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Abstract

Let H be a subgroup of a finite group G and let α be a complex-valued 2-cocycle of G. Conditions are found
to ensure there exists a nontrivial element of H that is α-regular in G. However, a new result is established
allowing a prime by prime analysis of the Sylow subgroups of CG(x) to determine the α-regularity of a
given x ∈ G. In particular, this result implies that every αH-regular element of a normal Hall subgroup H
is α-regular in G.
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1. Introduction

Throughout this paper, G will denote a finite group.

DEFINITION 1.1. A 2-cocycle of G over C is a function α : G × G→ C∗ such that
α(x, 1) = 1 and α(x, y)α(xy, z) = α(x, yz)α(y, z) for all x, y, z ∈ G.

The set of all such 2-cocycles of G forms a group Z2(G,C∗) under multiplication.
Let δ : G→ C∗ be any function with δ(1) = 1. Then t(δ)(x, y) = δ(x)δ(y)/δ(xy) for all
x, y ∈ G is a 2-cocycle of G, which is called a coboundary. Two 2-cocycles α and β
are cohomologous if there exists a coboundary t(δ) such that β = t(δ)α. This defines an
equivalence relation on Z2(G,C∗) and the cohomology classes [α] form a finite abelian
group, called the Schur multiplier M(G).

DEFINITION 1.2. Let α be a 2-cocycle of G. Then x ∈ G is α-regular if α(x, g) =
α(g, x) for all g ∈ CG(x).

Obviously, if x ∈ G is α-regular, then it is αk-regular for any integer k; also setting
y = 1 and z = x in Definition 1.1 yields α(1, x) = 1 for all x ∈ G and hence 1 is
α-regular. Let β ∈ [α]. Then x is α-regular if and only if it is β-regular and any
conjugate of x is also α-regular (see [5, Lemma 2.6.1]), so that one may refer to the
α-regular conjugacy classes of G. Using this notation and o( ) for the order of a group
element, we quote [3, Lemma 1.2(b)] for future reference.
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LEMMA 1.3. Suppose o(x) and o([α]) are relatively prime. Then x is α-regular.

Let H be a subgroup of G. Given a 2-cocycle α of G, one can define the 2-cocycle
αH of H by αH(x, y) = α(x, y) for all x, y ∈ H. The mapping from Z2(G,C∗)→
Z2(H,C∗) defined by α �→ αH maps coboundaries of G to those of H and conse-
quently induces the restriction homomorphism Res G,H : M(G)→ M(H) defined by
[α] �→ [αH]. Clearly, an element h ∈ H that is α-regular in G is αH-regular, but the
converse is in general false. The twin aims of this paper are to find conditions under
which first there exists a nontrivial element of H that is α-regular in G and second that
every αH-regular element of H is α-regular in G.

There are some circumstances in which it is possible to produce a nontrivial element
x ∈ G that is α-regular for all [α] ∈ M(G). For example, this is true if CG(x) = 〈x〉,
since the Schur multiplier of a cyclic group is trivial (see [4, Proposition 2.1.1]).
However, in general, α-regularity very much depends upon the choice of [α] as the
next example demonstrates, using the inflation homomorphism. Let N be a normal
subgroup of G. Then the mapping from Z2(G/N,C∗)→ Z2(G,C∗), β �→ α, where
α(x, y) = β(xN, yN) for all x, y ∈ G maps coboundaries of G/N to those of G and hence
induces Inf : M(G/N)→ M(G), [β] �→ [α]. Using this notation, it is clear that every
element of N is α-regular.

EXAMPLE 1.4. Let C(m)
n denote the direct product of m copies of the cyclic group

of order n. Let G � Cn1 × · · · × Cnk , where ni+1 | ni for i = 1, . . . , k − 1 and k ≥ 2.
Then M(G) � Cn2 × C(2)

n3 × · · · × C(k−1)
nk (see [4, Corollary 2.2.12]). Also, the group of

elements that are α-regular for all [α] ∈ M(G) is isomorphic to Cn1/n2 (see [5, Theorem
11.8.19]). Let R � C(2)

2 , then M(R) � C2 and so only the trivial element of C(2)
2 is

α-regular for [α] nontrivial. However, if H � R is a subgroup of R, then every element
of H is αH-regular. Now let S � C(3)

2 , so that M(S) � C(3)
2 . Let x be a nontrivial element

of S. Then Inf : M(S/〈x〉)→ M(S) is an injective map (see [4, Theorem 2.3.10])
that produces a subgroup 〈[α]〉 of order 2 of M(S) in which 1 and x are the only
α-regular elements. Thus, for any two different nontrivial elements [α], [β] ∈ M(S),
the intersection of the set of α-regular elements and β-regular elements of S contains
only the identity element.

