A REMARK ON THE KRULL-SCHMIDT-AZUMAYA THEOREM

BY
B. L. OSOFSKY

It is well known that if a module M is expressible as a direct sum of modules with local endomorphism rings, then such a decomposition is essentially unique. That is, if $M=\oplus_{i \in I} M_{i}=\oplus_{j \in J} N_{j}$, then there is a bijection $f: I \rightarrow J$ such that M_{i} is isomorphic to $N_{f(i)}$ for all $i \in I$ (see [1]). On the other hand, a nonprincipal ideal in a Dedekind domain provides an example where such a theorem fails in the absence of the local hypothesis. Group algebras of certain groups over rings R of algebraic integers is another such example, where even the rank as R-modules of indecomposable summands of a module is not uniquely determined (see [2]). Both of these examples yield modules which are expressible as direct sums of two indecomposable modules in distinct ways. In this note we construct a family of rings which show that the number of summands in a representation of a module M as a direct sum of indecomposable modules is also not unique unless one has additional hypotheses. In these rings the identity may be expressed as a sum of sets of orthogonal primitive idempotents of differing cardinalities (finite of course), two decompositions may have the same cardinality but not isomorphic summands, and 1 may be a (finite) sum of orthogonal primitive idempotents in a ring with infinite sets of orthogonal primitive idempotents.

Let A be any set, and \sim an equivalence relation on A. Let F be the polynomial ring over $\mathbf{Z} / 2 \mathbf{Z}$ in noncommuting indeterminants $\left\{e_{\alpha} \mid \alpha \in A\right\}$. Let I be the ideal of F generated by the set

$$
\left\{e_{\alpha}^{2}-e_{\alpha}, e_{\alpha} e_{\beta} \mid \alpha, \beta \in A, \alpha \neq \beta, \alpha \sim \beta\right\}
$$

Let $R=F / I$. Denote the image of $x \in F$ in R by x^{\prime}. By definition, each e_{α}^{\prime} is idempotent, and for an equivalence class $\mathrm{cl}(\beta),\left\{e_{\alpha}^{\prime} \mid \alpha \in \mathrm{cl}(\beta)\right\}$ are orthogonal.

Monomials in F will be denoted by the letters u, v, w. The degree of a monomial is the sum of the exponents of the factors e_{α}. For convenience, 1 and 0 will both be considered monomials of degree 0 .

A monomial w is called reduced if w is a constant or if

$$
w=e_{\alpha(1)} e_{\alpha(2)} \ldots e_{\alpha(n)}
$$

where $\alpha(i) \sim \alpha(i+1)$ for $1 \leq i \leq n-1$.

Received by the editors July 28, 1969 and, in revised form, April 20, 1970.

A chain in I is a set $\left\{w_{j}\left(e_{\alpha(j)}^{2}-e_{\alpha(j)}\right) u_{j} \mid \alpha(j) \in A, 1 \leq j \leq m\right\}$, such that

$$
\sum_{j=1}^{k} w_{j}\left(e_{\alpha(j)}^{2}-e_{\alpha(j)}\right) u_{j}=v_{k}-w_{1} e_{\alpha(1)} u_{1}
$$

for all k between 1 and m, where $v_{k}=w_{k} e_{\alpha(k)}^{n} u_{k}$ for n either 1 or 2 .
A monomial u is linked to a monomial v if $u-v$ is the sum of some chain in I.
Lemma 1. Let $x^{\prime} \in R$. Then $x^{\prime}=\sum_{i=1}^{m} w_{i}^{\prime}$, where each w_{i} is reduced.
Proof. Since the natural map: $F \rightarrow R$ is epic, $x^{\prime}=\sum_{i=1}^{n} u_{i}^{\prime}$. If u_{i} is not reduced, either u_{i} contains a product $e_{\alpha} e_{\beta}$ where $\alpha \sim \beta, \alpha \neq \beta$ in which case delete i from the indexing set since $u_{i}^{\prime}=0$; or u_{i} contains some e_{α} 's to a higher than first power. Modulo I, however, such a u_{i} is congruent to a word w_{i} where all higher powers are replaced by first powers. Such a w_{i} is reduced, and $x^{\prime}=\sum w_{i}^{\prime}$.

Lemma 2. Let $u=e_{\alpha(1)}^{i(1)} i_{\alpha(2)}^{i(2)} \ldots e_{\alpha(n)}^{i(n)}$, where each $i(j) \geq 1$, and let u be linked to v. Then $v=e_{\alpha(1)}^{k(1)} e_{\alpha(2)}^{k(2)} \ldots e_{\alpha(n)}^{k(n)}$ where each $k(j) \geq 1$.

