
1 Geometry of Points, Lines, and
Planes

. . . and then geometry will become what
geometry ought to be.

Mr. Querulous
Ball’s “A Dynamical Parable” (1887)

1.1 Introduction

Points, lines, and planes are the fundamental elements of spatial geometry. A point can
be thought of as a location in 3D space, and its coordinates have units of length. A line
can be considered to be an infinite collection of points defined by a direction (which
is a dimensionless vector) that passes through some given point (which has units of
meters). A plane is a two-dimensional set of points that can be defined, for example,
by three points or by a line and one point. This chapter introduces the concept of
homogeneous coordinates as applied to points, lines, and planes. The homogeneous
coordinates of each will be defined together with the equation for each. The equation
of a point, line, or plane will be shown to be a vector equation where any vector that
satisfies that equation is a member of that point, line, or plane.

1.2 The Position Vector of a Point

The position vector to a point Q1 from a reference point O will be referred to as r1

and can be expressed in the form

r1 = x1 i + y1 j + z1 k

w1
(1.1)

or

r1 w1 = SO1, (1.2)

where SO1 = x1 i + y1 j + z1 k and the components of the vector SO1 have units
of length. The term w1 is dimensionless. In Figure 1.1 it is assumed that w1 = 1 and
(x1, y1, z1) are the usual Cartesian coordinates for the point Q1. The coordinates r of
some general point Q may be expressed as
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2 1 Geometry of Points, Lines, and Planes

Figure 1.1 Coordinates of a point

r w = SO , (1.3)

where SO = x i + y j + z k. The subscript O has been introduced to signify that SO

is origin dependent. Clearly, if we choose some other reference point, the actual point
Q would not change. However, the coordinates (x, y, z), which determine Q, would
change. The ratios x/w, y/w, and z/w are three independent scalars and, therefore,
there are ∞3 points in space.

It is interesting to consider the cases where SO = 0 and where w = 0. From (1.3)

|r| = |SO |
|w| , (1.4)

where the notation || denotes absolute magnitude. From (1.4), when |SO | = 0, |r| = 0
and Q coincides with the reference point O. When |w| = 0, |r| is infinite and the point
Q is said to be at infinity in the direction parallel to SO . The introduction of w makes
it possible to designate a point by the array of four coordinates (w; x, y, z)1 and is a
means of introducing the concept of infinity, or more specifically infinite points, into
the geometry without introducing the symbol ∞. Any point at infinity is designated
by the coordinates (0; x, y, z). It is important to recognize that |SO | and |w| cannot
be zero simultaneously since |r| would be indeterminate. In other words, the array
(0; 0, 0, 0) is not permitted.

It is of interest to examine the geometry of points labeled with the four coordinates
(w; x, y, z). A number of readers will know that this geometry is called projective
geometry, which is the subject of many texts (see Coxeter, Meserve, Semple and Knee-
bone, Faulkner, and Scott to name a few.2) Firstly, the four coordinates (w; x, y, z) are
homogeneous since from (1.3) (λw; λSO ), where λ is a non-zero scalar, determine the

1 The semi-colon is introduced into the notation to signify that the dimension of w is different from
that of x, y, and z.

2 Coxeter (2003), Meserve (2010), Semple and Kneebone (1998), Faulkner (2006), and Scott (1894).
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1.3 The Equation of a Plane 3

Figure 1.2 Tetrahedron of reference

same point. For instance, the coordinates (1; 2, 3, 4), (2; 4, 6, 8), and (−2; −4, −6, −8),
where the last three coordinates have the same unit of length, all determine the same
point. Further, the homogeneous coordinates for the origin of this coordinate system
are (w; 0, 0, 0) or (1; 0, 0, 0). The homogeneous coordinates for points on the x, y,
and z axes are, respectively, (w; x, 0, 0), (w; 0, y, 0), and (w; 0, 0, z). Therefore, the
homogeneous coordinates for points at infinity on the x, y, and z axes are (0; x, 0, 0),
(0; 0, y, 0), and (0; 0, 0, z) or (0; 1, 0, 0), (0; 0, 1, 0), and (0; 0, 0, 1) or (0; −1, 0, 0),
(0; 0, −1, 0), and (0; 0, 0, −1). These three points together with the origin form the
four vertices of the so-called tetrahedron of reference, illustrated in Figure 1.2.

The projective space of Figure 1.2 is radically different from the Euclidean space
labeled by the x, y, and z Cartesian coordinate frame in Figure 1.1. There can be no
calibration of the x, y, and z axes in Figure 1.2, i.e., there is no concept of a unit
length of measure or of angle. The four coordinates (w; x, y, z) have no dimensions,
and the semi-colon is somewhat redundant in projective space. It will, however, be
retained simply to signify the order in which the coordinates are written. There are no
parallel lines that do not meet. Lines that are parallel in the Euclidean sense meet in
the projective space at points on the plane at infinity, which can be drawn through the
three points (0; 1, 0, 0), (0; 0, 1, 0), and (0; 0, 0, 1) at infinity on the x, y, and z axes.
This brief discussion is sufficient for the purposes of this text. It remains to label the
four planes of the tetrahedron of reference with their homogeneous plane coordinates
and to label the six edges of the tetrahedron with their homogeneous line coordinates.
The homogeneous coordinates of planes and lines are defined in the subsequent two
sections of this chapter.

1.3 The Equation of a Plane

The equation of a plane through a point Q1 with coordinates (x1, y1, z1) and perpen-
dicular to a vector S = A i + B j + C k (see Figure 1.3) can be expressed in the form
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4 1 Geometry of Points, Lines, and Planes

Figure 1.3 Determination of a plane

(r − r1) · S = 0, (1.5)

where r = x i +y j +z k is a vector from the origin to any general point on the plane,
and r1 is the vector from the origin to the point Q1. The components of the vectors r

and r1 have units of length, while the components of S are dimensionless. Equation
(1.5) may be written as

r · S + DO = Ax + B y + C z + DO = 0, (1.6)

where

DO = −r1 · S = −(Ax1 + B y1 + C z1). (1.7)

The scalar value DO has units of length and is origin dependent.
The coordinate of a plane will be written as [DO ; A, B, C], where square brack-

ets are now used to distinguish these values from the coordinates of a point where
parentheses were used. The array

[DO ; A, B, C]

represents the homogeneous coordinates of the plane since from (1.6) the coordi-
nates of

[λDO ; λA, λB, λC],

where λ is any non-zero scalar, determine the same plane. From (1.6) it is apparent
that the dimension of DO is different from those of A, B, and C, and a semi-colon is
introduced in the array to signify this.
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1.3 The Equation of a Plane 5

Dividing (1.6) by DO yields

A

DO

x + B

DO

y + C

DO

z + 1 = 0. (1.8)

The ratios A
DO

, B
DO

, and C
DO

are three independent scalars and, therefore, there are ∞3

planes in space.
The distance of the plane from the reference point O is determined by the length

of the vector p, which extends from point O to a point on the plane such that p is
perpendicular to the plane. Since the vectors p and S must be parallel,

p × S = 0. (1.9)

Further, since p is a vector to a point on the plane, it must satisfy (1.6) and

p · S = −DO . (1.10)

Performing a cross product of S with (1.9) yields

S × (p × S) = 0. (1.11)

Expanding this expression3 yields

p (S · S) − S (p · S) = 0. (1.12)

Using (1.10) to substitute for p · S and then solving for p gives

p = −DOS

S · S
. (1.13)

The perpendicular distance of the plane from the origin, i.e., the magnitude of p is,
therefore,

|p| = |−DO | |S|
|S| |S| = |−DO |

|S| . (1.14)

Clearly, when |S| = 1, the triple (A, B, C) are the direction cosines of a vector nor-
mal to the plane, and |DO | is the perpendicular distance of the plane from the reference
point O. Further, when DO = 0, the equation of the plane, i.e., (1.6), becomes

Ax + B y + C z = 0, (1.15)

and the plane passes through O.
The yz plane passes through the origin, and its normal vector is parallel to the x

axis. The coordinates for this plane are, thus, [0; A, 0, 0] or [0; 1, 0, 0]. Similarly, the
coordinates for the zx plane and the xy plane are [0; 0, 1, 0] and [0; 0, 0, 1], respec-
tively. These three planes together with the plane at infinity for which S = 0 and
whose coordinates4 are therefore [D; 0, 0, 0] or [1; 0, 0, 0] are labeled in Figure 1.4.
All points at infinity lie on this plane.

