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Abstract

Let X be a geometrically irreducible smooth projective curve defined over R, of genus at least 2, that
admits a nontrivial automorphism, σ . Assume that X does not have any real points. Let τ be the
antiholomorphic involution of the complexification xC of X . We show that if the action of σ on the
set S(X) of all real theta characteristics of X is trivial, then the order of σ is even, say 2k, and the
automorphism τ ◦ σ̂ k of XC has a fixed point, where σ̂ k is the automorphism of X ×R C defined by σ .
We then show that there exists X with a real point and admitting a nontrivial automorphism σ , such that
the action of σ on S(X) is trivial, while X/〈σ 〉 6= P1

R. We also give an example of X with no real points
and admitting a nontrivial automorphism σ , such that the automorphism τ ◦ σ̂ k has a fixed point, the
action of σ on S(X) is trivial, and X/〈σ 〉 6= P1

R.
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1. Introduction

Let X be a smooth complex projective curve of genus g, with g ≥ 2. Assume that X
admits nontrivial automorphisms; fix a nontrivial automorphism σ of X . In [3] it was
shown that if σ fixes all the theta characteristics of X pointwise, then X is hyperelliptic
and σ is the unique hyperelliptic involution of X (this was also proved in [5]). Our aim
here is to address a similar question for curves defined over the field of real numbers.

Let X be a geometrically irreducible smooth projective curve defined over R. Let

τ : X ×R C−→ X ×R C (1.1)

be the antiholomorphic involution of the Riemann surface X ×R C. The genus of X ,
which will be denoted by g, is assumed to be at least 2. Let Picg−1(X)R denote the real
points of the Picard variety Picg−1(X). The real theta characteristics of X are all those
points of Picg−1(X)R which are square roots of the real point of Pic2g−2(X) given by
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the cotangent line bundle K X of X . Therefore any automorphism of X acts on the
set of real theta characteristics of X . The set of real theta characteristics of X will
be denoted by S(X). It should be mentioned that in general not all points of S(X)
represent some real algebraic line bundle over X .

Our first result is the following (see Theorem 2.3).

THEOREM 1.1. Let X be a geometrically irreducible smooth projective curve, of
genus at least 2, defined over the field of real numbers, without any real points. Assume
that X admits a nontrivial automorphism σ . Then at least one of the following is true.

(1) The action of σ on S(X) is nontrivial.
(2) The order of σ is even, say 2k, and the involution τ ◦ σ̂ k of XC has a fixed point,

where σ̂ k is the automorphism of XC defined by σ .

In Section 3 we show that there exists X with a real point and admitting a nontrivial
automorphism σ , such that:

(1) the action of σ on S(X) is trivial; and
(2) X/〈σ 〉 6= P1

R.

We also give an example of X with no real points and admitting a nontrivial
automorphism σ , such that:

(1) the automorphism τ ◦ σ̂ k has a fixed point;
(2) the action of σ on S(X) is trivial; and
(3) X/〈σ 〉 6= P1

R.

We also complete the case of odd theta characteristics which was left out in [3].
More precisely, we prove the following (see Proposition 4.2).

PROPOSITION 1.2. Let Y be a connected smooth complex projective curve of genus g,
with g ≥ 2, that admits a nontrivial automorphism σ . If σ fixes all the odd theta
characteristics of Y pointwise, then Y is hyperelliptic and σ is the unique hyperelliptic
involution of Y .

It was noted in [3] that the corresponding statement for even theta characteristics
on X is valid; see [3, p. 496, Proposition 2.3].

2. Real theta characteristics

Let X be a geometrically irreducible smooth projective curve defined over the field
of real numbers. Let

XC := X ×R C
be the complexification of X . Therefore XC is an irreducible smooth projective curve
defined over C. In other words, XC is a compact connected Riemann surface. The
Galois group Gal(C/R)= Z/2Z acts on XC through an antiholomorphic involution

τ : XC −→ XC. (2.1)

The real points of X are precisely the fixed points of this involution τ .
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Given a holomorphic line bundle L on the Riemann surface XC, let L denote
the C∞ complex line bundle on XC whose underlying smooth real vector bundle of
rank 2 is identified with the smooth real vector bundle of rank 2 underlying L , while for
x ∈ XC, the complex structure of a fiber Lx is the conjugate of the complex structure
of the fiber Lx . The pullback τ ∗L has a natural holomorphic structure, where τ is the
antiholomorphic involution of XC in (2.1). A smooth section of τ ∗L defined over an
analytic open subset U ⊂ XC is holomorphic if and only if the corresponding section
of L over τ(U ) is holomorphic.

