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Abstract

Expressions for the joint distribution of the longest and second longest excursions as well
as the marginal distributions of the three longest excursions in the Brownian bridge are
obtained. The method, which primarily makes use of the weak convergence of the random
walk to the Brownian motion, principally gives the possibility to obtain any desired joint
or marginal distribution. Numerical illustrations of the results are also given.
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1. Introduction

The aim of this paper is to calculate distributions of the longest excursions, i.e. ranked
excursion lengths, in tied down random walks and especially in the Brownian motion tied down
at time t = 1. The results for the Brownian bridge are given as asymptotic results when passing
to the limit in a random walk. Several previous studies deal with properties of excursions in
general. Our special interest here lies in results for distributions of ranked excursion lengths
in tied down random walks and the Brownian bridge. Analytical expressions for the longest
excursion, V1, are obtained in, for example, [3], [6], and [7]. It is interesting to note that
explicit formulae for P(V1 ≤ x) are only available for the interval 1

4 ≤ x ≤ 1. However, a
semi-analytical result due to Rosén was found in [7] that covers the full interval 0 ≤ x ≤ 1. We
extend this result to, in principle, any desired order of excursion as well as to joint distributions.
The results are expressed in terms of infinite sums, where the Kummer function and its zeros
play a central role. We show that these formulae, in spite of their complexity, are readily
manageable in standard mathematical software. Furthermore, it is often sufficient for accurate
results to include only the first term in the sums, and thereby only the first zero in the Kummer
function.

In Section 2 we start with some results regarding exact formulae for the distribution of the
longest excursion in a tied down simple random walk, and then recapitulate formulae for the
distribution of the longest excursion in a Brownian bridge. Our main results, semi-analytical
formulae for the joint distribution of the longest and second longest excursions as well as the
marginal distributions for the three longest excursions, are given in Section 3. To conclude, we
illustrate the results numerically and graphically in Section 4.
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2. Longest excursion in a tied down random walk and a Brownian bridge

Let {Si}2n
i=0 be a simple random walk starting at 0. Define an excursion as a zero-free interval

that starts and ends at 0. Let L2n be the longest excursion length until time 2n. Introduce the
notation [ ∞∑

k=0

akz
k

]
m

=
m∑

k=0

akz
k and [zn]

∞∑
k=0

akz
k = an.

The following result is given in [7, p. 22].

Proposition 2.1.

P(L2n ≤ 2m | S2n = 0) = [zn] 1

[√1 − z]m

/
u2n, (2.1)

where

u2n = P(S2n = 0) =
(

2n

n

)(
1

2

)2n

.

Proof. Let
v2n,m = P(L2n ≤ 2m, S2n = 0),

f2k = P(S1 �= 0, . . . , S2k−1 �= 0, S2k = 0).

Introduce the generating functions

Fm(z) =
m∑

k=1

f2kz
k = [1 − √

1 − z]m and Vm(z) =
∞∑

k=0

v2k,mzk.

The equality in the first formula can be found in, for example, [4, p. 273]. We have

v0,m = 1, v2n,m =
m∑

k=1

f2kv2n−2k,m, n ≥ 1.

Thus, the convolution property for generating functions gives

Vm(z) = 1

1 − Fm(z)
= 1

[√1 − z]m
.

We obtain the assertion by extracting the appropriate term in Vm(z) and conditioning on S2n = 0.

Using (2.1), it is possible to obtain the distribution for the longest excursion in a tied down
simple random walk. It is easy to plot these distributions with standard mathematical software;
see Figure 1 in Section 4.

By passing to the limit in a tied down simple random walk we obtain a Brownian bridge;
see [2] and the references therein. For the longest excursion length, V1, in a Brownian bridge,
it was proved in [7, p. 23] that

P(V1 ≤ x) = 2 − 1√
x

,
1

2
≤ x ≤ 1.

Pitman andYor [6, p. 868] obtained the following explicit formula for the density of V1, covering
the case in which 1

4 ≤ x ≤ 1:

g(x) = q1(x) − q2(x) + q3(x),
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where

q1(x) = 1

2x3/2 ,

q2(x) = 1{x≤1/2}
1

πx3/2

(
−π + 2

√
1 − 2x

x
+ 2 arcsin

√
x

1 − x

)
,

q3(x) = 1{x≤1/3}
3

4πx3/2

(
2 + 2π + 2

x
− 8

√
1 − 2x

x
− 8 arcsin

√
x

1 − x

)
.

