NOTE ON LEHMER-PIERCE SEQUENCES WITH THE SAME PRIME DIVISORS

M. SKAŁBA

(Received 3 July 2017; accepted 17 July 2017; first published online 4 October 2017)

Abstract

Let a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_l be two sequences of pairwise distinct positive integers greater than 1. Assume also that none of the above numbers is a perfect power. If for each positive integer *n* and prime number *p* the number $\prod_{i=1}^{m} (1 - a_i^n)$ is divisible by *p* if and only if the number $\prod_{j=1}^{l} (1 - b_j^n)$ is divisible by *p*, then m = l and $\{a_1, a_2, \ldots, a_m\} = \{b_1, b_2, \ldots, b_l\}$.

2010 *Mathematics subject classification*: primary 11B50; secondary 11A15. *Keywords and phrases*: Lehmer–Pierce sequences, power residues.

Let a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_l be two sequences of pairwise distinct positive integers greater than 1. We associate with them the following two sequences:

$$x_n = \prod_{i=1}^m (1 - a_i^n), \quad y_n = \prod_{j=1}^l (1 - b_j^n).$$
(1)

They belong to the broader class of so-called *Lehmer–Pierce* sequences (see, for example, [2]).

For any natural number z, let supp(z) denote the set of all prime divisors of z. The main result of the paper is the following theorem.

THEOREM 1. *Assume that for each* $n \in \mathbb{N}$ *,*

$$\operatorname{supp}(x_n) \subseteq \operatorname{supp}(y_n).$$
 (2)

Then, for any $i \in \{1, ..., m\}$ for which a_i is not a perfect power, there exists $j \in \{1, ..., l\}$ such that

$$b_i = a_i^t$$
 with $t \in \mathbb{N}$.

We now introduce some useful terminology. We call a Lehmer–Pierce sequence (x_n) of type (1) *reduced* if and only if none of the a_i is a perfect power.

THEOREM 2. Assume that for each $n \in \mathbb{N}$, the relation (2) holds and that (x_n) is reduced. Then, for each $n \in \mathbb{N}$, the term y_n is divisible by x_n and y_n/x_n is a linear recurrence sequence.

^{© 2017} Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

THEOREM 3. Assume that for each $n \in \mathbb{N}$,

$$\operatorname{supp}(x_n) = \operatorname{supp}(y_n) \tag{3}$$

and that both (x_n) and (y_n) are reduced. Then m = l, $\{a_1, a_2, ..., a_m\} = \{b_1, b_2, ..., b_l\}$ and $x_n = y_n$ for each $n \in \mathbb{N}$.

We need two lemmas.

LEMMA 4 [4, Corollary 1]. Let *n* and n_i be positive integers with $n_i | n$ for $1 \le i \le k$. Let *K* be a number field, $\alpha_i \in K^*$ $(1 \le i \le k)$ and $\beta_j \in K^*$ $(1 \le j \le l)$. Let $w_n(K)$ be the number of nth roots of unity contained in *K* and assume that

$$(w_n(K), \operatorname{lcm}[K(\zeta_a):K]) = 1,$$
 (4)

where the least common multiple is over all prime divisors q of n and additionally q = 4 if 4 | n. Consider the following implication.

Solubility in K of the k congruences x^{n_i} ≡ α_i (mod p) implies solubility in K of at least one of the l congruences xⁿ ≡ β_i (mod p).

The implication (i) holds for almost all prime ideals \mathfrak{P} of K if and only if there exists an involution σ of the power set of $\{1, \ldots, l\}$ such that for all $A \subset \{1, \ldots, l\}$,

$$|\sigma(A)| \equiv |A| + 1 \pmod{2}$$

and

$$\prod_{j\in\sigma(A)}\beta_j=\prod_{j\in A}\beta_j\prod_{i=1}^k\alpha_i^{a_in/n_i}\gamma^n,$$

where $a_i \in \mathbb{Z}, \gamma \in K^*$.

LEMMA 5. Let G be a free abelian group. Then the equality

$$\prod_{i=1}^{l} (1 - g_i) = 0 \quad in \ the \ group \ ring \ \mathbb{Z}[G]$$

implies that $g_i = e$ *for a certain* $i \in \{1, \ldots, l\}$ *.*

PROOF. Only a finite number of elements of *G* is involved and therefore we can assume that *G* is of finite rank, say $G = \mathbb{Z}^s$. Let us consider the homomorphism

$$h: \mathbb{Z}[G] \longrightarrow \mathbb{C}(z_1, \ldots, z_s)$$

given on group elements by the formula

$$h(k_1,\ldots,k_s)=z_1^{k_1}\cdots z_s^{k_s}.$$

It is clear that $g \neq e$ gives $h(g) \neq 1$ and hence the assertion follows.

