A MOMENT PROBLEM

LAJOS TAKACS *
(Received 4 February 1965)

1. Introduction

Let » be a discrete random variable taking on nonnegative integer
values and set P{y = k} = P;, k=0, 1, ---. Suppose that the binomial
moments

sl -E()r o

k=r

are finite. Frequently the problem arises under what conditions the prob-
abilities P, £ = 0,1, -+, can be determined uniquely by the sequence
of moments B,, r == 0, 1, - -+, and how it can be done.

In what follows we shall show that if lim sup,_. BY" < oo, then
{P;} can be determined uniquely by {B,} and we shall give an explicit
formula for P,, £#=0,1,+--. If limsup,,, BY" = o, then, in general,
{P,} cannot be determined uniquely by {B,}.

2. An inversion formula

The probabilities P,, £=0,1,:--, can be determined in several
possible ways, but formula (2) seems to be the most convenient one.

THEOREM. Let v be a discrete random variable taking on mnonmegative
integer values and set P{y = k} = P, k =0, 1, - - -. If the binomial moments
B,=E{(%)}, 7=0,1,: -, are finite and if p = limsup,_,, BY" < oo, then

it —k
@ P, = z (qu) = z (—1)y—* (7 k) ¢"B,

where q is mnommegative and greater than (p*—1). If, in particular,
p = lim sup,., o, BY" < 1, then we can always choose ¢ = 0 and (2) reduces to

0 Po=3 (-1 (;) B.
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Proor. The generating function

(4) P(z) = 2 P,¥
=0
is uniformly convergent in the circle |z| < 1 and P(2) is regular if |z] < L.
Hence
axpP
©) o) = P00 3 (1) pes
=k

for k=0,1,--- and |2] < 1. If 2= 0 in (5), then we get
1
(6) Py = 5 P®(0).

Thus the problem of finding P, can be reduced to finding P(z) in a neigh-
borhood of z = 0.
If B, is finite, then

) 5= ()

and for [¢—1] << 1/p
(®) P(:) =3 B, (z—1)"
r=0

The right hand side of (8) is uniformly convergent in the circle jz—1| < 1/p
and P(z) is regular if [2—1] < 1/p. Hence

) PO (z) = d——;}; ® _ z ( )B (z—1)-*

for k=0,1,---, and |z—1| < 1/p.

If p < 1, and we put z = 0 in (9), then by (6) we get (3). We note that
(3) is an oscillating series which is convergent if and only if lim, _,, 7*B, = 0.

If p < o0, then (9) is a regular function of z in the circle [z—1]| < 1/p.
By analytical continuation we can extend the definition of (9) to the
domain |2| < 1 and in this domain (9) agrees with (5). Now we shall show
that the definition of (9) can easily be extended to a neighborhood of
2 = 0 by using Euler’s transformation of series. (Cf. Hardy [2], Chapter
VIIL.) Let ¢ = 0 and form the E_transform of (9),

w  PpE=n3 =S () (1) ¢t—1y-,.

For |z—1| < 1/p we have P{¥(z) = P®(z) given by (9) because Euler’s
transformation is consistent. Now by using a theorem of Knopp [6] we can
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establish the domain R, in which (10) is convergent and represents a regular
function of z. Suppose that P®(z) is analytically extended along every ray
of origin z = 1 until we reach the first singular point (if any) of P{¥(z)
on the ray. Denote by I" the set of all singular points obtained in this way.
Then R, can be represented as the set of points common to all the circles
|z—14-g{y—1)| < (1+g)ly—1] for yel. Evidently |y—1| = 1/p and
Iyl = 1 for all y € I" and there exists a ¢ € I" such that |y—1| = 1/p. Hence
it follows that R, always contains the point z = 0 if ¢ > (p*—1) and R,
never contains z = 0 if ¢ < (p—1)/2. For example, if |y| = (14p)/p for
every y € I', then we can choose ¢ as any nonnegative number greatfer
than (p—1)/2, however, if I" contains a 9 for which |y—1| = 1/p and
|y| == 1, then ¢ must be chosen greater than (p2—1) in order that R, contain
z = 0. Accordingly if ¢ > (p?*—1), then in some neighborhood of z =0
we have P®(z) = P®(2) given by (5). Thus by (6) we have
P, = P®(0)/k!, k= 0,1, -, which yields (2).

3. Examples

(i) Suppose that B,= E{()}=a"/r!, r=0,1,---, where a is a
positive number. Then lim,,,, BY¥" = 0 and p = 0. By (3)

oo r\ a’ a*
(11) P, =r§(d1)r—k(k) r—!=e_aﬂ' E=0,1,--

(ii) Suppose that B, = E{{{)} = a",r = 0, 1, - - -, where a is a positive
number. Then lim BY" — g and p = a. If a < 1, then we can apply

formula (3) to obtain

0 r ak
12 P= -1'_k '=———, k=0,1,°".
(12) r=2 (= (k) “ = Ara

If a < oo, then we obtain by (2) that

= at(g—a)* _ a* _ o
(13) P, '—'Zk (k) (14g)+ - (1+a)k+1’ =01,

where ¢ > (a—1)/2. The best choice is ¢ = a.

(iii) Let A, Ay, -+, 4,, - - - be an infinite sequence of events. Denote
by » the number of events occurring among 4., 4,,+*+, 4,,, * - -. It can easily
be seen that

(14) B=e(()l=_ 5 PUa,-4
1S4, << <ip< : M

'4

If p = lim sup,, , BY" < 1, then the probability that exactly % events
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occur among A;, 4s,+°¢, 4,, - is given by (3). Formula (3) was found
first by Jordan [3], [4], [6], for the case when 4,,, =4, ,g=""=0,
the impossible event. (Cf. also [8].)

If p=1limsup,_ . BY" < o0, then the probability that exactly % events
occur among A;, Az, A,, -+ is given by (2) with ¢ > (p*—1). In
some particular cases we can choose ¢ > (p—1)/2.

(iv) Consider the previous example. The probability that at least one
event occurs among 4,, Ay, * -+, 4,, - - is given by P{4,+ A+ - -+ A4+

-} =1—P,. If p <1, then by (3)

(15) P{A 4+ Ayt A e} = §1(_1),_,B'.
If p < oo, then by (2)
(16) P{A+A,+--+A,+ 0 }=1-3 —-— (l—l—q = z (— ( ) r-iB,

where ¢ > (p2—1). In some particular cases we can choose ¢ > (p—1)/2.

Formula (15) was found first by Poincaré [7] for the case when
Ay = Aue =+ =0, the impossible event. Dvoretzky [1] proved that
(15) holds if lim,_, B, = 0.

(v) It is interesting to mention also the following simple example. A
balanced coin is tossed repeatedly. We say that event A4, occurs if head
does not appear among the first # tossings. Denote by » the number of
events occurring among 4,, 4,,---,4,,---. By (14) B,=E{())} =1
forr =0, 1, - - -. In this case (3) is divergent, but by (2) with ¢ > 0 we get
that P, = P{» =k} = 1/2*1 for R =0, 1, - - -, in agreement with a direct
calculation.
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