Proof. We use induction on the number of terms in a chain whose sum is $u-v$. If $u-v=w\left(e_{\alpha}^{2}-e_{\alpha}\right) \bar{w}$, the result is clear. If $u-v=\sum_{i=1}^{m} w_{i}\left(e_{\alpha(i)}^{2}-e_{\alpha(i)}\right) \bar{w}_{i}$, then the sum of the first $m-1$ terms of the chain is, by induction, equal to $\bar{u}-v$, where \bar{u} is of the required form. Then $u-\bar{u}=w_{m}\left(e_{\alpha(m)}^{2}-e_{\alpha(m)}\right) \bar{w}_{m}$, so by the first case u is of the required form.

Lemma 3. Let $0 \neq x=\sum_{i=1}^{m} w_{i}$, where each w_{i} is reduced. Then $x^{\prime} \neq 0$.
Proof. Assume not. Then

$$
x=\sum_{j=1}^{k} u_{j} g_{j} v_{j}
$$

where each

$$
g_{j} \in\left\{e_{\alpha}^{2}-e_{\alpha}, e_{\alpha} e_{\beta} \mid \alpha, \beta \in A, \alpha \sim \beta, \alpha \neq \beta\right\} .
$$

Assume k and x have been selected so that any sum of less than k terms $u g v, g$ a generator of I, has at least one nonreduced monomial in its unique expression as a sum of monomials in F, but x is a sum of reduced monomials. Since w_{1} is reduced, it cannot contain a factor $e_{\alpha} e_{\beta}, \alpha \sim \beta, \alpha \neq \beta$. Hence some $u_{j} g_{j} v_{j}$ is of the form $\bar{u}\left(e_{\alpha}^{2}-e_{\alpha}\right) \bar{v}$, where $\bar{u} e_{\alpha} \bar{v}=w_{1}$. Let $\bar{u}_{1}=\bar{u}, \bar{v}_{1}=\bar{v}, \alpha(1)=\alpha$. Assume we have a chain

$$
\left\{\bar{u}_{i}\left(e_{\alpha(i)}^{2}-e_{\alpha(i)}\right) \bar{v}_{i} \mid 1 \leq i \leq n\right\} \subseteq\left\{u_{j} g_{j} v_{j} \mid 1 \leq j \leq k\right\}
$$

such that $\sum_{i=1}^{n} \bar{u}_{i}\left(e_{\alpha(i)}^{2}-e_{\alpha(i)}\right) \bar{v}_{i}=u-w_{1}$. If u is not reduced, u cannot contain a subproduct $e_{\alpha} e_{\beta}, \alpha \sim \beta, \alpha \neq \beta$, by Lemma 2, and since x is a sum of reduced monomials, some one of the remaining $u_{j} g_{j} v_{j}$ must be of the form $\bar{u}_{n+1}\left(e_{\alpha(n+1)}^{2}\right.$ $\left.-e_{\alpha(n+1)}\right) \bar{v}_{n+1}$, where u is one of the two monomials appearing in this element of F. (Here we have used the fact that the only nonzero coefficient is 1 .) This element can then be used to increase the chain by one element. Continuing in this manner,
we either find a monomial which is not reduced which actually appears in x (a contradiction), or we find a reduced monomial which is linked to w_{1}. By Lemma 2, such a reduced monomial must equal w_{1}, so the sum of the chain is 0 . Deleting the chain from the set of $u_{j} g_{j} v_{j}$ gives a sum of fewer than k terms $u g v$ which has no nonreduced monomials, contradicting the minimality of k.

Lemmas 1 and 3 together state that every element x^{\prime} of R has a unique expression $x^{\prime}=\sum_{i=1}^{m} w_{i}^{\prime}$, where the w_{i} are reduced. Henceforth we will drop the prime in denoting elements of R, and all monomials will be reduced.

Proposition. $\left\{e_{\alpha} \mid \alpha \in A\right\}$ are primitive idempotents. Moreover, if $\operatorname{cl}(\beta)$ is finite, then $1-\sum_{\alpha \sim \beta} e_{\alpha}$ is also primitive.

Proof. Let $0 \neq k e_{\alpha}+e_{\alpha} \sum_{i=1}^{n} w_{i} e_{\alpha}$ be an idempotent of R, where $k \in \mathbf{Z} / 2 \mathbf{Z}$, each w_{i} has degree at least 1 , and each $e_{\alpha} w_{i} e_{\alpha}$ is reduced. Then

$$
x=e_{\alpha}\left(\sum_{i, j=1}^{n} w_{i} e_{\alpha} w_{j}-\sum_{m=1}^{n} w_{m}\right) e_{\alpha}
$$

is in I, and when multiplied out, all monomials which appear in the expression for x are reduced. If the largest degree of a monomial w_{i} is d, then the monomial $e_{\alpha} w_{i} e_{\alpha} w_{i} e_{\alpha}$ of degree $2 d+3$ occurs precisely once in the reduced expression for x, so $x^{\prime}=0 / S$ contradict Lemma 3. Thus no w_{i} can occur, and the idempotent is $k e_{\alpha}$.