For any d ∈ Z, let Picd(X) be the Picard variety of X for degree d . The set of real
points of Picd(X) will be denoted by Picd(X)R. We note that Picd(X)R parameterizes
all holomorphic line bundles L of degree d over XC such that τ ∗L is holomorphically
isomorphic to L , where τ is defined in (2.1).

The real algebraic line bundles over X of degree d form a subset of Picd(X)R.
However, in general not every point of Picd(X)R corresponds to some real algebraic
line bundle over X of degree d . To explain this, let ξ be a real algebraic line bundle
of degree d over X . Then the base change ξC := ξ ⊗R C is a holomorphic line bundle
over XC of degree d . The Galois group Gal(C/R)= Z/2Z acts on ξC through an
isomorphism of holomorphic line bundles

f : ξ −→ τ ∗ξ

such that the composition

ξ
f
−→ τ ∗ξ

τ∗ f
−→ τ ∗τ ∗ξ = ξ

is the identity automorphism of ξ . Conversely, any pair (ζ, f0), where ζ is a
holomorphic line bundle over XC of degree d and

f0 : ζ −→ τ ∗ζ

is a holomorphic isomorphism of line bundles such that the composition

ζ
f0
−→ τ ∗ζ

τ∗ f0
−→ τ ∗τ ∗ζ = ζ

is the identity automorphism of ζ , define a real algebraic line bundle over X of
degree d. The point to note is that in general there are examples of holomorphic
line bundles ζ over XC such that τ ∗ζ is holomorphically isomorphic to ζ , but there is
no isomorphism f0 from ζ to τ ∗ζ that satisfies the condition

τ ∗ f0 ◦ f0 = Idζ ;

see [4] for more details.
Let g denote the genus of X . We recall below the definition of a real theta

characteristic on X ; see [4, p. 167].

DEFINITION 2.1. A point of Picg−1(X)R is called a real theta characteristic of X
if the corresponding line bundle L over XC satisfies the condition that L⊗2 ∼= K XC ,
where K XC is the cotangent line bundle of the complex curve XC. The set of all real
theta characteristics on X will be denoted by S(X).
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REMARK 2.2. In the above definition we do not demand that a real theta characteristic
of X is a real algebraic line bundle on X . Therefore the above definition of a real theta
characteristic differs from the one given in [7], while it coincides with the definition
in [4].

Let Pic0(XC)2 ⊂ Pic0(XC) be the subgroup defined by all line bundles of order 2.
Define

A := Pic0(X)R ∩ Pic0(XC)2 (2.2)

to be the intersection.
We know that S(X) is nonempty [2, p. 61], [4, p. 164, Corollary 4.3]. The set S(X)

is evidently a principal homogeneous space (also called a torsor) for A defined in (2.2).
In other words, the group A acts freely transitively on the set S(X). The action of any
ξ ∈A on S(X) is defined by L 7−→ L ⊗ ξ .

The group Pic0(XC)2 in (2.2) is canonically identified with H1(XC, Z/2Z). To see
this, first note that

H1(XC, Z/2Z)= Hom(π1(XC), Z/2Z).

A homomorphism α : π1(XC)−→ Z/2Z) gives a flat complex line bundle over XC
of order 2; in particular, α gives a holomorphic line bundle over XC of order 2. This
identifies the group Pic0(XC)2 with H1(XC, Z/2Z).

The involution τ in (2.1) gives an involution

τ̂ : H1(XC, Z/2Z)−→ H1(XC, Z/2Z) (2.3)

defined by
α 7−→ τ ∗α.

The above identification of the group Pic0(XC)2 with H1(XC, Z/2Z) sends the sub-
group A⊂ Pic0(XC)2 in (2.2) surjectively to the invariant subgroup

H1(XC, Z/2Z)τ̂ ⊂ H1(XC, Z/2Z) (2.4)

on which τ̂ coincides with the identity map.
We noted earlier that S(X) is a principal homogeneous space for A. Therefore,

using the above identification A= H1(XC, Z/2Z)τ̂ , we have an action of the group
H1(XC, Z/2Z)τ̂ on S(X),

H1(XC, Z/2Z)τ̂ × S(X)−→ S(X), (2.5)

which makes S(X) a principal homogeneous space for H1(XC, Z/2Z)τ̂ .
Given any automorphism σ of the real curve X , let