3 The product a × (b × c) is equal to (a · c) b − (a · b) c.
4 From here on the subscript O will be omitted from, D, although it should be remembered that the

value of D is, indeed, origin dependent.
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6 1 Geometry of Points, Lines, and Planes

Figure 1.4 Planes and points on the tetrahedron of reference

The plane at infinity, [1; 0, 0, 0], can also be thought of as the outer surface of a
sphere of infinite radius centered at the origin of the reference system. This surface,
with its infinite radius of curvature, would appear as a plane to an observer located at
a point on this plane.

It is important to recognize that in three-dimensional projective space a point and
a plane are analogous, or, more specifically, they are dual. Sets of four homoge-
neous coordinates (w; x, y, z) and [D; A, B, C] define points and planes in projective
space, and an ∞3 of both points and planes fill space. A plane can be drawn through
three non-collinear points. This statement can be rephrased for a point by making the
appropriate grammatical changes in order for it to make sense. The dual statement
is that three non-parallel planes meet or intersect at a point. It is always possible to
formulate (prove) a proposition (theorem) for one dual element and to simply state
a corresponding proposition (theorem) for the corresponding dual element. A further
two examples are a line is the join of two points which is dual to a line is the meet of
two planes and a line intersects a plane (which does not contain the line) in a point
which is dual to a line and any point not on the line determine a plane.

Finally, Klein considered the point and the plane to be equally important (see Klein
[1939]). One can write their incidence relationship in the form

D w + Ax + B y + C z = 0. (1.16)

The point coordinates (w; x, y, z) and plane coordinates [D; A, B, C] play equal roles in
(1.16). When the coordinates [D; A, B, C] are specified, (1.16) expresses the condition
that ∞2 points lie on a plane. When the coordinates (w; x, y, z) are specified, (1.16)
expresses the condition that an ∞2 (a bundle) of planes passes through the point.

1.3.1 Sample Problem

The coordinates of a plane are given as [−8 ; 2, −3, 5], where the first term has units
of meters and the last three are dimensionless. Determine the coordinates of a point
on the plane.
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1.3 The Equation of a Plane 7

The point to be determined will be written as

r = rx i + ry j + rz k. (1.17)

This point must satisfy the equation of the plane and, thus,

r · S + DO = 0, (1.18)

2 rx − 3 ry + 5 rz − 8 = 0. (1.19)

Equation (1.19) is one equation in three unknowns. Free choices may be made for two
of the point coordinate values, and the third may then determined from (1.19). For
example, choosing rx = 0 and ry = −1 and solving for rz gives rz = 1 and, thus, the
point [1; 0, −1, 1], where the first term is dimensionless and the last three have units
of meters, is on the plane.

1.3.2 Sample Problem

(i) Determine the coordinates of the plane that passes through the three points
P = (1; 3, 4, 1), Q = (1; −1, 2, 4), and R = (1; 3, 2, 2), where the Cartesian coordi-
nates are give in units of meters.

The direction vector from point P to point Q may be written as

Spq = −4 i − 2 j + 3 k, (1.20)

and the direction vector form point P to point R may be written as

Spr = −2 j + 1 k, (1.21)

where these direction vectors are dimensionless. The vector perpendicular to the plane,
S, may be calculated as

S = Spq × Spr = 4 i + 4 j + 8 k, (1.22)

where again the direction vector is dimensionless. From (1.7)

DO = −r1 · S, (1.23)

where r1 can be any of the three points on the plane. Using point P gives

DO = −(3i + 4j + 1k) · (4i + 4j + 8k) = −36 m. (1.24)

Thus, the coordinates of the plane may be written as

[DO ; S] = [−36; 4, 4, 8], (1.25)

where the first component has units of meters and the remaining three are dimension-
less.
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8 1 Geometry of Points, Lines, and Planes

(ii) Determine the distance of this plane from the origin.
The vector from the origin that is perpendicular to the plane can be determined

from (1.13) as

p = −DOS

S · S
= 36 (4i + 4j + 8k)

42 + 42 + 82
= 1.5i + 1.5j + 3k, (1.26)

where the components of the vector have units of meters. The distance of the plane
from the origin is equal to the magnitude of this vector, i.e.,

|p| = 3.674 m. (1.27)

(iii) Determine the Z coordinate of the point on the plane whose x and y coordi-
nate values are 6 m and −10 m, respectively.

The point on the plane can be written as

r4 = 6i − 10j + z4k. (1.28)

Inserting this point into (1.6), the equation of the plane, yields

r4 · S + DO = 0,

(6i − 10j + z4k) · (4i + 4j + 8k) − 36 = 0. (1.29)

Solving for z4 gives

z4 = 6.5 m. (1.30)

1.4 Projection of a Point onto a Plane

Often it is desired to find the point on a plane that is closest to a given point. Figure 1.5
shows a plane whose coordinates are given as [DO ; S] and a given point Q1 whose
coordinates are defined by the vector r1. The objective is to determine the coordinates
of the point Qp, which is the point on the plane that is closest to the point Q1. The
coordinates of point Qp are defined by the vector rp.

The vector from point Qp to Q1 is labeled as rp→1, and it is apparent that this
vector must be parallel to S. Thus, rp→1 is some scalar multiple of S and can be
written as

rp→1 = d S. (1.31)

Further it can be seen from the figure that

rp = r1 − rp→1 = r1 − d S. (1.32)

Since point Qp lies in the given plane, the vector rp must satisfy the equation of the
plane and, thus,

(r1 − d S) · S + DO = 0. (1.33)

Solving for d gives

d = r1 · S + DO

S · S
. (1.34)
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1.5 The Equation of a Line 9

Figure 1.5 Projection of a point onto a plane

Substituting (1.34) into (1.32) gives the result

rp = r1 −
(

r1 · S + DO

S · S

)
S. (1.35)

It is of note that the distance from point Q1 to the plane is obtained as the magnitude
of (1.31) as

|rp→1| = d |S|, (1.36)

and a positive value for d indicates that the point lies on the side of the plane pointed
to by the direction of S.