Now assume $\operatorname{cl}(\beta)$ is finite, and let $f=1-\sum_{\alpha \sim \beta} e_{\alpha}$. If $0 \neq k f+f \sum w_{i} f$ is an idempotent of R, we may assume that no w_{i} starts or ends with e_{α} where $\alpha \sim \beta$. Proceeding exactly as above, replacing e_{α} by f in the expression for x and multiplying out, we get a reduced monomial $e_{\beta} w_{i} e_{\beta} w_{i} e_{\beta}$ which cannot be cancelled out in the reduced expression for x, so again there are no w_{i} and $k=1$.

The idempotents in the above proposition are not the only idempotents in the ring R. For example, if $\alpha \sim \beta, e_{\alpha}+e_{\alpha} e_{\beta}+e_{\alpha} e_{\beta} e_{\alpha}$ is idempotent. However, we can say the following: Let $f=f^{2} \in R, f=l+\sum w_{i}$, where l is a sum of products containing at most one element and every word w_{i} has degree at least 2 . Let w_{1} have smallest degree $d \geq 2$ among the w_{i}, and assume $l=0$. Then every reduced monomial in f^{2} has degree $\geq 2 d-1>d$ so $f^{2} \neq f$. Now assume l contains a subsum $e_{\alpha}+e_{\beta}$ where $\alpha \sim \beta$. Let $P(n)$ be the property that every reduced product of $k e_{\alpha}$'s and e_{β} 's is one of the w_{i} for $1 \leq k \leq n$. We are assuming $P(1)$. If $P(n)$ holds,

$$
f=e_{\alpha}+e_{\beta}+\sum_{k=1}^{n} \underbrace{e_{\alpha} e_{\beta} \ldots}_{k \text { factors }}+\sum_{k=1}^{n} \underbrace{e_{\beta} e_{\alpha} \ldots .}_{k \text { factors }}+\sum w_{i}^{\prime} .
$$

If $P(n+1)$ fails, then one product of $n+1$ elements, say $u=e_{\alpha} e_{\beta} \ldots$ ($n+1$ factors) is not among the w_{i}. In f^{2}, the monomial u is obtained by multiplying e_{α} by $e_{\beta} \ldots$ (n factors), by multiplying each $e_{\alpha} e_{\beta} \ldots e_{\beta}$ ($2 k$ factors) by both $e_{\beta} \ldots(n-2 k+2$ factors) and $e_{\alpha} \ldots$ ($n-2 k+1$ factors), and by multiplying $e_{\alpha} \ldots e_{\alpha}$ ($2 k+1$ factors) by both $e_{\alpha} e_{\beta} \ldots$ ($n-2 k+1$ factors) and $e_{\beta} \ldots$ ($n-2 k$ factors). In particular, u is obtained an odd number of times and so actually appears in f^{2} but not in f. Since
some $P(n)$ must fail, we conclude that l contains summands from at most one equivalence class and in particular, $l^{2}=l$. Moreover, $l \neq 1$ since $1-f$ is idempotent, so one equivalence class must occur.

Lemma 4. Let $f^{2}=f=l+\sum w_{i}, g^{2}=g=l^{\prime}+\sum v_{i}, f g=g f=0$, where l and l^{\prime} contain all monomials of f and g of degree ≤ 1. Then the equivalence class determined by l^{\prime} must have a corresponding idempotent appearing in lor some w_{i}.

Proof. Assume not. Then $l=e_{\alpha}+\cdots, l^{\prime}=e_{\beta}+\cdots, \alpha \sim \beta$. Let $P^{\prime}(n)$ be the property that every reduced product of $k e_{\alpha}$'s and e_{β} 's appears among the v_{i} for $2 \leq k \leq n$. We will use induction. $P^{\prime}(1)$ vacuously holds. To show $P^{\prime}(n) \Rightarrow P^{\prime}(n+1)$ we first distinguish two cases.

Case (i). $n=2 m$ is even, $m \geq 1$. Let $u=e_{\alpha} e_{\beta} \ldots e_{\alpha}$ ($2 m+1$ factors). Then

$$
g=e_{\beta}+\sum_{k=2}^{2 m} \underbrace{e_{\alpha} \cdots}_{k \text { factors }}+\sum_{k=2}^{2 m} \underbrace{e_{B} \cdots}_{k \text { factors }}+\sum v_{i}^{\prime}
$$