σ̂ : XC −→ XC (2.6)

be the corresponding automorphism of XC. Since σ̂ is induced by an automorphism
of X , it follows immediately that σ̂ commutes with the antiholomorphic involution τ
in (2.1). This implies that for any L ∈ S(X)⊂ Picg−1(XC), the pullback σ̂ ∗L is also
an element of S(X). Therefore σ acts on the set S(X) by sending any L to σ̂ ∗L .
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Since τ and σ̂ commute, the subspace H1(XC, Z/2Z)τ̂ in (2.4) is left invariant
by the action of σ on H1(XC, Z/2Z) that sends any β ∈ H1(XC, Z/2Z) to σ̂ ∗β.
The map φ in (2.5) is clearly equivariant for the actions of σ on S(X) and
H1(XC, Z/2Z)τ̂ × S(X); the action of σ on S(X) is defined by L 7−→ σ̂ ∗L ,
and σ acts diagonally on H1(XC, Z/2Z)τ̂ × S(X) through the above actions on
H1(XC, Z/2Z)τ̂ and S(X).

It is known that the hyperelliptic involution of a compact hyperelliptic Riemann
surface Z acts trivially on the set of all theta characteristics on Z ; see [1, p. 288,
32(i)].

THEOREM 2.3. Let X be a geometrically irreducible smooth projective curve, of
genus at least 2, defined over the field of real numbers, without any real points. Assume
that X admits a nontrivial automorphism σ . Then at least one of the following is true.

(1) The action of σ on S(X) is nontrivial.
(2) The order of σ is even, say 2k, and the involution τ ◦ σ̂ k of XC has a fixed point

(see (2.6) for σ̂ ).

PROOF. Let g be the genus of X ; so g ≥ 2. Since X does not have any real points, the
involution τ in (2.1) does not have any fixed points. Therefore the quotient

Y := XC/〈τ 〉 (2.7)

is a smooth nonorientable surface.
Let σ be a nontrivial automorphism of X that acts trivially on S(X). As in (2.6),

the corresponding automorphism of XC := X ×R C will be denoted by σ̂ .
We noted above that the homomorphism φ in (2.5) is equivariant for the actions

of σ . We also noted that S(X) is nonempty, and it is a principal homogeneous space for
H1(XC, Z/2Z)τ̂ . Therefore the given condition that σ acts trivially on S(X) implies
immediately that the action of σ on H1(XC, Z/2Z)τ̂ defined by β 7−→ σ̂ ∗β is trivial.

Let
H1(XC, Z/2Z)τ̂ ⊂ H1(XC, Z/2Z)

be the invariant part of the involution α 7−→ τ̂∗(α) of H1(XC, Z/2Z). Similarly, σ
acts on H1(XC, Z/2Z) by sending any α to σ̂∗(α). Since σ acts trivially on
H1(XC, Z/2Z)τ̂ , by using the Poincaré duality pairing it follows immediately that σ
acts trivially on H1(XC, Z/2Z)τ̂ .

For any α, β ∈ H1(XC, Z/2Z), their cap product, which is an element of Z/2Z,
will be denoted by α · β. We recall that a linear basis

{α1, β1, . . . , αg, βg} ⊂ H1(XC, Z/2Z)

is called symplectic if αi · β j = δi j and αi · α j = 0= βi · β j for all i, j . The following
lemma will be needed in the proof of the theorem.

LEMMA 2.4. There is a symplectic basis {α1, β1, . . . , αg, βg} of H1(XC, Z/2Z) such
that τ̂∗(βi )= βi for all 1≤ i ≤ g.
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PROOF. The real projective plane and the 2-sphere will be denoted by P and S2

respectively. Let
π ′ : S2

−→ P

be a universal covering map. The topological surface Y in (2.7) is obtained from P by
removing the interiors of g disjoint disks D1, . . . , Dg and gluing in g Möbius bands
M1, . . . , Mg .

The orientable twofold cover of the Möbius band is an annulus. The surface XC
is obtained from the sphere S2 by attaching g disjoint 1-handles. Further, the
boundary of each of the g Möbius bands Mi ⊂ Y has inverse image in XC, a pair
of homologous curves. These two homologous curves are the boundary components
of the corresponding annulus. We note that these two curves are also homologous to
the central curve of the annulus. By the standard presentation for the homology of a
surface, it follows that the central curves of the g annuli form a symplectic half-basis
(basis for a Lagrangian subspace) β1, . . . , βg .

