so T(-6p) = (-936 - -468q - l-404q2)$

> -85$ provided 0 < q < -13 , and TC-SSp^ = (-49725 - •S9Sq1
o

- •7225q )<\> < .6$ provided q. > 0 3 that is q < 1/r . The other

results follow in like, if more complicated, fashion.

LEMMA 3.2. Let ty be a positive continuous function and r e JR ,
and define T x = (l-x)Kx . Then T is infective on A .

Proof. From Lemma 2 .3 , K i s in jec t ive on D{1/231}} so i t suffices

to consider the map x •*• xKx . Now xKx - yKy = (Ky + xK) (x-y)

and this can only be zero on appropriate slices A if x = y
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NOTE 3 .2 . Ci) The calculat ions of Lemma 3.1 show tha t T(B) ,

1^(B) are subsets of D{1/231) , and T3(B) of DiO^l/2} . T is
4

i n j e c t i y e on these images of B and so T i s in jec t ive on B .

Cii) I f K has nonlinear kernel m(x(s)) , then

xKx - yKy = Cx-y)Ky + x(Kx-Ky) . As in Note 2.3 th i s i s zero, on s l i c e s

D{a, &} for which m i s s t r i c t l y monotonic on [ | | a | | j | | f } | | ] , i f and

only i f x f= y

LEMMA 3.3. Let r , pa q and q^ be as in Lemma S.I . Then T is

a striat set dilator on A .

Proof . The f i r s t p a r t of Theorem 1 i s s a t i s f i e d wi th v = 3-9 and

v = inf {(Kx)Ct) : x e D{-65^} -85^}, 0 <, t <, 1} > -65-p2^ t

uv ^ 2-SZSp^ > 1 .

LEMMA 3.4. There exists a fixed point a e A of T and T is

partially expansive on A .

Proof. T i s continuous and injective on the closed convex set A

and so there is a continuous inverse T~. : A •* A . But T is a s t r ic t

set dilator on A and thus T. is a s t r ic t set contractor. Again using

Darbo's fixed point theorem (see Lemma 3a) , T, a = a for some a e A ,

that i s Ta = a . From the observation that TDi-69^^ •80$} => A , i t

f o l l o w s t h a t a e D{-69<t>3 • S0<j>} , | | £ a | | s 3-9 svp(l--65$) < S'9(-31—S9q1).
0<t<l

Since \\K\\ < p , yv - | | L a | | \\K\\ > 2-535p^ - 1-209 > 1 , and T i s

p a r t i a l l y expansive by the second par t of Theorem 1.
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