1.5 The Equation of a Line

The join of two distinct points r1 (x1, y1, z1) and r2 (x2, y2, z2), where the elements
of r1 and r2 have units of length, determine a line. The vector S whose direction is
along the line may be written as

S = r2 − r1. (1.37)

Direction is a unitless concept and, thus, the elements of S are dimensionless. The
vector S may alternatively be expressed as

S = L i + M j + N k, (1.38)
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10 1 Geometry of Points, Lines, and Planes

where L = x2 − x1, M = y2 − y1, and N = z2 − z1 are defined as the dimensionless
direction ratios. From (1.38) the direction ratios (L, M , N ) are related to |S| by

L2 + M2 + N2 = |S|2. (1.39)

Often, L, M , and N are expressed in the form

L = x2 − x1

|S| , M = y2 − y1

|S| , N = z2 − z1

|S| , (1.40)

which are unit direction ratios or direction cosines of the line. In this case, (1.39)
reduces to

L2 + M2 + N2 = 1. (1.41)

Letting r designate a vector from the origin to any general point on the line (see
Figure 1.6), it is apparent that the vector r −r1 is parallel to S. Thus, it may be written
that

(r − r1) × S = 0. (1.42)

This can be expressed in the form

r × S = SOL, (1.43)

where

SOL = r1 × S (1.44)

is the moment of the line about the origin O, which is clearly origin dependent. The
elements of the vector SOL have units of length. Further, since SOL = r1 ×S, the
vectors S and SOL are perpendicular and, as such, satisfy the orthogonality condition

Figure 1.6 Determination of a line
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1.5 The Equation of a Line 11

S · SOL = 0. (1.45)

The coordinates of a line will be written as {S; SOL} and will be referred to as
the Plücker coordinates5 of the line. The semi-colon is introduced to signify that the
dimensions differ between the first three coordinates and the last three. The coor-
dinates {S; SOL} are homogeneous since from (1.43) the coordinates {λS; λSOL},
where λ is a non-zero scalar, determine the same line.

Expanding (1.44) yields

SOL =
∣∣∣∣∣∣
i j k

x1 y1 z1

L M N

∣∣∣∣∣∣ , (1.46)

which can be expressed in the form

SOL = P i + Q j + R k, (1.47)

where

P = y1 N − z1 M , (1.48)

Q = z1 L − x1 N ,

R = x1 M − y1 L.

From (1.38) and (1.47) the orthogonality condition S · SOL = 0 can be expressed
in the form

LP + M Q + N R = 0. (1.49)

The six Plücker coordinates of the line {L, M , N ; P , Q, R} are illustrated in
Figure 1.7. Note that for the case shown in the figure, L will have a negative value.
Unitized coordinates for a line can be obtained by imposing the constraint that |S| = 1.
The Plücker coordinates must thus satisfy equations (1.41) and (1.49) and, therefore,
only four of the six scalars L, M , N , P , Q, and R are independent. It follows that
there are ∞4 lines in space.6

Equations (1.37) and (1.44) can be used to obtain the Plücker coordinates of a line
when given two points on the line. It is also important to be able to determine a point
on the line when given the Plücker coordinates of the line. Suppose that the Plücker
coordinates {L, M , N ; P , Q, R} of a line are given. Let r = xi + yj + zk represent a
vector to some point on the line. Thus, r must satisfy (1.43) and

(x i + y j + z k) × (L i + M j + N k) = P i + Q j + R k. (1.50)

Restating the cross product on the left side of this equation gives∣∣∣∣∣∣
i j k

x y z

L M N

∣∣∣∣∣∣ = P i + Q j + R k. (1.51)

5 See Plücker (1865).
6 Systems of lines and their properties are described in Hunt (1978) (pp. 310–330), which contains an

extensive bibliography on the subject. A line series (∞1), congruence (∞2), and complex (∞3) are
discussed.
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12 1 Geometry of Points, Lines, and Planes

Figure 1.7 Plücker line coordinates

Equating the components of the i, j , and k vectors yields the three scalar equations

y N − z M = P , (1.52)

z L − x N = Q,

x M − y L = R,

which may be written in matrix format as⎡
⎣ 0 N −M

−N 0 L

M −L 0

⎤
⎦
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣P

Q

R

⎤
⎦, (1.53)

where the 3 × 3 coefficient matrix is skew symmetric. It can be shown that the rank
of this coefficient matrix is two and the equations of (1.52) are, therefore, linearly
dependent. As such, an infinite number of solutions exist for x, y, and z (corresponding
to the infinite number of points on the line {L, M , N ; P , Q, R}). Any arbitrary value
for x may be selected, and corresponding values for y and z may be determined from
the last two equations of (1.52) as

y = x M − R

L
, z = x N + Q

L
. (1.54)

Note that if L = 0, then x is a constant given by either the second or third equation of
(1.52). The value for y or z could then be arbitrarily selected and the other calculated
from the first equation of (1.52).

The distance of a line from the origin is determined by the length of the vector p,
which originates at O and terminates at a point on the line such that the direction of
p is perpendicular to the direction of the line, S. The vector p must also satisfy (1.43)
and, therefore,

p · S = 0, (1.55)
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1.5 The Equation of a Line 13

p × S = SOL. (1.56)

Performing a cross product of S with (1.56) yields

S × (p × S) = S × SOL. (1.57)

Expanding the left side of (1.57) gives

(S · S)p − (p · S)S = S × SOL. (1.58)

Since p is perpendicular to S, p · S = 0. Substituting this into (1.58) and solving for
p gives

p = S × SOL

S · S
. (1.59)

A vector e is now defined as a unit vector perpendicular to S and SOL and may be
written as

e = S × SOL

|S × SOL| . (1.60)

Substituting (S × SOL) = |S × SOL|e in (1.59) yields

p = |S × SOL|
S · S

e. (1.61)

The magnitude of the cross product in the numerator of (1.61) is simply |S||SOL| sin π
2 .

The scalar product in the denominator will equal the square of the magnitude of S.
Equation (1.61) may, thus, be written as

p = |S||SOL|
|S||S| e = |SOL|

|S| e. (1.62)

Therefore, the distance of the line from the origin may be determined as

|p| = |SOL|
|S| . (1.63)

When SOL = 0, |p| = 0 and the line passes through the origin and its coordinates
are {S; 0}. When S = 0, |p| = ∞ and the line is a line at infinity. In this case, the
direction of the moment vector defines the line at infinity, and its coordinates are
written as {0; S}, where S is dimensionless. Further, the coordinates of the line at
infinity are origin independent. This line at infinity lies in the plane at infinity. If the
plane at infinity is thought of as the surface of a sphere of infinite radius, then a line
in the plane at infinity can be thought of as a circle on this sphere. For the line {0; S}
which lies at infinity, the direction of the moment, S, must be perpendicular to the
direction of the line, as is the case for all lines (see Figure 1.8). Thus, for the line
{0; S} the direction of the moment vector S can be thought of as being perpendicular
to the “plane” defined by the “circle of infinite radius”.

The Plücker coordinates for the line joining the points with coordinates (1; x1, y1, z1)
and (1; x2, y2, z2) were elegantly expressed by Grassmann7 by the six 2 × 2 determi-
nants of the array

7 On pg. 20, Klein (1939) gave immense credit to Grassmann (1862) regarding his extension theory.
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14 1 Geometry of Points, Lines, and Planes

Figure 1.8 Conceptualization of the line at infinity, {0; S}.

[
1 x1 y1 z1

1 x2 y2 z2

]
(1.64)

as

L =
∣∣∣∣1 x1

1 x2

∣∣∣∣ , M =
∣∣∣∣1 y1

1 y2

∣∣∣∣ , N =
∣∣∣∣1 z1

1 z2

∣∣∣∣ ,

P =
∣∣∣∣y1 z1

y2 z2

∣∣∣∣ , Q =
∣∣∣∣z1 x1

z2 x2

∣∣∣∣ , R =
∣∣∣∣x1 y1

x2 y2

∣∣∣∣ . (1.65)

It is a useful exercise to deduce the Plücker coordinates of the six edges of the tetra-
hedron of reference using (1.65), using the pairs of coordinates labeling the vertices
of the tetrahedron of reference shown in Figure 1.2.

1.5.1 Sample Problem

(i) Determine the Plücker coordinates of the line that passes through the points
r1 = 3i + 5j − 6k and r2 = 6i − 5j + 2k, where the point coordinates are given in
units of meters.