We have seen that, when i ∈ [1, g], the elements βi ∈ H1(XC, Z/2Z) are fixed
by τ∗. The lemma follows by completing the half-basis {β1, . . . , βg} to a symplectic
basis. 2

Continuing with the proof of the theorem, we fix a symplectic basis

{α1, β1, . . . , αg, βg} ⊂ H1(XC, Z/2Z)

given by Lemma 2.4; so τ̂∗(βi )= βi for all 1≤ i ≤ g. Since σ acts trivially on
H1(XC, Z/2Z)τ̂ , it follows that

σ̂∗(βi )= βi (2.8)

for all 1≤ i ≤ g.
Next, observe that for 1≤ i ≤ g,

αi · β j = σ̂∗(αi ) · σ̂∗(β j )= σ̂∗(αi ) · β j

for all j . By elementary properties of the symplectic pairing it now follows that there
are elements ai j ∈ Z/2Z such that

σ̂∗(αi )= αi +

g∑
j=1

ai jβ j

for all 1≤ i ≤ g.
Using (2.8), it follows by induction that

σ̂ n
∗ (αi )= αi +

g∑
j=1

nai jβ j (2.9)

for all n ∈ N.
As σ̂ is a holomorphic automorphism of XC, and g ≥ 2, we know that σ̂ is periodic,

that is, σ̂ n
= IdXC for some n > 1.

First assume that the order n of σ̂ is odd. From (2.9) we know that ai j = 0 for
all i, j ∈ [1, g]. Thus, the automorphism σ̂∗ is the identity map of H1(XC, Z/2Z).
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This implies that XC is a hyperelliptic Riemann surface, and σ̂ is the unique hyper-
elliptic involution of XC (see [3, p. 495, Theorem 2.1]); recall that σ̂ is a non-
trivial automorphism of XC. In particular, the order of σ̂ is 2. But this contradicts
the assumption that the order n of σ̂ is odd.

Now consider the case where the order n of σ̂ is even, say n = 2k. Assume that the
second statement in the theorem is false. Therefore the involution τ ◦ σ̂ k of XC does
not fix any point.

Since σ̂ commutes with τ , we have an induced diffeomorphism σ of Y = XC/〈τ 〉.

LEMMA 2.5. The action of σ on H1(Y, Z/2Z) is trivial.

PROOF. We use the explicit description of the covering XC of Y given in the proof
of Lemma 2.4. A basis for H1(Y, Z/2Z) is given by the central circles of P and the
Möbius bands Mi (see the proof of Lemma 2.4).

We first sketch a geometric proof. The inverse image of each of these central circles
is a simple closed curve fixed (as a set) by τ . It follows that τ , hence σ̂ , fixes the
corresponding element in homology mod 2. One deduces that the homology classes
of the central circles are fixed by σ .

More formally, using Poincaré duality, the central circles ci of P and Mi represent
elements of H1(Y, Z/2Z). The pullback of these cohomology classes give elements
of H1(XC, Z/2Z) represented (using Poincaré duality) by the inverse images bi
of these curves. As these curves are fixed (as sets) by τ , so are the elements in
H1(XC, Z/2Z) they represent. It follows that σ̂ also fixes the corresponding elements
in H1(XC, Z/2Z).

As σ̂ is a homeomorphism, it fixes the mod 2 fundamental class in H2(XC, Z/2Z).
It follows that the elements in H1(XC, Z/2Z) represented by the curves bi are fixed
by σ̂ . We deduce that the elements of cohomology represented by the central circles
of P and the Möbius bands Mi are fixed by σ . By Poincaré duality, it follows that the
action on H1(Y, Z/2Z) is trivial. This completes the proof of Lemma 2.5. 2

Continuing with the proof of the theorem, consider the orbifold quotient F of Y by
the involution σ k . Observe that F is the quotient of XC by the group generated by the
involutions σ̄ k and τ . As the orientation-reversing involutions in this group have no
fixed points, the nonsmooth points of F are all locally modelled on the quotient of the
plane by a rotation of finite order (and not by a reflection).

It follows that the underlying surface of F is nonorientable, since otherwise the
orbifold cover Y would be orientable. Hence F is a connected sum of Möbius bands
with isolated orbifold singularities and Y is a twofold orbifold cover of F . Let ci
denote the central circles of the Möbius band Y .

