THE NUMBER OF ROOTED CONVEX POLYHEDRA

BY

EDWARD A. BENDER AND NICHOLAS C. WORMALD

Abstract. Let $p_{i j}$ be the number of rooted convex polyhedra with $i+1$ vertices and $j+1$ faces. We express $p_{i j}$ as a singly indexed summation whose terms decrease geometrically. From this we deduce that

$$
p_{i j} \sim \frac{1}{3^{5} i j}\binom{2 i}{j+3}\binom{2 j}{i+3}
$$

uniformly as $\max (i, j) \rightarrow \infty$.

1. Introduction. Let $p_{i j}$ be the number of rooted 3-connected planar maps with $i+1$ vertices and $j+1$ faces. When $i, j \geqq 3$, this is the same as the number of rooted convex polyhedra with $i+1$ vertices and $j+1$ faces by Steinitz's theorem. Our goal is to prove

Theorem 1. For $i, j \geqq 3$ we have

$$
\begin{aligned}
p_{i j} & =p_{j i}=\frac{1}{j(j-1)} \sum_{k} A_{k}\binom{-3}{k}\binom{2 i-k-4}{j-2}\binom{2 j}{i-k-1} \\
& =\frac{1}{j(j-1)(j-2)(2 j+1)} \sum_{k} B_{k}\binom{-4}{k}\binom{2 i-k-5}{j-3}\binom{2 j+1}{i-k-1}
\end{aligned}
$$

where

$$
\begin{aligned}
A_{k} & =j-k j-2 i+2 k+2 \\
B_{k} & =-6 k i^{2}-(k+2) i d+2(k-2) d^{2} \\
& +2\left(3 k^{2}+10 k+2\right) i-\left(3 k^{2}-2 k-20\right) d-6(k+2)^{2} \\
d & =2 i-j
\end{aligned}
$$

and k ranges from 0 to $\min (i-1,2 i-j-2)$.

[^0]Theorem 2. Uniformly as $\max (i, j) \rightarrow \infty$

$$
p_{i j} \sim \frac{1}{3^{5} i j}\binom{2 i}{j+3}\binom{2 j}{i+3}
$$

where the right hand side is zero when $p_{i j}=0$ and $\max (i, j) \geqq 4$.
Theorem 1 is more efficient when $i \leqq j$ than when $i \geqq j$: there are fewer terms and they decrease geometrically in magnitude after the first few. When $d=3$, there are only 2 terms which combine to give Tutte's formula [4] for the number of rooted triangulations. To calculate $p_{i j}$ to n significant digits requires at most $O(\log n)$ terms in the latter summation in Theorem 1 independent of i and j provided $i \leqq j$. Theorem 2 simplifies and extends the range of Bender and Richmond's formula [1, Theorem 1]. It now follows from Bender and Wormald [2, Corollary 4.2] that the number of combinatorially distinct convex polyhedra is asymptotic to

$$
\frac{1}{2^{2} 3^{5} i j(i+j)}\binom{2 i}{j+3}\binom{2 j}{i+3}
$$

uniformly as $\max (i, j) \rightarrow \infty$.
Unless otherwise noted, we shall assume that $i, j \geqq 3$ for the remainder of the paper.
2. Proof of Theorem 1. Mullin and Schellenberg [3, (6.24), (6.5)] obtained

$$
\sum p_{i j} x^{i} y^{j}=x y\left(\frac{1}{1+x}+\frac{1}{1+y}-1\right)-F
$$

where

$$
F=\frac{r s}{(1+r+s)^{3}}
$$

and (r, s) is given implicity by $(r(0,0), s(0,0))=(0,0)$ and

$$
(x, y)=\left(r /(1+s)^{2}, s /(1+r)^{2}\right)
$$

They applied Lagrange inversion to this to obtain $p_{i j}$ as a double summation. By arranging terms differently, we obtain a single summation. By Lagrange inversion, $p_{i j}$ is the constant term in

$$
\begin{aligned}
& \frac{-F}{x(r, s)^{i+1} y(r, s)^{j+1}}\left|\begin{array}{ll}
\partial x / \partial r & \partial x / \partial s \\
\partial y / \partial r & \partial y / \partial s
\end{array}\right| r s \\
& =\frac{(1+s)^{2 i-1}(1+r)^{2 j-1}(3 r s-r-s-1)}{r^{i-1} s^{j-1}(1+r+s)^{3}} \\
& =3 \frac{(1+s)^{2 i-4}(1+r)^{2 j-1}}{r^{i-2} s^{j-2}}\left(1+\frac{r}{1+s}\right)^{-3}
\end{aligned}
$$

$$
-\frac{(1+s)^{2 i-3}(1+r)^{2 j-1}}{r^{i-1} s^{j-1}}\left(1+\frac{r}{1+s}\right)^{-2}
$$

