NOTE ON LEHMER-PIERCE SEQUENCES WITH THE SAME PRIME DIVISORS

M. SKALBA

(Received 3 July 2017; accepted 17 July 2017; first published online 4 October 2017)

Abstract

Let $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{l}$ be two sequences of pairwise distinct positive integers greater than 1 . Assume also that none of the above numbers is a perfect power. If for each positive integer n and prime number p the number $\prod_{i=1}^{m}\left(1-a_{i}^{n}\right)$ is divisible by p if and only if the number $\prod_{j=1}^{l}\left(1-b_{j}^{n}\right)$ is divisible by p, then $m=l$ and $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}=\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$.

2010 Mathematics subject classification: primary 11B50; secondary 11A15.
Keywords and phrases: Lehmer-Pierce sequences, power residues.
Let $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{l}$ be two sequences of pairwise distinct positive integers greater than 1 . We associate with them the following two sequences:

$$
\begin{equation*}
x_{n}=\prod_{i=1}^{m}\left(1-a_{i}^{n}\right), \quad y_{n}=\prod_{j=1}^{l}\left(1-b_{j}^{n}\right) . \tag{1}
\end{equation*}
$$

They belong to the broader class of so-called Lehmer-Pierce sequences (see, for example, [2]).

For any natural number z, let $\operatorname{supp}(z)$ denote the set of all prime divisors of z. The main result of the paper is the following theorem.

Theorem 1. Assume that for each $n \in \mathbb{N}$,

$$
\begin{equation*}
\operatorname{supp}\left(x_{n}\right) \subseteq \operatorname{supp}\left(y_{n}\right) . \tag{2}
\end{equation*}
$$

Then, for any $i \in\{1, \ldots, m\}$ for which a_{i} is not a perfect power, there exists $j \in\{1, \ldots, l\}$ such that

$$
b_{j}=a_{i}^{t} \quad \text { with } t \in \mathbb{N}
$$

We now introduce some useful terminology. We call a Lehmer-Pierce sequence (x_{n}) of type (1) reduced if and only if none of the a_{i} is a perfect power.

Theorem 2. Assume that for each $n \in \mathbb{N}$, the relation (2) holds and that $\left(x_{n}\right)$ is reduced. Then, for each $n \in \mathbb{N}$, the term y_{n} is divisible by x_{n} and y_{n} / x_{n} is a linear recurrence sequence.

[^0]Theorem 3. Assume that for each $n \in \mathbb{N}$,

$$
\begin{equation*}
\operatorname{supp}\left(x_{n}\right)=\operatorname{supp}\left(y_{n}\right) \tag{3}
\end{equation*}
$$

and that both $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are reduced. Then $m=l,\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}=\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$ and $x_{n}=y_{n}$ for each $n \in \mathbb{N}$.

We need two lemmas.
Lemma 4 [4, Corollary 1]. Let n and n_{i} be positive integers with $n_{i} \mid n$ for $1 \leq i \leq k$. Let K be a number field, $\alpha_{i} \in K^{*}(1 \leq i \leq k)$ and $\beta_{j} \in K^{*}(1 \leq j \leq l)$. Let $w_{n}(K)$ be the number of nth roots of unity contained in K and assume that

$$
\begin{equation*}
\left(w_{n}(K), \operatorname{lcm}\left[K\left(\zeta_{q}\right): K\right]\right)=1, \tag{4}
\end{equation*}
$$

where the least common multiple is over all prime divisors q of n and additionally $q=4$ if $4 \mid n$. Consider the following implication.
(i) Solubility in K of the k congruences $x^{n_{i}} \equiv \alpha_{i}(\bmod \mathfrak{p})$ implies solubility in K of at least one of the l congruences $x^{n} \equiv \beta_{j}(\bmod \mathfrak{p})$.

