THE ALGEBRAIC CLOSURE IN FUNCTION FIELDS OF QUADRATIC FORMS IN CHARACTERISTIC 2

Hamza Ahmad

Abstract

For a field k of characteristic not two, it is known that k is algebraically closed in the function field of any (non-degenerate) quadratic form in three or more variables. In this note we consider fields of characteristic two and decide when k is algebraically closed in a function field of a quadratic \boldsymbol{k}-form. For quadratic forms in three variables this has recently been done by Ohm.

1. Introduction

Let k be a field of characteistic not two. Then k is algebraically closed in the function field of any (non-degenerate) quadratic k-form in three or more variables. This is because such forms are absolutely irreducible (that is, they remain irreducible over the algebraic closure of k) and therefore their function fields are regular (see [3, p.18, Theorem 5]).

In this note we take k to be a field of characteristic two, and Q to be an irreducible quadratic k-form. We answer the following.

QUESTION: When is k algebraically closed in the function field of Q ? For function fields of conics, the question has been answered by Ohm in [2, 2.8-2.12].

Terminology and Preliminaries: By a quadratic k-form $Q(X)$ we mean a homogeneous polynomial of degree 2 in the variables $X=\left(X_{1}, \ldots, X_{n}\right)$ with coefficients from k. If Q is irreducible, then by the function field $k(Q)$ of Q over k we mean the field of fractions of the integral domain $k[X] /(Q)$, where (Q) denotes the ideal in $k[X]$ generated by the polynomial Q. Therefore an extension K / k is (isomorphic to) the function field of $Q\left(X_{0}, \ldots, X_{n}\right)$ if and only if $K=k\left(x_{0}, \ldots, x_{n}\right)$ such that $Q(x)=0$ and the transcendence degree of K / k, abbreviated $\operatorname{dt}(K / k)$, equals n. If Q^{\prime} is obtained from Q by means of an invertible linear change of variables, then $k(Q)$ and $k\left(Q^{\prime}\right)$ are k-isomorphic.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

Over a field k of characteristic two, any quadratic k-form can be written (after an invertible linear change of variables) as

$$
\begin{equation*}
Q(X, Y, Z)=\sum_{i=1}^{r}\left(a_{i} X_{i}^{2}+X_{i} Y_{i}+b_{i} Y_{i}^{2}\right)+\sum_{i=1}^{s} c_{i} Z_{i}^{2} \tag{*}
\end{equation*}
$$

where $a_{i}, b_{i}, c_{i} \in k$ and $r, s \geqslant 0$ (see [1]).

2. The Results

Remark 1. Let Q be as in (*) above. Direct calculation shows that
(1) Q is reducible if and only if either

$$
\text { i. } r=0 \text { and } c_{i} / c_{j} \in k^{2} \text { for } 1 \leqslant i, j \leqslant s \text { and } c_{j} \neq 0 \text {, or }
$$

ii. $s=0$ and $r=1$ and $a_{1} T^{2}+T+b_{1}$ is reducible in $k[T]$.
(2) Q is absolutely irreducible if and only if either $r \geqslant 2$, or $r=1$ and $c_{i} \neq 0$ for some i.
If Q is absolutely irreducible, then its function field is regular and therefore k is algebraically closed in $k(Q)$. If $r=1$ and $c_{i}=0$ for $1 \leqslant i \leqslant s$, then $Q=$ $a_{1} X^{2}+X Y+b_{1} Y^{2}$ and therefore k is not algebraically closed in $k(Q)$. It remains to discuss the question when $r=0$; that is, when Q is diagonal. This is done in our theorem below.

Remark 2. Let k be a field of characteristic 2 , and $a_{1}, \ldots, a_{n} \in k$. Let z_{1}, \ldots, z_{n} be algebraically independent elements over k. Then the polynomial

$$
Z^{2}+\left(a_{1} z_{1}^{2}+\cdots+a_{n} z_{n}^{2}\right)
$$

in one variable Z over $L:=k\left(z_{1}, \ldots, z_{n}\right)$ is reducible if and only if $\sqrt{a_{i}} \in k$ for all $1 \leqslant i \leqslant n$.

Proof: The L-polynomial $Z^{2}+\left(a_{1} z_{1}^{2}+\cdots+a_{n} z_{n}^{2}\right)$ is reducible over L if and only if $a_{1} z_{1}^{2}+\cdots+a_{n} z_{n}^{2}$ is a square in L. That is, $\left(a_{1} z_{1}^{2}+\cdots+a_{n} z_{n}^{2}\right) g^{2}=f^{2}$ where f and g and k-polynomials in (the algebraically independent elements) z_{1}, \ldots, z_{n}. Comparing the leading coefficients of z_{i} in the last equation, we have $a_{i} \in k^{2}$.