The direction of the line is obtained from (1.37) as

S = r2 − r1 = 3i − 10j + 8k, (1.66)
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1.5 The Equation of a Line 15

where the elements of the direction vector S are dimensionless. The moment of the
line is calculated from (1.44) as

SOL = r1 × S = −20i − 42j − 45k, (1.67)

where the elements of SOL have units of meters. The Plücker coordinates of the line
may now be written as

{3, −10, 8; −20 m, −42 m, −45 m}. (1.68)

(ii) Determine the perpendicular distance of this line from the origin.
The coordinates of the point on the line that is closest to the origin can be deter-

mined from (1.59) as

p = S × SOL

S · S
= (3i − 10j + 8k) × (−20i − 42j − 45k)

(3i − 10j + 8k) · (3i − 10j + 8k)
(1.69)

= 4.543i − 0.145j − 1.884k,

where the elements of the vector p have units of meters. The magnitude of p is the
distance of the perpendicular distance of the line from the origin and is calculated as

|p| = 4.921 m. (1.70)

(iii) Determine the coordinates of another point on the line.
An arbitrary point on the line will be referred to as r , where

r = x i + y j + z k. (1.71)

The equation of the line was presented in (1.43) and may be written as

r × S = SOL, (1.72)

(xi + yj + zk) × (3i − 10j + 8k) = −20i − 42j + 45k,

where the terms on the right side of the equation and the unknowns x, y, and z have
units of meters. Expanding the cross product on the left hand side of this equation
gives

(8y + 10z)i + (3z − 8x)j + (−10x − 3y)k = −20i − 42j + 45k. (1.73)

Equating the i, j , and k components of this equation yields the three scalar equations

8y + 10z = −20, (1.74)

3z − 8x = −42,

−10x − 3y = −45.

Multiplying the first equation by 3 and the second equation by −10 and adding
gives

24y + 80x = 360, (1.75)

which, when divided by −8, is identical to the third equation of (1.74) and, thus, the
three scalar equations are linearly dependent. This was to be expected, since there are

https://doi.org/10.1017/9781139019217.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139019217.002


16 1 Geometry of Points, Lines, and Planes

an infinity of points on a line. A free choice can be made for one of the coordinates, say
x = 0, and the other two parameters calculated. In this case, y = 15 m and z = −14 m.

1.6 Two Planes Determine a Line

The coordinates of two planes are given as [DO1; A1, B1, C1] and [DO2; A2, B2, C2].
From (1.6), the equations of each plane may be written as

r1 · S1 + DO1 = 0, (1.76)

r2 · S2 + DO2 = 0. (1.77)

where r1 and r2 are vectors to any point on the first and second plane, respectively,
and

S1 = A1 i + B1 j + C1 k, (1.78)

S2 = A2 i + B2 j + C2 k. (1.79)

The equation of the line of intersection of these two planes (see Figure 1.9) will now
be determined.

The line of intersection is perpendicular to each of the vectors S1 and S2 and it is,
therefore, parallel to S1 ×S2. Expanding the triple vector cross product r × (S1 ×S2),
where r is a vector to any point on the line of intersection, yields the vector equation
for the line and is written as

r × (S1 × S2) = (r · S2)S1 − (r · S1)S2. (1.80)

Figure 1.9 Line of intersection of two planes
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1.6 Two Planes Determine a Line 17

Since r must lie on both of the planes, (1.76) and (1.77) may be substituted into (1.80)
to give

r × (S1 × S2) = (−DO2)S1 − (−DO1)S2. (1.81)

The coordinates of the line of intersection of the two planes are obtained from (1.81) as
{S1×S2; DO1 S2−DO2 S1}. It is apparent that these coordinates do, indeed, represent
a line, as the direction of the line, S1 × S2, is perpendicular to the moment of the line,
DO1 S2 − DO2 S1. When S1 × S2 = 0, the planes are parallel, and they intersect in a
line in the plane at infinity with coordinates {0; DO1 S2 − DO2 S1}. Since in this case
S1 ‖ S2, the line at infinity may simply be written as {0; S1}.

By substituting (1.78) and (1.79) into the Plücker coordinates of the line of inter-
section and evaluating the cross product S1 × S2, these coordinates may be written as
{L, M , N ; P , Q, R}, where

L = B1 C2 − B2 C1, M = C1 A2 − C2 A1, N = A1 B2 − A2 B1, (1.82)

P = DO1 A2 − DO2 A1, Q = DO1 B2 − DO2 B1, R = DO1 C2 − DO2 C1.

The Plücker coordinates in (1.82) may be obtained directly using Grassmann’s
determinant principle by expressing the coordinates of the planes in the 2 × 4 array[

DO1 A1 B1 C1

DO2 A2 B2 C2

]
(1.83)

and by expanding the sequence of determinants

P =
∣∣∣∣DO1 A1

DO2 A2

∣∣∣∣ , Q =
∣∣∣∣DO1 B1

DO2 B2

∣∣∣∣ , R =
∣∣∣∣DO1 C1

DO2 C2

∣∣∣∣ , (1.84)

L =
∣∣∣∣B1 C1

B2 C2

∣∣∣∣ , M =
∣∣∣∣C1 A1

C2 A2

∣∣∣∣ , N =
∣∣∣∣A1 B1

A2 B2

∣∣∣∣ .

The array {P , Q, R; L, M , N} is known as the axis coordinates for the line determined
by the meet of two planes. Clearly, the line can be considered as the axis of a pencil
of planes. On the other hand, the array {L, M , N ; P , Q, R} is known as the ray coor-
dinates for a line. Clearly, the line can be considered as a ray of light joining any two
distinct points on the line. The line can thus be formed by pairs of dual elements, i.e.,
points or planes. Because of this, a line in three-dimensional space is considered to be
dual with itself or self-dual.

A simple notation will now be introduced that will be used to distinguish between
the ray and axis coordinates in later chapters. The ray and axis coordinates will be
designated by lower and upper case symbols ŝ = {S; SOL} and Ŝ = {SOL; S}, respec-
tively. Also, a line, whether written in ray or axis coordinates, will be designated as
$. When the same line $ is determined by the meet of two planes [DO1; A1, B1, C1]
and [DO2; A2, B2, C2] and by the join of two points (1; x1, y1, z1) and (1; x2, y2, z2),
as shown in Figure 1.10, then axis coordinates {SOL; S} are obtained by counting the
2 × 2 determinants of
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18 1 Geometry of Points, Lines, and Planes

Figure 1.10 A line determined by two planes or two points

[
DO1 A1 B1 C1

DO2 A2 B2 C2

]
, (1.85)

whereas the ray coordinates {S; SOL} are obtained by counting the 2 × 2 determi-
nants of [

1 x1 y1 z1

1 x2 y2 z2

]
. (1.86)

The two sets of coordinates are identical to a scalar multiple σ and

ŝ = σ�Ŝ, (1.87)

where � is a 6 × 6 matrix that converts axis coordinates to ray coordinates and vice
versa and is given by

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (1.88)

The matrix � essentially exchanges the first three elements with the last three elements
of the column vector Ŝ and is often written as

� =
[

0 I 3

I 3 0

]
, (1.89)

where, in this case, 0 represents a 3 × 3 matrix with all terms equal to zero, and I 3

represents a 3 × 3 identity matrix.
As an example, consider a pair of planes with the coordinates [1; −4, 12, 3] and

[1; 3, 4, −12], where the first component has units of meters and the last three
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1.6 Two Planes Determine a Line 19

components are dimensionless. The axis coordinates for the line of intersection $
are obtained from the 2 × 2 determinants of the array[

1 −4 12 3
1 3 4 −12

]
(1.90)

and

P =
∣∣∣∣1 −4
1 3

∣∣∣∣ = 7 m, Q =
∣∣∣∣1 12
1 4

∣∣∣∣ = −8 m, (1.91)

R =
∣∣∣∣1 3
1 −12

∣∣∣∣ = −15 m, L =
∣∣∣∣12 3

4 −12

∣∣∣∣ = −156,

M =
∣∣∣∣ 3 −4
−12 3

∣∣∣∣ = −39, N =
∣∣∣∣−4 12

3 4

∣∣∣∣ = −52.