The implication (i) holds for almost all prime ideals \mathfrak{p} of K if and only if there exists an involution σ of the power set of $\{1, \ldots, l\}$ such that for all $A \subset\{1, \ldots, l\}$,

$$
|\sigma(A)| \equiv|A|+1(\bmod 2)
$$

and

$$
\prod_{j \in \sigma(A)} \beta_{j}=\prod_{j \in A} \beta_{j} \prod_{i=1}^{k} \alpha_{i}^{a_{i} n / n_{i}} \gamma^{n},
$$

where $a_{i} \in \mathbb{Z}, \gamma \in K^{*}$.
Lemma 5. Let G be a free abelian group. Then the equality

$$
\prod_{i=1}^{l}\left(1-g_{i}\right)=0 \quad \text { in the group ring } \mathbb{Z}[G]
$$

implies that $g_{i}=e$ for a certain $i \in\{1, \ldots, l\}$.
Proof. Only a finite number of elements of G is involved and therefore we can assume that G is of finite rank, say $G=\mathbb{Z}^{s}$. Let us consider the homomorphism

$$
h: \mathbb{Z}[G] \longrightarrow \mathbb{C}\left(z_{1}, \ldots, z_{s}\right)
$$

given on group elements by the formula

$$
h\left(k_{1}, \ldots, k_{s}\right)=z_{1}^{k_{1}} \cdots z_{s}^{k_{s}} .
$$

It is clear that $g \neq e$ gives $h(g) \neq 1$ and hence the assertion follows.

Proof of Theorem 1. Without loss of generality, assume that $i=1$. Let q be a prime number and assume that a_{1} is a q th power residue $\bmod p$, where p is also a prime number and $p \neq q$. If $p \not \equiv 1(\bmod q)$, then all residues $\bmod p$ are q th powers $\bmod p$ and a posteriori there exists b_{j}, a q th power residue $\bmod p$. If $p \equiv 1(\bmod q)$, then by Euler's criterion

$$
a_{1}^{(p-1) / q} \equiv 1(\bmod p)
$$

and hence $x_{(p-1) / q} \equiv 0(\bmod p)$ as well. Using the assumption (2) of the theorem, we infer that $y_{(p-1) / q} \equiv 0(\bmod p)$ and further there exists j with $1 \leq j \leq l$ such that

$$
b_{j}^{(p-1) / q} \equiv 1(\bmod p)
$$

Using Euler's criterion once again, we see that b_{j} is a q th power residue $\bmod p$. So, we have verified that the implication (i) of Lemma 4 does hold for all $p \neq q(K=\mathbb{Q}$, $k=1$). The technical assumption (4) is obviously satisfied. Therefore, we conclude by Lemma 4 that there exist an involution $\sigma=\sigma(q)$ of the power set of $\{1, \ldots, l\}$ and integers $a(A), \gamma(A) \in \mathbb{Q}^{*}$ for $A \subset\{1, \ldots, l\}$ such that $|\sigma(A)| \equiv|A|+1(\bmod 2)$ and

$$
\begin{equation*}
\prod_{j \in \sigma(A)} b_{j}=a_{1}^{a(A)} \gamma(A)^{q} \prod_{j \in A} b_{j} \tag{5}
\end{equation*}
$$

Because there are only finitely many relevant involutions, there are an involution σ and an infinite set of primes Q such that (5) holds for $q \in Q$ with the same σ. Let \mathcal{D} be the set of all prime divisors of the number $a_{1} b_{1} \cdots b_{l}$. For any prime $s \in \mathcal{D}$ and $u \in \mathbb{Q}^{+}$, let $v_{s}(u)$ be the s-adic exponent of u. For any $u \in \mathbb{Q}^{+}$, let $v(u)=\left(v_{s}(u)\right)_{s \in \mathcal{D}}$ be the vector of exponents. For $q \in Q$, we obtain from (5) that

$$
\operatorname{dim}_{\mathbb{F}_{q}}\left(v\left(\prod_{j \in \sigma(A)} b_{j} \cdot \prod_{j \in A} b_{j}^{-1}\right), v\left(a_{1}\right)\right)=1 .
$$