The following lemma will serve as the inductive step for the proof of our theorem and is due to Ohm (see [2, 2.12]).

Lemma. Let k be a field of characteristic 2 and let $Q(X, Y, Z)=X^{2}+a Y^{2}+$ $b Z^{2}$ be an irreducible k-form such that k is not algebraically closed in $k(Q)$. Then $[k(\sqrt{a}, \sqrt{b}): k]=2$.

Proof: The function field $k(Q)$ equals $k(y, z)\left(\sqrt{\left(a y^{2}+b z^{2}\right)}\right)$ with y, z algebraically independent over k. Set $\alpha=\sqrt{\left(a y^{2}+b z^{2}\right)}$. By hypothesis there exists
$d \in k(Q)$ algebraic over k and $d \notin k$. Since $k(y, z)$ is pure transcendental over $k, d \notin k(y, z)$. Therefore $k(Q)=k(y, z)(\alpha)=k(d)(y, z)$. In particular, $[k(d): k]=2$. Also, the polynomial $X^{2}+\left(a y^{2}+b z^{2}\right)$ is reducible over $k(d)(y, z)$. By Remark 2, we have $\sqrt{a}, \sqrt{b} \in k(d)$; hence $[k(\sqrt{a}, \sqrt{b}): k]=[k(d): k]=2$.

Theorem. Let k be a field of characteristic 2 and let $Q(X)=X_{0}^{2}+a_{1} X_{1}^{2}+\cdots+$ $a_{n} X_{n}^{2}$ be an irreducible quadratic k-form. Then k is algebraically closed in $k(Q)$ if and only if $\left[k\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \ldots, \sqrt{a_{n}}\right): k\right] \geqslant 4$.

Proof: As in the introduction, $k(Q)=k\left(x_{0}, \ldots, x_{n}\right)$ such that

$$
\begin{equation*}
x_{0}^{2}+a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}=0 \tag{1}
\end{equation*}
$$

and the transcendence degree of $k\left(x_{0}, \ldots, x_{n}\right) / k$ equals n. For the rest of the proof let $L:=k\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \ldots, \sqrt{a_{n}}\right)$.

For $n=1$, the k-polynomial $T^{2}+a_{1}$ has a root in $k(Q)$, hence the theorem is true. Now, let $n>1$. Assume first that $[L: k]=2$. By symmetry, we may assume that $\sqrt{a_{1}} \notin k$, and for $i>1, \sqrt{a_{i}}=\alpha_{i}+\beta_{i} \sqrt{a_{1}}$ where $\alpha_{i}, \beta_{i} \in k$. Substituting in (1) we get
$0=\left(x_{0}+\alpha_{2} x_{2}+\cdots+\alpha_{n-1} x_{n-1}+\alpha_{n} x_{n}\right)+\sqrt{a_{1}}\left(x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n-1} x_{n-1}+\beta_{n} x_{n}\right)$.
If $x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\cdots+\beta_{n} x_{n}=0$, then $x_{0}+a_{2} x_{2}+\alpha_{3} x_{3}+\cdots+\alpha_{n} x_{n}=0$ and therefore $x_{1}, x_{2} \in k\left(x_{2}, \ldots, x_{n}\right)$. Hence $\operatorname{dt}(k(Q) / k) \leqslant n-1$; a contradiction. So, $x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\cdots+\beta_{n} x_{n} \neq 0$. Then the last displayed equation implies that

$$
\sqrt{a_{1}}=\frac{x_{0}+\alpha_{2} x_{2}+\cdots+\alpha_{n-1} x_{n-1}+\alpha_{n} x_{n}}{x_{1}+\beta_{2} x_{2}+\cdots+\beta_{n-1} x_{n-1}+\beta_{n} x_{n}} \in k(Q) .
$$

Thus $\sqrt{a_{1}} \in k(Q)$ and $\sqrt{a_{1}} \notin k$. Therefore k is not algebraically closed in $k(Q)$.
Now assume that $[L: k] \geqslant 4$. We want to show that in this case k is algebraically closed in $k(Q)$. We use induction on n. The case $n=2$ follows from the Lemma above. So assume that $n>2$.