The numerical results can be verified by using the orthogonality condition of (1.49).
The axis coordinates of the line of intersection may thus be written as Ŝ = {SOL; S},
where

SOL = (7i − 8j − 15k) m (1.92)

S = −156i − 39j − 52k.

Two points on this line will now be determined. Writing a point on the line as
r = x i + y j + z k, y and z may be determined for an arbitrary value of x from
(1.54). For x = 1 m, y and z are evaluated as 2

13 m and 5
13 m. For x = −1 m, y and

z are evaluated as − 9
26 m and − 11

39 m. The ray coordinates for the line $ can now be
evaluated from the 2 × 2 determinants of the array[

1 1 2
13

5
13

1 −1 − 9
26 − 11

39

]
(1.93)

and

L =
∣∣∣∣1 1
1 −1

∣∣∣∣ = −2, M =
∣∣∣∣∣1

2
13

1 − 9
26

∣∣∣∣∣ = −1

2
, (1.94)

N =
∣∣∣∣∣1

5
13

1 − 11
39

∣∣∣∣∣ = −2

3
, P =

∣∣∣∣∣
2
13

5
13

− 9
26 − 11

39

∣∣∣∣∣ = 7

78
m,

Q =
∣∣∣∣∣

5
13 1

− 11
39 −1

∣∣∣∣∣ = − 4

39
m, R =

∣∣∣∣∣ 1 2
13

−1 − 9
26

∣∣∣∣∣ = − 5

26
m.

These numerical results satisfy the orthogonality condition of (1.49). The ray coor-
dinates of the line of intersection $ may now be written as ŝ = {S; SOL}, where

S = −2i − 1

2
j − 2

3
k, (1.95)

SOL =
(

7

78
i − 4

39
j − 5

26
k

)
m.
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20 1 Geometry of Points, Lines, and Planes

Comparing (1.92) and (1.95), it is apparent that ŝ = σ�Ŝ, where for this example
σ = 1

78 .

1.7 The Pencil of Planes through a Line

1.7.1 The Plane Defined by a Line and a Point

The plane containing the line {S1; SOL1} can be rotated about the line, and, in this
way, a pencil or single infinity of planes is generated. Imposing the constraint that
the plane passes through a point A with position vector r0 yields a unique plane (see
Figure 1.11). The direction vectors S1, (r1 − r0), and (r − r0), where r1 is a vector to
some point on the line and r is a vector to any point on the plane, are clearly coplanar
and, therefore,

(r − r0) · (r1 − r0) × S1 = 0. (1.96)

There is no ambiguity as to the order of operations in the above equation, since a mean-
ingful result occurs only if the cross product is performed prior to the scalar product.
Expanding (1.96), regrouping terms, and making the substitution r1 × S1 = SOL1

gives

r · (SOL1 − r0 × S1) − r0 · (SOL1 − r0 × S1) = 0, (1.97)

which reduces to

r · (SOL1 − r0 × S1) − r0 · SOL1 = 0. (1.98)

From (1.98), the homogeneous coordinates of the plane are, thus, [−r0 ·SOL1; SOL1−
r0 × S1]. If point A happened to lie on the line, then r0 × S1 = SOL1, and the point
and line do not define a unique plane. For this case, substituting SOL1 = r0 × S1 into
(1.98) causes the equation to vanish for all r . When r0 = 0, (1.98) reduces to

Figure 1.11 Plane determined by a point and a line
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1.7 The Pencil of Planes through a Line 21

r · SOL1 = 0. (1.99)

This simple result is the equation of a plane that passes through the origin and that
contains the line {S1; SOL1}.

1.7.2 The Plane That Contains a Line and Is Parallel to a Second Line

A unique plane containing the line with coordinates {S1; SOL1} can also be deter-
mined by imposing the constraint that the plane be parallel to or contain a second line
{S2; SOL2} (see Figure 1.12). In this case, the vector (r − r1) lies in the plane, and the
vector S1 × S2 is normal to the plane, where r is a vector to any general point on the
plane. It may, therefore, be written that

(r − r1) · (S1 × S2) = 0. (1.100)

Expanding (1.100) yields

r · (S1 × S2) − r1 · (S1 × S2) = 0. (1.101)

Rearranging the second vector triple product8 yields

r · (S1 × S2) − (r1 × S1) · S2 = 0. (1.102)

Substituting r1 × S1 = SOL1 gives

r · (S1 × S2) − SOL1 · S2 = 0. (1.103)

The homogeneous coordinates for the plane are, therefore, [−SOL1 · S2; S1 × S2].

Figure 1.12 The plane through a line and parallel to a second line

8 It can be proven that a · (b × c) = (a × b) · c. This is also equal to the 3 × 3 determinant |abc|, where a,
b, and c are the first, second, and third rows of the determinant, respectively.
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22 1 Geometry of Points, Lines, and Planes

A special case needs to be considered. When the two given lines are parallel,
S1 × S2 = 0, and

SOL1 · S2 = (r1 × S1) · S2

= r1 · (S1 × S2)

= 0.

Thus, (1.103) vanishes identically for all r . In this case, there is a pencil of planes
containing the line {S1; SOL1}, each of which is parallel to the line {S2; SOL2}. The
next section focuses on the unique one of these planes that contains both lines.

1.7.3 The Plane Defined by a Pair of Parallel Lines

The equation for the plane through a pair of parallel lines for which S1 × S2 = 0 can
be most conveniently determined using the vectors p1 and p2, which represent the
unique point on each line such that the direction of p1 is perpendicular to S1 and p2 is
perpendicular to S2 (see Figure 1.13). Assuming that S1 and S2 are unit vectors, then
(1.59) may be used to write p1 and p2 as

p1 = S1 × SOL1, (1.104)

p2 = S2 × SOL2.

The perpendicular distance between the two lines may be written as |p2 − p1|.
Clearly (r − p1), the direction of (p1 − p2), and S1 are coplanar, where r is any
vector from point O to a point on the plane. Also the vector S1 × (p1 − p2) must be
perpendicular to the plane. The equation for the plane is, therefore,

(r − p1) · (S1 × (p1 − p2)) = 0. (1.105)

Note that in this equation, the expression p1 − p2 defines a direction that is perpen-
dicular to the plane. As such, it can be considered to be dimensionless. Rearranging

Figure 1.13 The plane through a pair of parallel lines
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1.8 A Line and a Plane Determine a Point 23

this equation and substituting S1 × p1 = −SOL1 and S1 × p2 = S2 × p2 = −SOL2

gives

(r − p1) · (SOL2 − SOL1) = 0. (1.106)

Substituting p1 = S1 × SOL1 and rearranging gives

r · (SOL2 − SOL1) + (S1 × SOL1) · (SOL1 − SOL2) = 0, (1.107)

which reduces to

r · (SOL2 − SOL1) − (S1 × SOL1) · SOL2 = 0. (1.108)

The homogeneous coordinates for the plane are, therefore, [−(S1×SOL1)·SOL2; SOL2

−SOL1]. The coordinates as written should be divided by a unit of length so that the
vector part will be dimensionless and the scalar part will have units of length. When
SOL1 = SOL2, the lines are the same and (1.108) vanishes identically.