Because Q is infinite, it follows that

$$
\operatorname{dim}_{\mathbb{Q}}\left(v\left(\prod_{j \in \sigma(A)} b_{j} \cdot \prod_{j \in A} b_{j}^{-1}\right), v\left(a_{1}\right)\right)=1 .
$$

Now we employ the assumption that a_{1} is not a perfect power and get

$$
\prod_{j \in \sigma(A)} b_{j}=a_{1}^{a(A)} \prod_{j \in A} b_{j} \quad \text { with } a(A) \in \mathbb{Z}
$$

The above 2^{l-1} equalities can be compactly rewritten as the equality

$$
\prod_{j=1}^{l}\left(1-\bar{b}_{j}\right)=0
$$

in the group ring $\mathbb{Z}\left[\mathbb{Q}^{+} /\left\langle a_{1}\right\rangle\right]$, where \bar{b}_{j} denotes the image of $b_{j} \in \mathbb{Q}^{+}$in the quotient group $\mathbb{Q}^{+} /\left\langle a_{1}\right\rangle$. Because a_{1} is not a perfect power, the group $G=\mathbb{Q}^{+} /\left\langle a_{1}\right\rangle$ is free and, by Lemma 5,

$$
\bar{b}_{j}=e \quad \text { in } Q^{+} /\left\langle a_{1}\right\rangle,
$$

which gives $b_{j}=a_{1}^{t}$ with $t \in \mathbb{Z}$.
Theorems 2 and 3 are immediate corollaries of Theorem 1.

Theorem 2 can be considered as a variant of the so-called quotient problem (see, for example, [5, Theorem A] and also [3]): instead of assuming that $y_{n} / x_{n} \in \mathbb{Z}$ for infinitely many $n \in \mathbb{N}$, we require that $\operatorname{supp}\left(x_{n}\right) \subseteq \operatorname{supp}\left(y_{n}\right)$ (for each $n \in \mathbb{N}$) and obtain essentially the same conclusion that y_{n} / x_{n} assumes only integral values and is a linear recurrence sequence. It would be interesting to generalise Theorem 2 to any pair $\left(x_{n}\right),\left(y_{n}\right)$ of linear recurrence sequences or at least to dispense with the restriction that $\left(x_{n}\right)$ should be reduced.

Theorem 3 can be compared with the following theorem of Barańczuk.
Theorem 6 (Barańczuk [1, Corollary 1.4]). Assume that a_{1}, \ldots, a_{m} are multiplicatively independent and also b_{1}, \ldots, b_{l} are multiplicatively independent. If, for each $n \in \mathbb{N}$, we have (3), then

$$
\left\{a_{1}, \ldots, a_{m}\right\}=\left\{b_{1}, \ldots, b_{l}\right\} \quad \text { and } \quad x_{n}=y_{n} \quad \text { or each } n .
$$

In [1] a broader perspective is outlined, which applies also to our note.

References

[1] S. Barańczuk, 'On a generalization of the support problem of Erdös and its analogues for abelian varieties and K-theory', J. Pure Appl. Algebra 214 (2010), 380-384.
[2] G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Mathematical Surveys and Monographs, 104 (American Mathematical Society, Providence, RI, 2003).
[3] C. Sanna, 'Distribution of integral values for the ratio of two linear recurrences', J. Number Theory 180 (2017), 195-207.
[4] A. Schinzel and M. Skałba, ‘On power residues', Acta Arith. 108 (2003), 77-94.
[5] U. Zannier, 'Diophantine equations with linear recurrences. An overview of some recent progress', J. Théor. Nombres Bordeaux 17(1) (2005), 423-435.

M. SKAŁBA, Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
e-mail: skalba@mimuw.edu.pl

[^0]: © 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