We first treat the case $[L: k]=4$. Without loss of generality, we may assume that $L=k\left(\sqrt{a_{1}}, \sqrt{a_{2}}\right)$. Since $n>2$, we have $\sqrt{a_{n}} \in k\left(\sqrt{a_{1}}, \sqrt{a_{2}}\right)$. Therefore $\sqrt{a_{n}}=\alpha+\beta \sqrt{a_{1}}+\gamma \sqrt{a_{2}}+\delta \sqrt{a_{1} a_{2}}$, which implies that $a_{n}=\alpha^{2}+\beta^{2} a_{1}+\gamma^{2} a_{2}+\delta^{2} a_{1} a_{2}$ where $\alpha, \beta, \gamma, \delta \in k$. Substituting in (1), we get

$$
\begin{align*}
0= & \left(x_{0}+\alpha x_{n}\right)^{2}+a_{1}\left(x_{1}+\beta x_{n}\right)^{2}+a_{2}\left(x_{2}+\gamma x_{n}\right)^{2}+a_{3} x_{3}^{2} \\
& \quad+\cdots+a_{n-1} x^{2}+a_{1} a_{2} \delta^{2} x_{n}^{2} \\
= & y_{0}^{2}+a_{1} y_{1}^{2}+a_{2} y_{2}^{2}+a_{3} y_{3}^{2}+\cdots+a_{n-1} y_{n-1}^{2}+a_{1} a_{2} \delta^{2} y_{n}^{2} \tag{2}
\end{align*}
$$

where $y_{0}=x_{0}+\alpha x_{n}, y_{1}=x_{1}+\beta x_{n}, y_{2}=x_{2}+\gamma x_{n}$, and $y_{i}=x_{i}, i \geqslant 3$. Note that $k(Q)=k\left(x_{0}, \ldots, x_{n}\right)=k\left(y_{0}, \ldots, y_{n}\right)$. In particular, the transcendence degree of the field $K:=k\left(y_{0}, \ldots, y_{n-1}\right) / k \geqslant n-1$.

If $\delta=0$, then from equation (2) we conclude that $\operatorname{dt}(K / k)=n-1$ and that K is the function field of the quadratic form $Y_{0}^{2}+a_{1} Y_{1}^{2}+a_{2} Y_{2}^{2}+a_{3} Y_{3}^{2}+$ $\cdots+a_{n-1} Y_{n-1}^{2}$. Therefore by the inductive hypothesis, k is algebraically closed in K since $\left[k\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \cdots, \sqrt{a_{n-1}}\right): k\right]=4$. Now since $k(Q)=K\left(y_{n}\right)$ and $\operatorname{dt}(k(Q) / k)=1+d t(K / k), y_{n}$ is transcentdental over K. Therefore k is algebraically closed in $K\left(y_{n}\right)=k(Q)$.

On the other hand, if $\delta \neq 0$, then from (2) we have

$$
\begin{equation*}
0=y_{0}^{2}+a_{1} y_{1}^{2}+a_{2}\left(y_{2}^{2}+a_{1} \delta^{2} y_{n}^{2}\right)+a_{3} y_{3}^{2}+\cdots+a_{n-1} y_{n-1}^{2} \tag{3}
\end{equation*}
$$

If $y_{2}^{2}+a_{1} \delta^{2} y_{n}^{2}=0$, then y_{2} is algebraic over $k\left(y_{n}\right)$, and equation (3) implies that y_{0} is algebraic over $k\left(y_{1}, \ldots, y_{n-1}\right)$. Hence y_{0} and y_{2} are algebraic over $k\left(y_{1}, y_{3}, \ldots, y_{n-1}\right)$. This implies that $\operatorname{dt}\left(k\left(y_{0}, \ldots, y_{n}\right) / k\right) \leqslant n-1$. But $k(Q)=k\left(y_{0}, \ldots, y_{n}\right)$ has transcendence degree n, a contradiction. Therefore $y_{2}^{2}+a_{1} \delta^{2} y_{n}^{2} \neq 0$. Now by setting $z_{n}=\delta y_{n} / y_{2}, z_{0}=\left(y_{0}+a_{1} y_{1} z_{n}\right) /\left(1+a_{1} z_{n}^{2}\right), z_{1}=\left(y_{1}+y_{0} z_{n}\right) /\left(1+a_{1} z_{n}^{2}\right), z_{2}=y_{2}$, and for $3 \leqslant i<n, z_{i}=y_{i}$ and $A_{i}=a_{i} /\left(1+a_{1} z_{n}^{2}\right) \in k\left(z_{n}\right)$, we have from equation (3)

$$
0=\left(1+a_{1} z_{n}^{2}\right)\left(z_{0}^{2}+a_{1} z_{1}^{2}+a_{2} z_{2}^{2}+A_{3} z_{3}^{2}+\cdots+A_{n-1} z_{n-1}^{2}\right)
$$

and therefore

$$
0=z_{0}^{2}+a_{1} z_{1}^{2}+a_{2} z_{2}^{2}+A_{3} z_{3}^{2}+\cdots+A_{n-1} z_{n-1}^{2}
$$