The perpendicular distance between the two lines can be determined as |p2 − p1|.
The vector p2 − p1 is given by

p2 − p1 = S2 × SOL2 − S1 × SOL1. (1.109)

The magnitude of this vector, remembering that S1 and S2 are unit vectors, is

|p2 − p1| = |SOL2 − SOL1|. (1.110)

1.8 A Line and a Plane Determine a Point

The coordinates of a line and a plane are given as {S1; SOL1} and [DO2; S2], as shown
in Figure 1.14, and their equations may be written as

r1 × S1 = SOL1, (1.111)

r2 · S2 + DO2 = 0, (1.112)

Figure 1.14 A line and a plane determine a point
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24 1 Geometry of Points, Lines, and Planes

where r1 and r2 are vectors to any point on the line and plane, respectively. The point
of intersection of the line and the plane will be designated by the vector r0, and this
vector must satisfy both (1.111) and (1.112) and, therefore,

r0 × S1 = SOL1, (1.113)

r0 · S2 + DO2 = 0. (1.114)

Forming a vector product of S2 with (1.113) gives

S2 × (r0 × S1) = S2 × SOL1. (1.115)

Expanding the left side of (1.115) gives

r0 (S2 · S1) − S1 (S2 · r0) = S2 × SOL1, (1.116)

and substituting (1.114) gives

r0 (S2 · S1) = S2 × SOL1 − DO2S1 (1.117)

and, thus,

r0 = S2 × SOL1 − DO2S1

S2 · S1
(1.118)

The homogeneous coordinates of the point of intersection are (S2 · S1; S2 × SOL1 −
DO2 S1). When S2 · S1 = 0, then the line is parallel to the plane and the point of
intersection is at infinity with coordinates {0; S1} unless the line lies in the plane and
there is no unique point of intersection.

1.9 Determination of the Point on a Line That Is Closest to a Given Point

Figure 1.15 shows a line whose coordinates are given as {S ; SOL}. The coordinates
of a point are given by p1, and the objective is to find the point on the line that is
closest to this point. This closest point is denoted by p2, and the vector from p1 to p2
is shown as d. It is apparent that d ⊥ S.

The point p2 must satisfy the equation of the line and, thus,

p2 × S = SOL. (1.119)

Since d ⊥ S,

d · S = 0. (1.120)

It is apparent from 1.15 that

p2 = p1 + d, (1.121)
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1.10 The Mutual Moment of Two Lines 25

Figure 1.15 Closest point on a line to a given point

and substituting (1.121) into (1.119) gives

(p1 + d) × S = SOL. (1.122)

Expanding (1.122) and rearranging gives

d × S = SOL − p1 × S. (1.123)

Applying a cross product of S to both sides of (1.123) gives

S × (d × S) = S × (SOL − p1 × S). (1.124)

Expanding the left side of (1.124) gives

(S · S) d − (S · d) S = S × (SOL − p1 × S). (1.125)

Substituting (1.120) into (1.125) gives

d = S × (SOL − p1 × S)

S · S
. (1.126)

The coordinates of p2 are determined by substituting (1.126) into (1.121) to yield

p2 = p1 + S × (SOL − p1 × S)

S · S
. (1.127)

1.10 The Mutual Moment of Two Lines

The Plücker coordinates of two skew lines in space are given as {S1; SOL1} and
{S2; SOL2}, where S1 and S2 are unit vectors (see Figure 1.16) and their vector equa-
tions may be written as

r1 × S1 = SOL1, (1.128)

r2 × S2 = SOL2, (1.129)

https://doi.org/10.1017/9781139019217.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139019217.002


26 1 Geometry of Points, Lines, and Planes

Figure 1.16 A pair of skew lines

where r1 and r2 are vectors to any point on the first and second line, respectively. The
perpendicular distance between the lines is labeled as a12, and the twist angle between
the lines is labeled α12 and is measured in a right-hand sense about the vector a12,
where a12 is a unit vector whose direction is parallel, or anti-parallel, to S1 × S2.

The projection of any moment vector (r2 − r1) × S2 on S1 is the scalar quantity
[(r2 − r1) × S2] · S1, which will be shown to be invariant with the position vectors
r1 and r2. This quantity, which can also be obtained by projecting the moment vector
(r1 − r2) × S1 on S2, is defined as the mutual moment of two lines. Now the mutual
moment may be written as

(r2 − r1) × S2 · S1 = r2 × S2 · S1 + r1 × S1 · S2. (1.130)

Substituting (1.128) and (1.129) into the right side of (1.130) yields

(r2 − r1) × S2 · S1 = S1 · SOL2 + S2 · SOL1. (1.131)

Note that the mutual moment is readily calculated from the coordinates of the two
lines and that this quantity has units of length.

The mutual moment will now be calculated in a different manner based on the
geometry. From Figure 1.16,

(r2 − r1) + �2 S2 − a12 a12 − �1 S1 = 0. (1.132)

Therefore, the mutual moment may now be calculated as

(r2 − r1) × S2 · S1 = (�1 S1 + a12 a12 − �2 S2) × S2 · S1. (1.133)

Rearranging this equation and recognizing that S1 ×S2 ·S1 = 0 and S2 ×S2 ·S1 = 0
gives

(r2 − r1) × S2 · S1 = a12 a12 × S2 · S1. (1.134)

https://doi.org/10.1017/9781139019217.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781139019217.002


1.10 The Mutual Moment of Two Lines 27

Equation (1.134) may be rewritten as

(r2 − r1) × S2 · S1 = −a12 a12 · S1 × S2. (1.135)

Recall that S1 and S2 are unit vectors and that the unit vector a12 is either parallel
or anti-parallel to S1 × S2. Thus,

a12 = ± S1 × S2

|S1 × S2| (1.136)

and

S1 × S2 = sin α12 a12. (1.137)

Once the direction for the unit vector a12 is chosen, the angle α12 is defined as the
angle between S1 and S2, measured in a right-hand sense about a12. The sine and
cosine of this angle may be determined from

S1 · S2 = cos α12, (1.138)

S1 × S2 · a12 = sin α12. (1.139)

Substituting (1.139) into (1.135) gives

(r2 − r1) × S2 · S1 = −a12 sin α12. (1.140)

The mutual moment is, thus, a function of the perpendicular distance between the lines
and the angle between the directions of the lines and is invariant with the choice of the
position vectors r1 and r2.

Equating the right sides of (1.131) and (1.140) gives9

− a12 sin α12 = S1 · SOL2 + S2 · SOL1 (1.141)

and further

− a12 sin α12 = L1P2 + M1Q2 + N1R2 + L2P1 + M2Q1 + N2R1. (1.142)

When a12 = 0, the lines intersect at a finite point, and when sinα12 = 0, they
intersect at a point at infinity, and in either case the mutual moment of the lines is zero.
For the general case, the vector a12 is chosen as shown in (1.136). The angle α12 may
then be determined from (1.138) and (1.139) and then the distance a12 is determined
from (1.141). A negative value for a12 will result if the “direction of travel” along the
mutual perpendicular from the first line to the second line is opposite to the direction
of the vector a12.

As an additional example, consider a line with coordinates {L, M , N ; P , Q, R}. The
coordinates of the lines along the x, y, and z axes are {1, 0, 0; 0, 0, 0}, {0, 1, 0; 0, 0, 0},
and {0, 0, 1; 0, 0, 0}, respectively and it can be easily shown that the mutual moment of
the line with these three coordinate axes are P , Q, and R, respectively.