and in g^{2}, u is obtained by multiplying $e_{\alpha} \ldots e_{\beta}$ ($2 k$ factors) by $e_{\beta} \ldots e_{\alpha}(2 m-2 k+2$ factors) or by $e_{\alpha} \ldots e_{\alpha}\left(2 m-2 k+1\right.$ factors) if $k \neq m$, by multiplying $e_{\alpha} \ldots e_{\alpha}(2 k-1$ factors, $k \geq 2$) by $e_{\alpha} \ldots e_{\alpha}$ ($2 m-2 k+3$ factors) or by $e_{\beta} \cdots e_{\alpha}$ ($2 m-2 k+2$ factors), and by multiplying $e_{\alpha} \ldots e_{\beta}$ ($2 m$ factors) by $e_{\beta} e_{\alpha}$. In particular, it occurs an odd number of times so that u appears in g^{2} and hence in g. If $u^{\prime}=e_{\beta} \ldots e_{\beta}(2 m+1$ factors), u^{\prime} arises in g^{2} by multiplying e_{β} by $e_{\alpha} \ldots e_{\beta}$ ($2 m$ factors) and all other initial segments by two distinct monomials of g. If u^{\prime} appears in $g, e_{\beta} u^{\prime}$ and $u^{\prime} e_{\beta}$ cancel out in g^{2}, so u^{\prime} must appear in g^{2} and hence in g.

Case (ii). Assume $P^{\prime}(2 m+1)$. Then

$$
g=e_{\beta}+\sum_{k=2}^{2 m+1} \underbrace{e_{\alpha} \cdots}_{k \text { factors }}+\sum_{k=2}^{2 m+1} \underbrace{e_{\beta} \cdots}_{k \text { factors }}+\sum v_{i}^{\prime}
$$

$f g$ contains the term $e_{\alpha} e_{\beta} \ldots e_{\beta}(2 m+2$ factors $)$ but no w_{i} is a product $e_{\alpha} e_{\beta} \ldots$. Hence $f g=0$ implies $e_{\alpha} v_{i}^{\prime}=e_{\alpha} e_{\beta} \ldots e_{\beta}$ ($2 m+2$ factors) for some v_{i}^{\prime}, and that v_{i}^{\prime} must equal $e_{\alpha} e_{\beta} \ldots e_{\beta}(2 m+2$ factors $)$. Moreover, $g f$ contains the term $e_{\beta} \ldots e_{\beta} e_{\alpha}$ ($2 m+2$ factors) so $e_{\beta} \ldots e_{\beta} e_{\alpha}\left(2 m+2\right.$ factors) likewise occurs among the v_{i}^{\prime}.

By induction, $P^{\prime}(n)$ holds for all n, a contradiction. These computations may be summarized by:

Theorem. For each of the following properties, there exists a ring R having the required property.
(i) R can be expressed as a finite direct sum of indecomposable left ideals but R contains an infinite set of primitive orthogonal idempotents.
(ii) R can be expressed as a direct sum of n indecomposable left ideals for each integer $n \geq 2$ but R contains no infinite set of orthogonal idempotents.

Proof. (i) Let $A=\omega, n \sim m \Leftrightarrow m n \neq 0$. Then $R=R e_{0} \oplus R\left(1-e_{0}\right)$ with e_{0} and ($1-e_{0}$) primitive idempotents, but $\left\{e_{n} \mid n \in \omega-\{0\}\right\}$ is an infinite set of orthogonal primitive idempotents.
(ii) Let A be the disjoint union of sets of cardinality $n+1$ for $n \in \omega, \alpha \sim \beta$ if and only if α and β belong to the same set in this disjoint union. Then the corresponding ring is a direct sum of $n+2$ indecomposable left ideals for each n. By Lemma 4 if E is a set of orthogonal idempotents, $f=\sum w_{i} \in E$, then f determines a finite number of equivalence classes which may serve for the linear parts of other idempotents in E. Hence there are at most a finite number of linear parts appearing in elements of E, and since $g^{2}=g=l+\sum w_{i}, h^{2}=h=l+\sum v_{i}$ implies $g h=l+\sum w_{i} \sum v_{j}+\sum l v_{i}$ $+\sum w_{i} l$ has linear part $l \neq 0, E$ must be finite. We remark that, in all of these rings, $\alpha \neq \beta$ implies $R e_{\alpha}$ is not isomorphic to $R e_{\beta}$ since $e_{\alpha}=e_{\alpha} f e_{\beta} g e_{\alpha}$ has no solutions f and g. Moreover, for all α and $\beta, R e_{\alpha}$ is not isomorphic to $R\left(1-e_{\beta}\right)$ for the same reason.

Remark. It has been brought to the author's attention that E. C. Dade also has an example of an entirely different ring satisfying the property (i) of the theorem.

References

1. G. Azumaya, Corrections and supplementaries to my paper concerning Krull-RemakSchmidt's theorem, Nagoya Math. J. 1 (1950), 117-124.
2. I. Reiner, Failure of the Krull-Schmidt theorem for integral representations, Michigan Math. J. 9 (1962), 225-231.

Rutgers University, New Brunswick, New Jersey