PROOF OF THEOREM 1. Without loss of generality, assume that i = 1. Let q be a prime number and assume that a_1 is a qth power residue mod p, where p is also a prime number and $p \neq q$. If $p \not\equiv 1 \pmod{q}$, then all residues mod p are qth powers mod p and *a posteriori* there exists b_j , a qth power residue mod p. If $p \equiv 1 \pmod{q}$, then by Euler's criterion

$$a_1^{(p-1)/q} \equiv 1 \pmod{p}$$

and hence $x_{(p-1)/q} \equiv 0 \pmod{p}$ as well. Using the assumption (2) of the theorem, we infer that $y_{(p-1)/q} \equiv 0 \pmod{p}$ and further there exists *j* with $1 \le j \le l$ such that

$$b_i^{(p-1)/q} \equiv 1 \pmod{p}.$$

Using Euler's criterion once again, we see that b_j is a *q*th power residue mod *p*. So, we have verified that the implication (i) of Lemma 4 does hold for all $p \neq q$ ($K = \mathbb{Q}$, k = 1). The technical assumption (4) is obviously satisfied. Therefore, we conclude by Lemma 4 that there exist an involution $\sigma = \sigma(q)$ of the power set of $\{1, \ldots, l\}$ and integers $a(A), \gamma(A) \in \mathbb{Q}^*$ for $A \subset \{1, \ldots, l\}$ such that $|\sigma(A)| \equiv |A| + 1 \pmod{2}$ and

$$\prod_{j\in\sigma(A)} b_j = a_1^{a(A)} \gamma(A)^q \prod_{j\in A} b_j.$$
 (5)

Because there are only finitely many relevant involutions, there are an involution σ and an infinite set of primes Q such that (5) holds for $q \in Q$ with the same σ . Let \mathcal{D} be the set of all prime divisors of the number $a_1b_1 \cdots b_l$. For any prime $s \in \mathcal{D}$ and $u \in \mathbb{Q}^+$, let $v_s(u)$ be the *s*-adic exponent of u. For any $u \in \mathbb{Q}^+$, let $v(u) = (v_s(u))_{s \in \mathcal{D}}$ be the vector of exponents. For $q \in Q$, we obtain from (5) that

$$\dim_{\mathbb{F}_q}\left(\nu\left(\prod_{j\in\sigma(A)}b_j\cdot\prod_{j\in A}b_j^{-1}\right),\nu(a_1)\right)=1.$$

Because Q is infinite, it follows that

[3]

$$\dim_{\mathbb{Q}}\left(\nu\left(\prod_{j\in\sigma(A)}b_{j}\cdot\prod_{j\in A}b_{j}^{-1}\right),\nu(a_{1})\right)=1.$$

Now we employ the assumption that a_1 is not a perfect power and get

$$\prod_{j\in\sigma(A)} b_j = a_1^{a(A)} \prod_{j\in A} b_j \quad \text{with } a(A) \in \mathbb{Z}.$$

The above 2^{l-1} equalities can be compactly rewritten as the equality

$$\prod_{j=1}^{l} (1 - \overline{b}_j) = 0$$

in the group ring $\mathbb{Z}[\mathbb{Q}^+/\langle a_1 \rangle]$, where \overline{b}_j denotes the image of $b_j \in \mathbb{Q}^+$ in the quotient group $\mathbb{Q}^+/\langle a_1 \rangle$. Because a_1 is not a perfect power, the group $G = \mathbb{Q}^+/\langle a_1 \rangle$ is free and, by Lemma 5,

 $\overline{b}_j = e \quad \text{in } Q^+ / \langle a_1 \rangle,$

which gives $b_j = a_1^t$ with $t \in \mathbb{Z}$.

Theorems 2 and 3 are immediate corollaries of Theorem 1.

M. Skałba

Theorem 2 can be considered as a variant of the so-called *quotient problem* (see, for example, [5, Theorem A] and also [3]): instead of assuming that $y_n/x_n \in \mathbb{Z}$ for infinitely many $n \in \mathbb{N}$, we require that $\sup(x_n) \subseteq \sup(y_n)$ (for each $n \in \mathbb{N}$) and obtain essentially the same conclusion that y_n/x_n assumes only integral values and is a linear recurrence sequence. It would be interesting to generalise Theorem 2 to any pair $(x_n), (y_n)$ of linear recurrence sequences or at least to dispense with the restriction that (x_n) should be reduced.

Theorem 3 can be compared with the following theorem of Barańczuk.

THEOREM 6 (Barańczuk [1, Corollary 1.4]). Assume that a_1, \ldots, a_m are multiplicatively independent and also b_1, \ldots, b_l are multiplicatively independent. If, for each $n \in \mathbb{N}$, we have (3), then

 $\{a_1, \ldots, a_m\} = \{b_1, \ldots, b_l\}$ and $x_n = y_n$ or each n.

In [1] a broader perspective is outlined, which applies also to our note.

References

- S. Barańczuk, 'On a generalization of the support problem of Erdös and its analogues for abelian varieties and K-theory', *J. Pure Appl. Algebra* 214 (2010), 380–384.
- [2] G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, *Recurrence Sequences*, Mathematical Surveys and Monographs, 104 (American Mathematical Society, Providence, RI, 2003).
- [3] C. Sanna, 'Distribution of integral values for the ratio of two linear recurrences', *J. Number Theory* 180 (2017), 195–207.
- [4] A. Schinzel and M. Skałba, 'On power residues', Acta Arith. 108 (2003), 77-94.
- [5] U. Zannier, 'Diophantine equations with linear recurrences. An overview of some recent progress', J. Théor. Nombres Bordeaux 17(1) (2005), 423–435.

M. SKAŁBA, Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland e-mail: skalba@mimuw.edu.pl

14