9 Recall that during the derivation of this expression the Plücker coordinates of the two lines were written
such that |S1| = |S2| = 1.
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1.10.1 Numerical Example

The coordinates of two lines are given as

{S1; SOL1} = {1, 2, 1; −2, 1, 0}, (1.143)

{S2; SOL2} = {−3, 1, 0; 1, 3, 5}, (1.144)

where the direction vectors Si are dimensionless, and the moment terms SOLi have
units of meters, i = 1, 2. It is desired to determine the angle between the line direc-
tions, α12, and the perpendicular distance between the lines, a12, based on the choice
for the direction of the vector a12.

The first step will be to scale the line coordinates such that the direction vector is a
unit vector. Dividing all terms of the first line by

√
6 and the second line by

√
10 gives

{S1u; SOL1u} = {0.4082, 0.8165, 0.4082; −0.8165, 0.4082, 0}, (1.145)

{S2u; SOL2u} = {−0.9487, 0.3162, 0; 0.3162, 0.9487, 1.5811} . (1.146)

The direction of the unit vector that is perpendicular to both lines is selected as

a12 = S1u × S2u

|S1u × S2u| =
⎡
⎣ −0.1302

−0.3906
0.9113

⎤
⎦ . (1.147)

The angle α12 is defined as the angle swept from the direction of the first line to the
direction of the second as measured in a right-hand sense about a12. The sine and
cosine of a12 are calculated as

sin α12 = (S1u × S2u) · a12 = 0.9916, (1.148)

cosα12 = S1u · S2u = −0.1291, (1.149)

and the angle α12 is calculated as

α12 = 1.700 radians = 97.4°. (1.150)

The mutual moment of the two lines is calculated as

MM = S1u · SOL2u + S2u · SOL1u = 2.4529 m. (1.151)

From (1.141),

− a12 sin α12 = 2.4529. (1.152)

Solving for a12 gives

a12 = −2.4736 m. (1.153)

1.11 Determination of the Unique Perpendicular Line to Two Given Lines

In many instances, it is necessary to determine the Plücker coordinates of the line
that is mutually perpendicular to two given lines {S1; SOL1} and {S2; SOL2}, where
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Figure 1.17 Definition of the points rE1 and rE2

again for this case |S1| = |S2| = 1. One method to determine the coordinates of this
line will be developed here. A second method, utilizing a concept called the motor
product, will be introduced in Section 3.12.

The direction of this line has already been determined as a12, which is a unit vector
either parallel or anti-parallel to {S1 ×S2}. Two points on this line are rE1 and rE2,
which are the intersections of the mutual perpendicular with the two given lines,
as shown in Figure 1.17. The determination of either of these points will allow for
the determination of the moment of the mutual perpendicular line, which is all that
remains to be found in order to define its Plücker coordinates.

Since rE1 and rE2 lie on the first and second line, respectively,

rE1 × S1 = SOL1, (1.154)

rE2 × S2 = SOL2. (1.155)

Since rE2 = rE1 + a12a12, (1.155) may be written as

(rE1 + a12 a12) × S2 = SOL2. (1.156)

Expanding the cross product and rearranging terms gives

rE1 × S2 = SOL2 − a12 a12 × S2. (1.157)

Forming the cross product of (1.157) with SOL1 yields

SOL1 × (rE1 × S2) = SOL1 × (SOL2 − a12 a12 × S2), (1.158)

and expanding the left side of this equation gives

rE1(SOL1 · S2) − S2(SOL1 · rE1) = SOL1 × (SOL2 − a12 a12 × S2). (1.159)
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Since rE1 lies on the first line, SOL1 · rE1 = 0, and (1.159) can be solved for rE1 as

rE1 = SOL1 × (SOL2 − a12 a12 × S2)

SOL1 · S2
. (1.160)

The Plücker coordinates of the line that is mutually perpendicular to the two given
lines can, thus, be written as {a12; rE1 × a12}.

A special case exists for the solution of rE1 if SOL1 · S2 = 0, which can occur if
SOL1 = 0, if S2 = 0, or if SOL1 is perpendicular to S2. If SOL1 = 0, then the first
line passes through the origin, and the point of intersection of the two lines may be
written as

rE1 = r S1. (1.161)

Substituting (1.161) into (1.157) gives

r S1 × S2 = SOL2 − a12 a12 × S2. (1.162)

Substituting (1.137) into (1.162) gives

r (a12 sin α12) = SOL2 − a12 a12 × S2. (1.163)

Performing a scalar product of both sides of (1.163) with a12 and solving for r gives

r = SOL2 · a12

sin α12
. (1.164)

It is apparent from (1.164) that a further special case exists if sin α12 = 0, that is, if
the directions of the two lines are parallel. In this special case (of a special case), let
rE1 be the origin and let rE2 = a12 a12 = S2×SOL2

S2·S2
be the vector from the origin that

is perpendicular to the second line.
If S2 = 0, then the second line is at infinity. The mutual moment of a line with a

line at infinity will not be addressed here. The third special case occurs if SOL1 and S2

are perpendicular. Substituting rE1×S1 = SOL1 into the scalar product SOL1 ·S2 = 0
gives

rE1 × S1 · S2 = 0. (1.165)

This expression may be written as

rE1 · S1 × S2 = rE1 · a12 sin α12 = 0. (1.166)

From this last expression it is apparent that the vector rE1 is perpendicular to a12

and, as such, the vector rE1 may be written as a linear combination of the vectors S1

and S2, since both of these vectors are also perpendicular to a12. Thus, rE1 may be
written as

rE1 = r1 S1 + r2 S2. (1.167)

Since rE1 lies on the first line,

rE1 × S1 = SOL1. (1.168)
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Substituting (1.167) into (1.168) gives

(r1 S1 + r2 S2) × S1 = SOL1, (1.169)

which simplifies to

r2 S2 × S1 = SOL1. (1.170)

Substituting (1.137) into (1.170) gives

− r2 a12 sin α12 = SOL1. (1.171)

Performing a scalar product of both sides of (1.171) with a12 and solving for r2 gives

r2 = −SOL1 · a12

sin α12
. (1.172)

The value for r1 can be obtained by substituting (1.167) into (1.157). The resulting
expression for r1 is written as

r1 = SOL2 · a12

sin α12
. (1.173)

1.12 A Pair of Intersecting Lines

Two intersecting lines {S1; SOL1} and {S2; SOL2} are shown in Figure 1.18, where it is
assumed that S1 and S2 are unit vectors. Two approaches to determine the intersection
point of these two given lines will now be presented.

Figure 1.18 A pair of intersecting lines
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1.12.1 Approach 1

The vector equations for these two lines are

r1 × S1 = SOL1, (1.174)

r2 × S2 = SOL2, (1.175)

where r1 and r2 are vectors to any point on the first and second line, respectively. The
position vector r0 indicates the point of intersection of the two lines and, as such, it
must satisfy both equations for the lines as

r0 × S1 = SOL1, (1.176)

r0 × S2 = SOL2. (1.177)

The vector r0 will be determined by first forming a cross product of (1.176) with S2,
which yields

S2 × (r0 × S1) = S2 × SOL1. (1.178)

Expanding the left side of (1.178) gives

r0(S2 · S1) − S1(r0 · S2) = S2 × SOL1. (1.179)

Forming a scalar product of (1.179) with S1 yields

(r0 · S1)(S2 · S1) − (S1 · S1)(r0 · S2) = S1 · (S2 × SOL1). (1.180)

Substituting S1 · S1 = 1 and rearranging gives

r0 · [S2 − (S2 · S1)S1] = (S1 × SOL1) · S2. (1.181)

It remains to solve (1.177) and (1.181) for r0. Forming the cross product of (1.177)
with [S2 − (S2 · S1)S1] yields