3. Joint and marginal distributions for the longest excursions

We will derive the joint and marginal distributions for the longest excursions in the Brownian
bridge using the generating function of the number of excursions of certain lengths. The
generating function is obtained by convergence of the corresponding generating functions of
tied down random walks.

3.1. Generating function of the number of excursions of certain lengths

Let 2Y1, 2Y2, . . . denote the lengths of the excursions in a symmetric simple random walk.
Here, the Y s are independent and identically distributed with

P(Y = k) = 1

2k − 1

(
2k

k

)
1

22k
, k = 1, 2, . . . ;

see, e.g. [4, p. 78].
For fixed 0 < xr ≤ xr−1 ≤ · · · ≤ x1 < x0 = ∞, let N

(n)
j denote the number of excursions

with lengths in (2nxj , 2nxj−1] in a random walk tied down at time 2n. We have the weak
convergence

(N
(n)
1 , N

(n)
2 , . . . , N(n)

r ) → (N1, N2, . . . , Nr), n → ∞,

where Nj denote the number of excursions in a Brownian bridge with lengths in (xj , xj−1]; cf.
Csáki and Hu [2] and the references therein.

Proposition 3.1. We have

E(z
N

(n)
1

1 · · · zN
(n)
r

r ) = 1

2iπ P(S2n = 0)

∫ iπn

−iπn

es En(s) − (En(s))
n+1

1 − En(s)
ds,

where

En(s) = E

(
e−sY/n

r∏
j=1

z
1{nxj−1≥Y>nxj }
j

)
.

Proof. We have

E(z
N

(n)
1

1 · · · zN
(n)
r

r ) P(S2n = 0)

=
n∑

k=1

E

(
1{∑k

l=1 Yl=n}
r∏

j=1

z

∑k
l=1 1{nxj−1≥Yl>nxj }

j

)

=
n∑

k=1

1

2π

∫ π

−π

e−itn E

(
eit

∑k
l=1 Yl

r∏
j=1

z

∑k
l=1 1{nxj−1≥Yl>nxj }

j

)
dt.
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As the Y s are independent and identically distributed, the last expression is equal to

1

2π

∫ π

−π

e−itn
n∑

k=1

(
E

(
eitY

r∏
j=1

z
1{nxj−1≥Y>nxj }
j

))k

dt.

Changing the variable −itn to s and identifying the geometric sum, the assertion follows.

Lemma 3.1. We have

√
πn(1 − En(s)) →

∫ ∞

0

1 − e−sy
∏r

j=1 z
1{xj−1≥y>xj }
j

2y3/2 dy, n → ∞.

Proof. By Stirling’s formula we obtain

√
πk

(
2k

k

)
4−k → 1, k → ∞.

Furthermore, by convergence of Riemann sums we have
√

πn(1 − En(s))

= √
πn

∞∑
k=1

(
1 − e−sk/n

r∏
j=1

z
1{xj−1≥k/n>xj }
j

)
1

2k − 1

(
2k

k

)
4−k

=
∞∑

k=1

(
1 − e−sk/n

r∏
j=1

z
1{xj−1≥k/n>xj }
j

)(
n

k

)3/2
k

2k − 1

√
πk

(
2k

k

)
4−k 1

n

→
∫ ∞

0

1 − e−sy
∏r

j=1 z
1{xj−1≥y>xj }
j

2y3/2 dy, n → ∞.

We introduce the function K(s) = M(− 1
2 , 1

2 , −s), where M(a, b, s) is the Kummer func-
tion; see Appendix A.