By expanding the last factor in each of the terms and then extracting coefficients we obtain

$$
\begin{align*}
p_{i j} & =\sum_{k \geqq 0} 3\binom{-3}{k}\binom{2 i-k-4}{j-2}\binom{2 j-1}{i-k-2} \tag{2.1}\\
& -\sum_{k \geqq 0}\binom{-2}{k}\binom{2 i-k-3}{j-1}\binom{2 j-1}{i-k-1} .
\end{align*}
$$

Write $K=k-1$ and

$$
\binom{-2}{k}=\binom{-3}{k}+\binom{-3}{K}
$$

in the second sum of (2.1), regroup terms by replacing K with k in the appropriate summation index, and perform a bit of algebra to obtain the first summation in Theorem 1. The second summation is obtained in a similar fashion after first writing

$$
A_{k}\binom{-3}{k}=(j-2 i+2)\left\{\binom{-4}{k}+\binom{-4}{K}\right\}+3(j-2)\binom{-4}{K} .
$$

3. Proof of Theorem 2. We will use the latter summation in Theorem 1 and will assume, without loss of generality, that $j \geqq i$. By Euler's theorem,

$$
d=2 i-j \geqq 3
$$

with equality for triangulations. For $\epsilon>0$ and $d=O\left(i^{1-\epsilon}\right)$, it can be shown by straightforward calculations that the first two terms in the summation suffice to obtain Theorem 2 uniformly. We suppose $\epsilon<1 / 3$ and $d \geqq i^{1-\epsilon}$ for the remainder of the paper.

We have

$$
\binom{2 i-k-5}{j-3} /\binom{2 i-5}{j-3}=\prod_{t=0}^{k-1}\left(\frac{d-2-t}{2 i-5-t}\right)=\left(\frac{d}{2 i}\right)^{k}(1-f)
$$

where $0 \leqq f$ and, for $k=O\left(i^{\epsilon}\right), f=O\left(i^{3 \epsilon-1}\right)$ uniformly. Similarly,

$$
\binom{2 j+1}{i-k+1}\binom{2 j+1}{i+1}=\left(\frac{i}{2 j-1}\right)^{k}(1-g)
$$

where $0 \leqq g$ and, for $k=O\left(i^{\epsilon}\right), g=O\left(i^{3 \epsilon-1}\right)$ uniformly. Combining these results we obtain

$$
p_{i j} \sim \frac{1}{2 j^{4}}\binom{2 i-5}{j-3}\binom{2 j+1}{i-1}\left\{\sum(C+D k)\binom{-4}{k} \rho^{k}+O\left(i^{1+3 \epsilon}\right)\right\}
$$

where $C=-4 d^{2}-2 i d, D=2 d^{2}-i d-6 i^{2}$ and

$$
\rho=\frac{d}{2(2 j-i)} \leqq \frac{1}{2} .
$$

By using

$$
\sum\binom{-4}{k} \rho^{k}=(1+\rho)^{-4} \text { and } \sum k\binom{-4}{k} \rho^{k}=-4 \rho(1+\rho)^{-5}
$$

and a bit of algebra,

$$
p_{i j} \sim \frac{1}{2 j^{4}}\binom{2 i-5}{j-3}\binom{2 j+1}{i-1} \frac{d(2 i-d)}{(1+\rho)^{5}} .
$$

Theorem 2 follows with a bit of algebra.

References

1. E. A. Bender and L. B. Richmond, The asymptotic enumeration of rooted convex polyhedra, J. Combin. Theory Ser. B. 36 (1984), pp. 276-283.
2. E. A. Bender and N. C. Wormald, Almost all convex polyhedra are asymmetric, Canad. J. Math. 27 (I985), pp. 854-871.
3. R. C. Mullin and P. J. Schellenberg, The enumeration of c-nets via quadrangulations, J. Combin. Theory 3 (1968), pp. 259-276.
4. W. T. Tutte, A census of planar triangulations, Canad. J. Math. 15 (1963), pp. 249-271.

Department of Mathematics
University of California at San Diego
La Jolla, CA 92093 USA

Department of Mathematics and Statistics
The University of Auckland
Private Bag, Auckland, New Zealand

[^0]: Received by the editors May 26, 1986.
 Research of the first author partially sponsored by the Office of Naval Research under Contract N00014-85-K-0495.

 AMS-MOS Subject Classification (1980): 05C30.
 © Canadian Mathematical Society 1986.