2. Subgroups and regularity

DEFINITION 2.1. Let α be a 2-cocycle of G. Then an α-representation of G of
dimension n is a function P : G→ GL(n,C) such that P(x)P(y) = α(x, y)P(xy) for all
x, y ∈ G.

An α-representation P is also called a projective representation of G with 2-cocycle
α, its trace function ξ is its α-character and ξ(1), which is the dimension of P, is called
the degree of ξ.

To avoid repetition, all α-representations of G in this section are defined over C.
Let Proj(G,α) denote the set of all irreducible α-characters of G, the relationship
between Proj(G,α) and α-representations is much the same as that between Irr(G)
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and (ordinary) representations of G (see [5, page 184] for details) so, for example,∑
ξ∈Proj(G,α) ξ(1)2 = |G| (see [6, Lemma 1.4.4]). Next, x ∈ G is α-regular if and only

if ξ(x) � 0 for some ξ ∈ Proj(G,α) (see [6, Proposition 1.6.3]) and |Proj(G,α)| is the
number of α-regular conjugacy classes of G (see [6, Theorem 1.3.6]).

For [β] ∈M(G), there exists α ∈ [β] such that o(α)= o([β]) and α is class-preserving,
that is, the elements of Proj(G,α) are class functions (see [6, Corollary 4.1.6]).
Henceforward, it will be assumed, without loss of generality, that the initial choice
of 2-cocycle α has these two properties. Under these assumptions, the ‘standard’ inner
product 〈 , 〉 may be defined on αH-characters of subgroups H of G and the ‘normal’
orthogonality relations hold (see [6, Section 1.11.D]).

The main result in this section is the following simple observation.

LEMMA 2.2. Let α be a 2-cocycle of G and let H be a subgroup of G. Let ξ ∈ Proj(G,α)
and γ ∈ Proj(H,αH). Suppose that either 〈ξH , γ〉 = 0 or |H| � ξ(1)γ(1). Then there
exists a nontrivial h ∈ H such that ξ(h)γ(h) � 0 and, in particular, all such elements
are α-regular in G.

PROOF. The inner product of ξH and γ, which is a nonnegative integer, is defined by

〈ξH , γ〉 = 1
|H|

(
ξ(1)γ(1) +

∑
h∈H−{1}

ξ(h)γ(h)
)
.

Thus, under the two specified conditions, the summation on the right-hand side must
be nonzero. �

Using Frobenius reciprocity, similar results can be obtained to those in Lemma 2.2
using induction instead of restriction and replacing |H| by |G|.

COROLLARY 2.3. Let α be a 2-cocycle of G and let P be a Sylow p-subgroup of G.

(a) Suppose that G contains a nontrivial α-regular element. Then G contains a
nontrivial α-regular element of prime power order.

(b) Suppose that P contains a nontrivial αP-regular element. Then P contains a
nontrivial α-regular element of G.

PROOF. Let cα(G) denote the greatest common divisor of the degrees of the elements
of Proj(G,α). Then (cα(G))p = min{γ(1) : γ ∈ Proj(P,αP)} (see [6, Lemma 1.4.11]),
where np denotes the pth part of n.

For item (a), |Proj(G,α)| > 1 and so there exists a prime number q such that
(cα(G))2

q < |Q|, where Q is a Sylow q-subgroup of G. Let ξ ∈ Proj(G,α) and let
γ ∈ Proj(Q,αQ) with (ξ(1))q = γ(1) = (cα(G))q. Then Q contains a nontrivial α-regular
element of G from Lemma 2.2.

For item (b), |Proj(P,αP)| > 1 and the proof is the same as for item (a). �

These results give little control over the nontrivial α-regular element of G produced,
so in the next section, we will seek conditions under which a given element of G is
α-regular.
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3. Hall subgroups and regularity

Let H be a subgroup of G and let α be a 2-cocycle of H. Then for g ∈ G, one
can define the 2-cocycle αg of Z2(gHg−1,C∗) by αg(x, y) = α(g−1xg, g−1yg) for all
x, y ∈ gHg−1. The mapping from Z2(H,C∗)→ Z2(gHg−1,C∗) defined by α �→ αg maps
coboundaries of H to those of gHg−1 and therefore induces a homomorphism called
conjugation by g, Cong

H : M(H)→ M(gHg−1) defined by [α] �→ [αg]. So, in particular,
h ∈ H is α-regular if and only if ghg−1 is αg-regular in gHg−1. Next, [α] is G-stable if
for all g ∈ G,

ResH,H(g)([α]) = ResgHg−1,H(g)(Cong
H([α])),

where H(g) = H ∩ gHg−1. The G-stable elements of M(H) form a subgroup M(H)G

of M(H). In the next result, another homomorphism is mentioned, this is corestriction
from M(H) into M(G), but as it will not subsequently be used, the reader is referred to
[4, page 10] for details.