We claim that at least one such central curve ci lifts to Y . Otherwise, as Y is a
twofold cover and the curves ci generate H1(Y, Z/2Z), we deduce that no orientation-
reversing curve lifts to Y , and hence Y is orientable, a contradiction.

Suppose that the curve ck lifts to Y . Then its inverse image in Y is a pair of disjoint
simple curves Ck and C ′k = τ(Ck). We see that these represent different elements in
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H1(Y, Z/2Z). Since Ck is nonorientable, its mod 2 self-intersection number Ck · Ck
is 1 mod 2. On the other hand, as Ck and C ′k are disjoint, we have Ck · C ′k = 0. Hence

[Ck] 6= [C
′

k] ∈ H1(Y, Z/2Z).

But by construction, τ maps [Ck] to [C ′k]. This contradicts Lemma 2.5. This
completes the proof of the theorem. 2

3. Examples

In this section we will construct two examples. The first example shows that that
there exist X with a real point and admitting a nontrivial automorphism σ , such that:

(1) the action of σ on S(X) is trivial; and
(2) X/〈σ 〉 6= P1

R.

The second example shows that there exist X with no real points and admitting a
nontrivial automorphism σ , such that:

(1) the automorphism τ ◦ σ̂ k has a fixed point;
(2) the action of σ on S(X) is trivial; and
(3) X/〈σ 〉 6= P1

R.

3.1. The first example. This will be obtained by constructing a compact connected
Riemann surface F with two commuting antiholomorphic involutions a and b, so
that b acts trivially on H1(F, Z/2Z). So h := a ◦ b and a have the same action in
H1(F, Z/2Z). In our example, h will be a nontrivial automorphism, of the real alge-
braic curve X defined by the pair (F, a), satisfying the condition genus(F/〈h〉) > 0.
More precisely, h will be a nontrivial automorphism of X that fixes all the real theta
characteristics on X pointwise. Since genus(F/〈h〉) > 0, the automorphism h is not a
hyperelliptic involution.

The compact Riemann surface F will be constructed using hyperbolic geometry.
Note that there is a bijective correspondence between hyperbolic surfaces and Riemann
surfaces, with the hyperbolic isometries corresponding to the holomorphic and
antiholomorphic self-maps.

Recall that there is a regular right-angled hexagon in the hyperbolic plane H,
which is unique up to an isometry of H. Parameterize the sides of this hexagon by
Z/6Z= {0, 1, 2, 3, 4, 5}, preserving their circular orderings. Let A1, B1, A2 and B2
be four copies of this hexagon. For each i ∈ {1, 2}, and

n ∈ {0, 2, 4} ⊂ {0, 1, 2, 3, 4, 5},

identify the nth side of Ai with the nth side of Bi using the identity map. So,
for i ∈ {1, 2}, by these identifications we obtain a pair of pants Pi with geodesic
boundaries.

Next, for each i = 1, 2, identify the first side of Ai ⊂ Pi with the third side
of Ai ⊂ Pi using the unique orientation-reversing isometry between the two sides.
Similarly, identify the first side of Bi ⊂ Pi with the third side of Bi ⊂ Pi using the
unique orientation-reversing isometry between the two sides. This gives a torus Ti
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with one boundary component. The boundary of Ti is the circle constructed from the
fifth sides of Ai and Bi .

Let ci ⊂ Ti be the geodesic circle which is the image of the union of the first sides
in Ai and Bi . Let di be the simple closed curve in Ti which is the image of the second
side of Ai ; note that in Pi , the second side of Ai is identified with the second side
of Bi . Finally, let ai (bi ) be the image in Ti of the fifth side of Ai (Bi ). Therefore
ai = Ai ∩ ∂Ti and bi = Bi ∩ ∂Ti .

We now construct F from T1 and T2 by identifying their boundary components in
such a manner that the arcs a1 and a2 are identified, while b1 is identified with b2.
More precisely, consider the unique orientation-reversing isometry from a1 (b1) to
a2 (b2). Let F be the quotient of the disjoint union of T1 and T2 constructed using
these two isometries. Using the restriction of the hyperbolic metric on H to the regular
hexagon, we obtain a hyperbolic metric on F . Therefore F is equipped with a complex
structure.