Lemma 3.2. For Re(s) ≥ 0 and x > 0, we obtain∫ ∞

0

1 − e−sy

2y3/2 dy = √
πs, (3.1)

∫ x

0

1 − e−sy

2y3/2 dy = −1 + K(sx)√
x

, (3.2)

∫ ∞

x

1 − ze−sy

2y3/2 dy = z
√

πs + 1 − zK(sx)√
x

. (3.3)

Proof. Integrating by parts and using the gamma function, (3.1) follows. By series expansion
we have ∫ x

0

1 − e−sy

2y3/2 dy = −
∞∑

k=1

(−s)k

k!
∫ x

0

yk−3/2

2
dy

= −
∞∑

k=1

(−s)k

k!
xk−1/2

2k − 1

= −1 + K(sx)√
x

.
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Finally, ∫ ∞

x

1 − ze−sy

2y3/2 dy = (1 − z)

∫ ∞

x

1

2y3/2 dy + z

∫ ∞

x

1 − e−sy

2y3/2 dy

= (1 − z)√
x

+ z

(√
πs − −1 + K(sx)√

x

)

= z
√

πs + 1 − zK(sx)√
x

.

The following theorem for the Brownian bridge gives the generating function for the number
of excursions {Nj }rj=1 with lengths in the respective intervals (xj , xj−1].
Theorem 3.1. We have

E(z
N1
1 · · · zNr

r ) = 1

2i
√

xr

∫ i∞

−i∞
es/xr

K(s) − z1A(s) − ∑r
j=2 zjBj (s)

ds,

where

A(s) = K

(
sx1

xr

)√
xr

x1
− √

πs,

Bj (s) = K

(
sxj

xr

)√
xr

xj

− K

(
sxj−1

xr

)√
xr

xj−1
.

Proof. By Stirling’s formula we obtain P(S2n = 0) ∼ 1/
√

πn. It follows, from Proposi-
tion 3.1 and Lemma 3.1, that

E(z
N1
1 · · · zNr

r ) = 1

2i

∫ i∞

−i∞
es

∫ ∞
0 ((1 − e−sy

∏r
j=1 z

1{xj−1≥y>xj }
j )/2y3/2) dy

ds.

By (3.1)–(3.3), we obtain

∫ ∞

0

1 − e−sy
∏r

j=1 z
1{xj−1≥y>xj }
j

2y3/2 dy

=
∫ xr

0

1 − e−sy

2y3/2 dy +
r∑

j=1

∫ xj −1

xj

1 − e−syzj

2y3/2 dy

= −1 + K(sxr)√
xr

+ z1
√

πs + 1 − z1K(sx1)√
x1

+
r∑

j=2

[−1 + zjK(sxj−1)√
xj−1

− −1 + zjK(sxj )√
xj

]

= K(sxr)√
xr

− z1

(
−√

πs + K(sx1)√
x1

)

−
r∑

j=2

zj

(
K(sxj )√

xj

− K(sxj−1)
√

xj−1

)
.

Changing the variable sxr to s gives the assertion.
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Theorem 3.1 gives the possibility of calculating any joint or marginal distribution of the
longest excursions in the Brownian bridge. First, consider the special case where r = 1 and
N1 = N is equal to the number of excursions longer than x, 0 ≤ x ≤ 1. We obtain

E(zN) = 1

2i
√

x

∫ i∞

−i∞
es/x

K(s) − z(K(s) − √
πs)

ds

=
∞∑

k=0

zk 1

2i
√

x

∫ i∞

−i∞
es/x

K(s)

(
1 −

√
πs

K(s)

)k

ds.

The event {N ≤ j − 1} means that the number of excursions that are longer than x cannot
exceed j − 1, i.e. the j th longest excursion is shorter than x. Thus, picking the appropriate
coefficient in the sum above, we obtain the following result.

Proposition 3.2. We have

P(Vj ≤ x) = P(N ≤ j − 1) =
j−1∑
k=0

P(N = k),

where

P(N = k) = 1

2i
√

x

∫ i∞

−i∞
es/x(K(s) − √

πs)k

K(s)k+1 ds. (3.4)

The integrals in (3.4) can be evaluated by calculus of residues. We will omit this straight-
forward but somewhat tedious exercise in what follows. However, we note here that it will
be important to understand the behavior of the poles as well as being able to differentiate the
Kummer function. We refer the reader to Appendix A and [5].

3.2. Marginal distributions of the three longest excursions

The following result is given in [7, p. 24].

Corollary 3.1. For 0 ≤ x ≤ 1, we have

P(V1 ≤ x) = 2π√
x

∞∑
k=−∞

−sk exp

(
sk

(
1 + 1

x

))
,

where the sks are the 0s of K(s); see Appendix A.