Next, some notation and definitions. Let π denote a set of prime numbers and let
n be a positive integer. Then nπ denotes the πth part of n and n is a π-number if
nπ = n. An element x ∈ G and a (sub)group H of G are a π-element and π-(sub)group
if o(x) and |H| are respectively π-numbers. Also let xπ and xπ′ be the unique elements
in 〈x〉 such that x = xπxπ′ with o(xπ) a π-number and o(xπ′) a π′-number, where π′ is
the complement to π in the set of all prime numbers. A Sylow π-subgroup S of G
is a maximal π-subgroup of G; S is a Hall π-subgroup of G if, in addition, |G : S| is
relatively prime to |S|. The first result generalises to Hall subgroups a theorem on the
connection between the Schur multiplier of G and those of its Sylow subgroups (see
[4, Theorem 2.1.2]).

PROPOSITION 3.1. Suppose H is a Hall π-subgroup of G. Then:

(a) corestriction from M(H) into M(G) maps M(H)G isomorphically onto the Hall
π-subgroup of M(G);

(b) restriction from M(G) into M(H) induces an injective homomorphism, res, from
the Hall π-subgroup of M(G) into M(H);

(c) M(H)G is a direct factor of M(H) and M(H)G is the image of res.

The proof is the same as for the aforementioned theorem with a few very minor
modifications, but it relies on the fact that |H| and |G : H| are relatively prime.
Consequently, Proposition 3.1 does not hold in general for a Sylow π-subgroup of G.
However, the next result is an immediate consequence of Proposition 3.1(a).

COROLLARY 3.2. Suppose H1 and H2 are Hall π-subgroups of G. Then M(H1)G and
M(H2)G are isomorphic.

Despite this corollary, it is possible for two Hall π-subgroups to possess nonisomor-
phic Schur multipliers as the following example illustrates.

EXAMPLE 3.3. Using the nomenclature and results from [2], the Mathieu group M23
has trivial Schur multiplier and has two conjugacy classes of Hall π-subgroups for
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π = {2, 3, 5, 7}. Also, these Hall π-subgroups are either isomorphic to L3(4) : 22 or
24 : A7 and the first of these groups has a cyclic Schur multiplier of order 4, whereas
for the second, it is cyclic of order 6 using Magma [1].

Given the close relationship between the Schur multiplier of a Hall π-subgroup H
of G and the Hall π-subgroup of M(G), one might expect a corresponding relationship
between the αH-regular elements of H and the α-regular π-elements of G.

THEOREM 3.4. Let α be a 2-cocycle of G. Let x ∈ G and let π be the set of prime
numbers that divide o(x). For each pi ∈ π, let Pi be a Sylow pi-subgroup of C = CG(x)
and suppose that α(g, x) = α(x, g) for all g ∈ Pi. Then x is α-regular in G.

PROOF. Using the assumption that o(α) = o([α]), x is α-regular if and only if it is
απ-regular and απ′-regular. Now, x is απ′-regular from Lemma 1.3, so we may assume
α = απ. Now, α′ : C × 〈x〉 → C∗, defined by α′(g, xi) = α(g, xi)/α(xi, g) for all g ∈ C
and all integers i, is a pairing (see [4, Lemma 2.3.8]). The kernel K of the linear
character α′(g, x) for all g ∈ C has order divisible by |P| for all Sylow p-subgroups
P of C, by supposition for p ∈ π and by Lemma 1.3 otherwise. (Alternatively, |K| is
divisible by |Pi| for all pi ∈ π by supposition and the group generated by the pairing α′

is isomorphic to a subgroup of C/K ⊗ 〈x〉. This tensor product is trivial since the first
group is a π′-group whereas the second is a π-group.) �

Two applications of Theorem 3.4 are recorded in the following corollaries.

COROLLARY 3.5. Let α be a 2-cocycle of G and let x ∈ S be αS-regular for S, a Sylow
π-subgroup of G. For each prime number pi ∈ π, let Pi be a Sylow pi-subgroup of CS(x)
and suppose that Pi is a Sylow pi-subgroup of CG(x). Then x is α-regular in G.

PROOF. The set of prime numbers that divide o(x) is a subset of π and so x is α-regular
in G from Theorem 3.4. �

COROLLARY 3.6. Let α be a 2-cocycle of G and let S be a Sylow π-subgroup of G. If S
is normal in G, then every αS-regular element of S is α-regular in G.

PROOF. Let x ∈ S be αS-regular. Then CS(x) = CG(x) ∩ S is a normal Sylow
π-subgroup of CG(x) and Corollary 3.5 applies. �
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