Also note that $k(Q)=k\left(z_{n}\right)\left(z_{0}, \ldots, z_{n-1}\right)$ and the transcendence degree of $k(Q) / k\left(z_{n}\right)$ equals $n-1$. Therefore $k(Q) / k\left(z_{n}\right)$ is the function field of the $k\left(z_{n}\right)$-quadratic form

$$
Z_{0}^{2}+a_{1} Z_{1}^{2}+a_{2} Z_{2}^{2}+A_{3} Z_{3}^{2}+\cdots+A_{n-1} Z_{n-1}^{2}
$$

Since $\left[k\left(z_{n}\right)\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \sqrt{A_{3}}, \ldots, \sqrt{A_{n-1}}\right): k\left(z_{n}\right)\right] \geqslant 4$, the inductive hypothesis implies that $k\left(z_{n}\right)$ is algebraically closed in $k\left(z_{n}\right)\left(z_{0}, \ldots, z_{n-1}\right)=k(Q)$. In particular, k is algebraically closed in $k(Q)$. This concludes the case $[L: k]=4$.

To finish the proof of the theorem, it is left to show that K is algebraically closed in $k(Q)$ when $[L: k] \geqslant 8$. In this case we may assume, without loss of generality, that $\sqrt{a_{2}} \notin k\left(\sqrt{a_{1}}\right) \neq k$. Let $x=x_{0}-\sqrt{a_{1}} x_{1} \in k(Q)\left(\sqrt{a_{1}}\right)$. Then from equation (1) we have

$$
0=x^{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{n}^{2}
$$

and $\operatorname{dt}\left(k\left(\sqrt{a_{1}}\right)\left(x, x_{2}, \ldots, x_{n}\right) / k\left(\sqrt{a_{1}}\right)\right)=n-1$. Thus $k\left(\sqrt{a_{1}}\right)\left(x, x_{2}, \ldots, x_{n}\right)$ is the function field of the $k\left(\sqrt{a_{1}}\right)$-form $X^{2}+a_{2} X_{2}^{2}+\cdots+a_{n} X_{n}^{2}$. By the inductive hypothesis, $k\left(\sqrt{a_{1}}\right)$ is algebraically closed in $k\left(\sqrt{a_{1}}\right)\left(x, x_{2}, \ldots, x_{n}\right)$ because
$\left[k\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \ldots, \sqrt{a_{n}}\right): k\left(\sqrt{a_{1}}\right)\right] \geqslant 4$. Since $k\left(\sqrt{a_{1}}\right)\left(x, x_{2}, \ldots, x_{n}\right)\left(x_{1}\right)=k\left(\sqrt{a_{1}}\right)$ $\left(x_{0}, \ldots, x_{n}\right)$ and x_{1} is transcendental over $k\left(\sqrt{a_{1}}\right)\left(x, x_{2}, \ldots, x_{n}\right)$, it follows that $k\left(\sqrt{a_{1}}\right)$ is algebraically closed in $k\left(\sqrt{a_{1}}\right)\left(x_{0}, \ldots, x_{n}\right)$. By symmetry, $k\left(\sqrt{a_{2}}\right)$ is also algebraically closed in $k\left(\sqrt{a_{2}}\right)\left(x_{0}, \ldots, x_{n}\right)$. Now if $d \in k\left(x_{0}, \ldots, x_{n}\right)$ is algebraic over k (and thus algebraic over $k\left(\sqrt{a_{1}}\right)$ and $k\left(\sqrt{a_{2}}\right)$), then $d \in k\left(\sqrt{a_{1}}\right)$ and $d \in k\left(\sqrt{a_{2}}\right)$. Thus $d \in k$. Thus k is algebraically closed in $k(Q)$.

References

[1] C. Arf, 'Untersuchungen über quadratische Formen in Körpern der Charakteristik 2', J. Reine Angew Math. 183 (1941), 148-167.
[2] J. Ohm, 'Function fields of conics, a theorem of Amitsur-MacRae, and a problem of Zariski', in Algebraic geometry and its applications, (C. Bajaj, Editor) (Springer-Verlag, Berlin, Heidelberg, New York, 1994), pp. 333-363.
[3] A. Weil, Foundations of algebraic geometry, Amer. Math. Soc. Colloq. Publ. 29 (American Mathematical Society, Providence, RI, 1962).

Department of Mathematics
Yarmouk University
Irbid
Jordan

[^0]: Received 18th April, 1996.
 The author wishes to thank Professor Ohm for his encouragement to work on the question and for many valuable discussions.