[S2 − (S2 · S1)S1] × [r0 × S2] = [S2 − (S2 · S1)S1] × SOL2. (1.182)

Expanding the left side of (1.182) and substituting (1.181) gives

r0{[S2−(S2 ·S1)S1]·S2}−S2{(S1×SOL1)·S2} = [S2−(S2 ·S1)S1]×SOL2. (1.183)

Rearranging this equation gives

r0[1− (S1 ·S2)2] = S2 ×SOL2 − (S1 ·S2)S1 ×SOL2 + (S1 ×SOL1 ·S2)S2, (1.184)

and solving for r0 gives

r0 = S2 × SOL2 − (S1 · S2)S1 × SOL2 + (S1 × SOL1 · S2)S2

1 − (S1 · S2)2
. (1.185)

The homogeneous coordinates of the point of intersection of the pair of lines are, thus,
(1 − (S1 · S2)2; S2 × SOL2 − (S1 · S2)S1 × SOL2 + (S1 × SOL1 · S2)S2).
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1.12.2 Approach 2

A second solution approach to this problem was developed by Dr. David Dooner at
the University of Puerto Rico, Mayaguez. Performing a cross product of the left and
right sides of (1.176) and (1.177) yields

(r0 × S1) × (r0 × S2) = SOL1 × SOL2. (1.186)

Expanding this expression gives

[(r0 × S1) · S2]r0 − [(r0 × S1) · r0]S2 = SOL1 × SOL2. (1.187)

Substituting [(r0 × S1) · r0] = 0 and r0 × S1 = SOL1 and then solving for r0 gives

r0 = SOL1 × SOL2

SOL1 · S2
. (1.188)

The result for the intersection point obtained in (1.188) is much simpler than
that in (1.185). However, for the cases where the first line passes through the origin
(SOL1 = 0) or where the two lines lie in a plane that passes through the origin (S1

and S2 lie in the plane and, thus, SOL1 and SOL2 are parallel and perpendicular to the
plane), equation (1.188) will reduce to an indeterminate state of 0

0 . Equation (1.185)
will yield the correct intersection point for these cases.

1.13 Summary

This chapter introduced representations and notation for points, lines, and planes. It
was shown that a point is the dual of a plane and that a line is dual with itself or
self-dual. Several geometric problems were solved, such as determining the coordi-
nates of the line that is the intersection of two non-parallel planes. The concept of
the mutual moment of two lines was introduced, and a geometric interpretation was
presented. Lastly, it was shown how to determine the Plücker coordinates of the line
that intersects and is perpendicular to two given lines.

The material presented in this chapter should give the user a firm background in
the geometry of points, lines, and planes. Subsequent chapters will expand upon this
material to develop an analytic approach for solving velocity, acceleration, and static
force balance problems for serial and planar spatial manipulators and mechanisms.

1.14 Problems

1. The equation of a plane is 3x − 4y − 12z − 1 = 0. Here, the coefficients 3, 4,
and 12 are dimensionless, while the coefficient 1 has units of meters. Determine:

(a) The direction cosines of the unit vector normal to the plane.
(b) The perpendicular distance of the plane from the origin.
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34 1 Geometry of Points, Lines, and Planes

(c) The equation of the plane parallel to the given plane that passes through the
origin.

2. Draw the lines with the following Plücker coordinates and determine the
perpendicular distance of each line from the origin. The first three coordinates
are dimensionless, and the last three coordinates have units of meters.

(a) {−4, 12, 3; −24, −6, −8}
(b) {3, 4, −12; 16, 27, 13}
(c) {2, 4, −1; −7, 4, 2}
(d) {4, 1, 5; 5, 15, −7}

3. The equations of two planes are

−4x + 12y + 3z + 1 = 0,

3x + 4y − 12z + 1 = 0.

Here, the coefficients multiplying the terms x, y, and z are dimensionless, and
the remaining coefficient has units of meters. Determine the angle between the
planes and the Plücker coordinates of the line of intersection. What is the
condition that two planes are perpendicular?

4. Derive the equation for the plane that contains the line r × S = SOL and the
origin where S = (−4, 12, 3) and SOL = (−24, −6, −8). The vector S is
dimensionless, and SOL has units of meters.

5. Determine the point of intersection of the line {3, 4, −12; 16, 27, 13} and the
plane 4x + y + 5z + 1 = 0. The first three components of the line coordinates
are dimensionless, and the last three have units of meters. The coefficients of the
equation of the plane that multiply the terms x, y, and z are dimensionless, while
the remaining coefficient has units of meters.

6. Find the shortest distance between the straight lines AB and CD when the
coordinates of points A, B, C, and D are given in meters as follows:

(a) A(−2, 4, 3), B(2, −8, 0), C(1, −3, 5), D(4, 1, −7)
(b) A(2, 3, 1), B(0, −1, 2), C(1, 2, 5), D(−3, 1, 0)

7. Prove that if the non-parallel lines {S1; SOL1} and {S2; SOL2} are coplanar, then
S1 · SOL2 + S2 · SOL1 = 0. Show that they lie in the plane [SOL1 · S2; S1 × S2]
and that they intersect at the point (SOL1 · S2; SOL1 × SOL2) provided
SOL1 · S2 �= 0.

8. A pair of lines {S1; SOL1} and {S2; SOL2} intersect at right angles, where S1 and
S2 are unit vectors. Derive an equation for the plane that contains the first line
and that is perpendicular to the second line. Hence, obtain the expression
r = p2 + (p1 · S2)S2 for the position vector of the point of intersection of the
lines. Verify this result by simple projection and also deduce that
r = p1 + (p2 · S1)S1.

9. Show that the lines AB and CD are coplanar, and find their point of intersection.
The coordinates of the four points are given in units of meters as A(−2, −3, 4),
B(2, 3, 0), C(−2, 3, 2), D(2, 0, 1). Determine the angle between the lines.
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Figure 1.19 Football stadium

10. (a) Show that the three points (w1; S1), (w2; S2), and (w3; S3) determine the
plane [S1 · S2 × S3; w1S2 × S3 + w2S3 × S1 + w3S1 × S2] provided
(S1 · S2 × S3) �= 0, i.e., the points are not linearly dependent (colinear). Assume
wi �= 0, i = 1 . . . 3. (b) Show that the three planes [D1; S1], [D2; S2], and
[D3; S3] meet in the point (S1 · S2 × S3; D1S2 × S3 + D2S3 × S1 + D3S1 × S2)
provided (S1 · S2 × S3) �= 0.

11. Show that the equation of the plane through the origin that contains the line
{S1; SOL1} can be expressed in the form P1x + Q1y + R1z = 0, where
P1, Q1, R1 are the components of the vector SOL1, and x, y, z are the
components of S1.

12. Show that the equation of the plane that contains the line
{S1; SOL1} = {L1, M1, N1; P1, Q1, R1} and that is parallel to the x axis can be
written as N1 y − M1 z − P1 = 0.

13. A television camera is located within a stadium (see Figure 1.19). The objective
is to determine the position of the camera as measured in terms of the coordinate
system shown in the figure.

The camera is aimed at point A and the unit direction vector from the camera
to point A is measured as [0.45339, 0.84633, −0.27959]T . The camera is then
pointed at the origin of the reference coordinate system, and the unit direction
vector from the camera to the origin is measured as [0.29892, −0.93611,
−0.18533]T .
(a) Determine the Plücker coordinates of the line from the camera to point A

and the line from the camera to the origin point.
(b) Determine the perpendicular distance between the lines.
(c) If the lines intersect, determine the point of intersection. If the lines do not

intersect, determine the midpoint of the line segment that is perpendicular to
the two lines.
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