Consider the unique orientation-reversing isometries

A1 −→ A2 and B1 −→ B2

that map a1 to a2 and b1 to b2, respectively. These two isometries and their inverses
together induce an orientation-reversing isometry

a : F −→ F (3.1)

of the quotient F of the disjoint union of A1, A2, B1 and B2.
Similarly, we have an orientation-reversing isometry

A1 −→ B1

(A2 −→ B2) that takes a1 to b1 (a2 to b2). These, together with their inverses, induce
an orientation-reversing isometry

b : F −→ F (3.2)

of the quotient F . Also define
h := a ◦ b. (3.3)

Then h is an orientation-preserving isometry of F . Hence, h is a holomorphic
automorphism of the Riemann surface F . We note that both a and b are involutions.

The isometry b in (3.2) fixes the curves c1, c2, d1, d2 as sets, though not pointwise.
As these generate H1(F, Z/2Z), it follows that b acts trivially on H1(F, Z/2Z).
Therefore the diffeomorphism h in (3.3) fixes all the elements of H1(F, Z/2Z) that
are fixed by a. From this, it follows immediately that h fixes all the elements of
H1(F, Z/2Z) that are fixed by a.

The pair (F, a) defines a geometrically irreducible smooth projective curve of
genus 2 defined over R. Let X denote the real curve defined by (F, a). We note
that the image in F of the fifth side of A1 is fixed pointwise by a. Therefore the real
curve X has real points.
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Clearly we have a ◦ b = b ◦ a, where a and b are constructed in (3.1) and (3.2),
respectively. Therefore h defines an automorphism of X . Let

h′ : X −→ X (3.4)

be the automorphism of the real algebraic curve X given by h. Since both a and b are
involutions, it follows that h′ is also an involution.

We will show that the above automorphism h′ fixes all the real theta characteristics
on X pointwise.

We have already seen that h fixes all the elements of H1(F, Z/2Z) that are fixed
by a. Since the homomorphism φ in (2.5) commutes with the action of h′, to prove
that h′ ∈ Aut(X) fixes all the real theta characteristics on X pointwise, it suffices to
show that there is one real theta characteristic on X which is fixed by h′.

To construct a real theta characteristic on X which is fixed by h′, let

{p0
i , p1

i } ⊂ Ai ⊂ F

be the two vertices of the first side of the hexagon Ai , where i = 1, 2. The midpoint
of the second side of Ai will be denoted by qi . The two vertices of the fifth side of
A1 ⊂ F will be denoted by x0 and x1. Note the images in F of the two vertices of the
fifth side of A2, B1 and B2 all coincide with the subset {x0, x1

} ⊂ F .

LEMMA 3.1. Let O F (D) be the holomorphic line bundle on F given by the divisor

D := p0
1 + p1

1 + q1 − x0
− x1.

Then O F (D) is a real theta characteristic on the real curve X := (F, a). The theta
characteristic O F (D) is fixed by the automorphism h′ of X defined in (3.4).

PROOF. We need an explicit construction of the hyperelliptic involution of F . For this,
consider the reflections on the hexagons Ai and Bi about the geodesic line joining
the midpoints of the second and fifth sides. These combine together to induce an
orientation-reversing isometry

c : F −→ F. (3.5)

Clearly, c is an involution. Define

f := c ◦ b,

where b is defined in (3.2). Therefore f is an orientation-preserving isometry of F .
Hence f is a holomorphic automorphism of the Riemann surface F .

It is easy to see that the two automorphisms c and b commute. Since both b and c
are involutions, it follows that f is also an involution. It is easy to check that

genus(F/〈 f 〉)= 0.

Hence f is the unique hyperelliptic involution of F .
The fixed points of the hyperelliptic involution of F are precisely the Weierstrass

points of F . Hence the fixed-point set

F f
:= {p0

1, p1
1, q1, p0

2, p1
2, q2} ⊂ F (3.6)
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is the set of Weierstrass points of F , where p0
i , p1

i and qi are as in the statement of the
lemma.

Also note that the subset {x0, x1
} ⊂ F is left invariant by the involution of f .

As a consequence, the holomorphic line bundle on F given by the divisor x0
+ x1

is isomorphic to the pullback f̂ ∗OP1
C
(1), where

f̂ : F −→ F/〈 f 〉 ∼= P1
C

is the quotient map, and OP1
C
(1) is the unique line bundle of degree 1 over P1

C.