Proof. Using Proposition 3.2, we have

P(V1 ≤ x) = P(N = 0) = 1

2i
√

x

∫ i∞

−i∞
es/x

K(s)
ds

= 2π i

2i
√

x

∞∑
k=−∞

esk/x

K ′(sk)

= π√
x

∞∑
k=−∞

esk/x

−e−sk /2sk

by calculus of residues; see Appendix A.
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Corollary 3.2. For 0 ≤ x ≤ 1
2 , we have

P(V2 ≤ x) = 2 P(V1 ≤ x) + 2π

∞∑
k=−∞

−ske2sk

(
2esk/x

(
1 + sk + sk

x

)
K

(
sk

x

)
− 1

)
.

Proof. Using Proposition 3.2 and identifying previously calculated integrals, we have

P(V2 ≤ x) = P(N = 0) + P(N = 1)

= P(V1 ≤ x) + P(N = 1)

= P(V1 ≤ x) + 1

2i
√

x

∫ i∞

−i∞
es/x(K(s) − √

πs)

K(s)2 ds

= 2 P(V1 ≤ x) − 1

2i
√

x

∫ i∞

−i∞
es/x

√
πs

K(s)2 ds.

We do not evaluate the last integral here. Instead, we refer the reader to the special case for
x1 = 1 of the joint distribution in Corollary 3.4, below.

Corollary 3.3. For 0 ≤ x ≤ 1
3 , we have

P(V3 ≤ x) = 3(P(V2 ≤ x) − P(V1 ≤ x))

− 2π2

√
x

∞∑
k=−∞

s2
k esk(1/x+3)

(
s2
k

(
2

x2 + 6

x
+ 4

)
+ sk

(
7

x
+ 9

)
+ 3

)
.

Proof. Again, using Proposition 3.2, we have

P(V3 ≤ x) =
2∑

k=0

P(N = k).

Identifying previously calculated integrals, we obtain

P(N = 2) = 1

2i
√

x

∫ i∞

−i∞
es/x(K(s) − √

πs)2

K(s)3 ds

= P(V1 ≤ x) − 2

2i
√

x

∫ i∞

−i∞
es/x

√
πs

K(s)2 ds + π

2i
√

x

∫ i∞

−i∞
es/xs

K(s)3 ds.

By calculus of residues we obtain

π

2i
√

x

∫ i∞

−i∞
es/xs

K(s)3 ds = −2π2

√
x

∞∑
k=−∞

s2
k esk(1/x+3)

(
s2
k

(
2

x2 + 6

x
+ 4

)
+ sk

(
7

x
+ 9

)
+ 3

)
,

and the assertion follows.

Any marginal distribution can be obtained in an analogous way.
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3.3. Joint distribution of the longest and second longest excursions

Consider the joint distribution of (V1, V2). We have, for 0 ≤ x2 ≤ x1 ≤ 1,

P(V2 ≤ x2, V1 ≤ x1) = P(V1 ≤ x2) + P(V2 ≤ x2 < V1 ≤ x1)

= P(V1 ≤ x2) + P(N1 = 0, N2 = 1).

Using the appropriate coefficient of the generating function E(z
N1
1 z

N2
2 ), where r = 2, in

Theorem 3.1, leads to

P(N1 = 0, N2 = 1) = 1

2i
√

x2

∫ i∞

−i∞
es/x2

(K(s))2

(
K(s) − K

(
sx1

x2

)√
x2

x1

)
ds

= P(V1 ≤ x2) − 1

2i
√

x1

∫ i∞

−i∞
es/x2K(sx1/x2)

(K(s))2 ds.

By calculus of residues, the last integral can be written as

π√
x1

∞∑
k=−∞

esk/x2

(
−K

(
skx1

x2

)
K ′′(sk)
K ′(sk)

+K

(
skx1

x2

)/
x2 +K ′

(
skx1

x2

)
x1

/
x2

)/
(K ′(sk))2.