Let D′ := p0
2 + p1

2 + q2 − x0
− x1 be the divisor on F . Let O F (D′) be the

holomorphic line bundle over F defined by D′.
Using the above descriptions of f̂ ∗OP1

C
(1) and the Weierstrass points of F , from

the description, given in [1, p. 288, 32(i)], of the theta characteristics on F it
follows immediately that both O F (D) and O F (D′) are theta characteristics on F ;
the line bundle O F (D) is defined in the statement of the lemma. Furthermore, from
[1, p. 288, 32(ii)] it follows immediately that O F (D) and O F (D′) give the same
theta characteristics on F ; in other words, the holomorphic line bundle O F (D′) is
isomorphic to O F (D).

The map a in (3.1) takes the divisor D to the divisor D′. Hence O F (D) is a real
theta characteristic on the real curve X := (F, a). The holomorphic isomorphism h
in (3.3) takes the divisor D to the divisor D′. Consequently, the isomorphism h′

of X constructed in (3.4) fixes the real theta characteristic defined by O F (D). This
completes the proof of the lemma. 2

As we noted prior to Lemma 3.1, it follows from Lemma 3.1 that h′ fixes all the
real theta characteristics on X pointwise. On the other hand, we have

genus(F/〈h〉)= 1.

Hence h′ is not the hyperelliptic involution of X . We also noted earlier that X has real
points. Therefore the automorphism h′ of the real curve X gives the first example.

It is easy to check that the holomorphic line bundle O F (D) over F in Lemma 3.1
defines a real algebraic line bundle over the real curve X := (F, a).

Taking the unique (up to isometry) regular right-angled 2(2m + 1)-gon in the
hyperbolic plane in place of the regular hexagon, higher-genus examples can be
constructed similarly.

3.2. The second example. We note that the automorphism c in (3.5) commutes with
both a and b constructed in (3.1) and (3.2). Recall that a commutes with b.

Consider the orientation-reversing involution

τ := a ◦ b ◦ c (3.7)

of F . Let X ′ be the real curve defined by (F, τ ). The involution τ does not have any
fixed points. Hence X ′ does not have any real points.
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Now consider the automorphism σ ′ of F

σ ′ := a ◦ b ◦ c ◦ b = a ◦ c, (3.8)

which defines an involution of the real curve X ′. Note that τ ◦ σ ′ = b has fixed points.
We next note that both b and c fix all the Weierstrass points F f of F pointwise

(see (3.6)). Therefore Lemma 3.1 has the following corollary.

COROLLARY 3.2. Consider the divisor D := p0
1 + p1

1 + q1 − x0
− x1 in Lemma 3.1.

The line bundle O F (D) is a real theta characteristic on the real curve X ′ = (F, τ ),
where τ is defined in (3.7). The theta characteristic O F (D) is fixed by the
automorphism of X ′ given by σ ′ constructed in (3.8).

Therefore σ ′ fixes all the real theta characteristics of X ′ pointwise. Hence (X ′, σ ′)
gives the second example.

4. Odd theta characteristics on a Riemann surface

We start with a topological lemma. Let F be a compact connected Riemann surface
with a holomorphic involution

γ : F −→ F

such that the quotient F/〈γ 〉 is the projective line P1
C. Let

f : F −→ P1
C

be the quotient map. Let R⊂ P1
C be the subset over which f is ramified.

For any pair of ramification points {x, y} ⊂R, let C(x, y) be a simple closed curve
that separates this pair from the other ramification points. Then f −1(C(x, y)) is a pair
of simple closed curves. We shall see that these two curves represent the same element
in H1(Y, Z/2Z). Let C ′(x, y) be one of these two curves.

LEMMA 4.1. The collection of curves C ′(x, y), where {x, y} run over all subsets
of R of cardinality 2, generate H1(F, Z/2Z).

PROOF. Let 2k be the cardinality of R. We will prove the lemma by induction on k.
For k = 0, 1, the surface F is a sphere and hence H1(F, Z/2Z) is trivial. Therefore
the lemma is proved for k = 0, 1.

Now assume that the lemma holds for all k ∈ [0, k0], where k0 is some positive
integer. Take a pair (F ′, f ′), where genus(F ′)= k0 − 1 and

f : F ′ −→ P1
C

is a double cover. Pick a disk D in P1
C disjoint from the 2k0 ramification points of f ′.

The inverse image of D in F ′ is a pair of disks D1 and D2. As the ramified cover
of a disk with two ramification points is an annulus, it follows that surface F , for
k = k0 + 1, is obtained from F ′ by removing the interiors of the disks D1 and D2
and attaching an annulus A. Furthermore, we can take C(p, q) to be the boundary
of the disk D. It follows that the inverse image of C(p, q) consists of the boundary
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components of the annulus A, which are homologous curves in H1(F, Z/2Z). Denote
the class represented by these curves as β.

By the above, F is obtained from F ′ by adding a 1-handle. Hence the rank
of H1(F, Z/2Z) is two more that that of H1(F ′, Z/2Z), with β independent of
H1(F ′, Z/2Z). Further, assume that D is chosen in such a manner that the generators
of F ′ given inductively are disjoint from D1 and D2. Then β is disjoint from all
the given generators of H1(F ′, Z/2Z). Hence if δ ∈ H1(F ′, Z/2Z), then β · δ = 0.
(As in Section 2, for any v, w ∈ H1(F ′, Z/2Z), we will denote their cap product in
Z/2Z by v · w.) Since the intersection pairing on the homology of a surface is a
symplectic pairing, it follows that if α ∈ H1(F, Z/2Z) is an element with α · β = 1,
then the generators of H1(F ′, Z/2Z), together with α and β, generate H1(F, Z/2Z).

Now let r be a ramification point different from p and q . We can choose C(p, r)
to intersect C(p, q) transversally in two points x and y. Observe that there is a curve
consisting of arcs in C(p, q) and C(p, r) joining x and y that separates p from the
other ramification points, and hence does not lift to F . It follows that C ′(p, r) and
C ′(p, q) intersect transversally in a single point. Hence, if α is the element represented
by C ′(p, r), then α · β = 1.

It follows from the above that the generators of H1(F ′, Z/2Z) together with
the elements α and β represented by C ′(p, r) and C ′(p, q) respectively generate
H1(F, Z/2Z). The lemma follows by induction. 2

Let Y be a compact connected Riemann surface of genus g. A holomorphic line
bundle L over Y is called an odd theta characteristic if:

(1) L⊗2 is holomorphically isomorphic to the holomorphic cotangent bundle KY ;
(2) dim H0(Y, L) is an odd integer.

The set of all odd theta characteristics on Y will be denoted by S1(Y ). It is known that
if g > 1, then the cardinality of S1(Y ) is 2g−1(2g

− 1) [6, p. 190, Section 4].
Any holomorphic automorphism of Y clearly acts on S1(Y ). Our aim in this section

is to prove the following proposition.

PROPOSITION 4.2. Let Y be a compact connected Riemann surface of genus at least 2
that admits a nontrivial holomorphic automorphism σ . If σ fixes all the elements of
S1(Y ) pointwise, then Y is hyperelliptic and σ is the unique hyperelliptic involution
of Y .

PROOF. Let g be the genus of Y ; so g ≥ 2. Let S(Y ) denote the set of all
theta characteristics on Y . The set S(Y ) is a principal homogeneous space for
H1(Y, Z/2Z)= H1(Y, Z/2Z) (the isomorphism is given by Poincaré duality). Let

T (Y )⊂ H1(Y, Z/2Z) (4.1)

be the linear subspace generated by all elements c ∈ H1(Y, Z/2Z) such that there exist

α, β ∈ S1(Y )
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with α = β + c. It suffices to show that T (Y )= H1(Y, Z/2Z). Indeed, in that case the
proposition follows from [3, p. 495, Theorem 2.1].

The parity of the theta characteristics remains fixed [2, p. 48, Theorem 1], [6,
p. 184, Theorem] in a holomorphic family of compact connected Riemann surfaces
with theta characteristics, parameterized by a connected space. Since the moduli space
of Riemann surfaces of genus g is connected, the integer dim T (Y ) depends only on g;
in particular, dim T (Y ) is independent of the complex structure of Y . Therefore to
prove that T (Y )= H1(Y, Z/2Z), we may assume that Y is hyperelliptic.

Assume that Y is a hyperelliptic Riemann surface. Let

γ : Y −→ Y

be the hyperelliptic involution. Let

f : Y −→ Y/〈γ 〉 = P1
C

be the quotient map. So f is ramified over 2g + 2 points. Let R⊂ P1
C be the subset

over which f is ramified. For any pair of ramification points {x, y} ⊂R, let C ′(x, y)
be the closed curve in Y considered in Lemma 4.1. Setting m = 0 in [1, p. 288, 32(i)],
we conclude from [1, p. 288, 33] that the element in H1(Y, Z/2Z) defined by C ′(x, y)
lies in T (Y ) for all {x, y} ⊂R. Therefore the proposition follows from Lemma 4.1. 2
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