Differentiating the Kummer function (see Appendix A) and using the fact that K(sk) = 0, we
obtain

− 2π√
x1

∞∑
k=−∞

−skesk((1−x1)/x2+2)

(
2eskx1/x2K

(
skx1

x2

)(
1 + sk + sk

x2

)
− 1

)
.

Hence, we have obtained the following result.

Corollary 3.4. For 0 ≤ x2 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1
2 , we have

P(V1 ≤ x1, V2 ≤ x2)

= 2 P(V1 ≤ x2)

+ 2π√
x1

∞∑
k=−∞

−sk exp

(
sk

(
1 − x1

x2
+ 2

))(
2eskx1/x2K

(
skx1

x2

)(
1 + sk + sk

x2

)
− 1

)
.

4. Numerical illustrations of the results

In this section we illustrate the results in the previous sections by plotting distribution and
density functions. Good approximations are obtained using only the first term of the sums in
the expressions for the distributions or densities. For a detailed analysis of the accuracy of the
approximations, we refer the reader to [5]. The approximations are accurate for x ≤ 1

2 . As only
the longest excursion can take values larger than 1

2 , we obtain a good grasp of all distributions.
First, we study the probability functions of the longest excursion in a tied down random

walk. Using Proposition 2.1, we obtain the plots in Figure 1.
Next we evaluate the distributions of the longest excursions in the Brownian bridge.
The series in the distribution for the longest excursion in Corollary 3.1 converges rapidly for

x ≤ 0.5. Recall that, for 0.5 ≤ x ≤ 1, we have

P(V1 ≤ x) = 2 − 1√
x

.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Probability functions of the longest excursion in tied down random walks. The plots show the
density for (a) n = 3, (b) n = 5, (c) n = 10, (d) n = 20, (e) n = 30, and (f) n = 100.
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0.8

0.6
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0.0
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Figure 2: Distribution functions of the three longest excursions.
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0

2

4

6

8
V3

V2

V1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Density functions of the three longest excursions.
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0.8

0.8

0.6

0.6

5

x1

x2

0.4

0.4

0.2

0

Figure 4: Three-dimensional plot of the joint density function of the two longest excursions.

Taking the first term in the series, with s0 = −0.8540 . . . (see Appendix A), gives
P(V1 ≤ x) ≈ (2π/

√
x)(−s0)es0(1+1/x). Thus, P(V1 ≤ 0.5) ≈ 0.5854 compared to the exact

value, 2 − √
2 ≈ 0.5858.

Figures 2 and 3 show plots of marginal distributions and densities. Only the first term in the
respective series is included (for x ≥ 0.5 exact expressions).

Finally, using Corollary 3.4, we plot the joint density function of the two longest excursions
in Figure 4. Only the first term in the series is included.
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Appendix A. Properties of the Kummer function

The general Kummer (or confluent hypergeometric) function (see Abramovitz and Stegun
[1, p. 304]) is defined as

M(a, b, s) = 1 +
∞∑

k=1

a(a + 1) · · · (a + k − 1)

b(b + 1) · · · (b + k − 1)

sk

k! .

Note that M(a, b, s) = esM(b − a, b, −s). We consider, in particular,

K(s) = M(− 1
2 , 1

2 , −s)

= 1 −
∞∑

k=1

1

2k − 1

(−s)k

k!
= e−sM(1, 1

2 , s)

= e−s

(
1 +

∞∑
k=1

(2s)k

(2k − 1)!!
)

with the derivatives

K ′(s) = K(s) − e−s

2s
, K ′′(s) = e−s − K ′(s)

2s
.

Further derivatives are easy to obtain recursively.
All zeros {sk}∞−∞ of K(s) lie in the left complex plane. In fact,

s̄−k = sk = −ak + ibk, k = 0, 1, 2, . . . ,

a0 < a1 < a2 < · · · ↗ +∞, b0 < b1 < b2 < · · · ↗ +∞.

The first five 0s are given in Table 1. The numbers have been calculated using MAPLE©R;
see [5].

Table 1: Coefficients for the first five 0s in the Kummer function K(s).

k a±k bk b−k

0 0.854 032 66 . . . 0 0
1 4.248 920 78 . . . 6.383 124 29 . . . −6.383 124 29 . . .

2 5.184 114 73 . . . 12.885 305 17 . . . −12.885 305 17 . . .
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