Photometry and Spectroscopy of *i*-drop Galaxies: Possible Detection of A Proto-cluster at $z = 6^{\dagger}$

Kazuaki Ota

Dept. of Astronomy, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan email: ota@optik.mtk.nao.ac.jp

Abstract. We discovered 30 candidate galaxies are clustering in a small $\sim 200 \text{ Mpc}^2$ region at z = 6 with 5σ local density excess in a wide 876 arcmin² field. Four of them were spectroscopically identified as $z = 5.9-6.0 \text{ Ly}\alpha$ emitters (~ 34 Mpc in line-of-sight). This structure is comparable to z = 4.8 and 5.7 galaxy proto-clusters previously found. Since the other candidates are likely to be real galaxies due to low sample contamination, the overdensity can be a $z \sim 6$ proto-cluster.

Keywords. galaxies: high-redshift, cosmology: observations, large-scale structure of universe

1. $z \sim 6$ *i*-drop Galaxy Sample in the Subaru Deep Field

In the Subaru Deep Field (SDF; $13^h 24^m 21.^{s}4$, $-27^o 29' 23''$ [J2000], $\sim 876 \operatorname{arcmin}^2$), using its (B, V, i', z') = (28.45, 27.74, 27.43, 26.62) (AB mags in 3σ with 2" aperture) images, we selected out $z \sim 6$ candidate galaxies by an *i*-drop criterion: $B, V < 3\sigma, i' - z' > 1.5,$ $z' \leq 26.5$. This captures a sharp continuum break at Ly α (rest frame 1216Å; ~ 8512 Å at $z \sim 6$). Our *i*-drops could be contaminated by M/L/T dwarfs (28.5%), $z \sim 1-2$ ellipticals (0%) and $z \sim 6$ quasars (0.13%), estimated using a star count model, an old elliptical sample actually observed in another Subaru deep survey, and a quasar luminosity function (Ota *et al.* 2005). Throughout we adapt a cosmology with ($\Omega_M, \Omega_\Lambda, h$) = (0.3, 0.7, 0.7).

2. Sky Distribution and Spectroscopy: Discovery of Overdensity

We investigated sky distribution of *i*-drops and local surface overdensity $\delta_{\Sigma} \equiv (\Sigma(x, y) - \bar{\Sigma})/\bar{\Sigma}$, where $\Sigma(x, y)$ is the number of *i*-drops in a co-moving 8 Mpc circle at z = 6, and $\bar{\Sigma}$ is the mean of Σ measured in random ~65,000 positions in SDF. We found the highest 5σ ($\delta_{\Sigma} = 4.5$) density excess comprising 30 *i*-drops clustering in ~50 arcmin² (~200 Mpc² at z = 6). We made spectroscopy of some of them with Subaru Faint Object Camera and Spectrograph and found four are Ly α emitters at the close redshifts z = 5.92, 5.99, 6.00 and 6.03, corresponding to co-moving line-of-sight ~34 Mpc. This structure is similar to $z \sim 4.8$ and 5.7 galaxy proto-clusters known (Shimasaku *et al.* 2003; Ouchi *et al.* 2005). Since 71.4% of unconfirmed *i*-drops could be $z \sim 6$ galaxies, the overdensity can be a $z \sim 6$ proto-cluster. This implies the cosmic reionization was ongoing sptially inhomogeneously when completing at $z \sim 6$ as Ly α emitters are possible reionizing sources.

[†] Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

References

Ota, K., Kashikawa, N., Nakajima, T., Iye, M. 2005, JKAS38, 179
 Ouchi, M., $et\ al.$ 2005, ApJ (Letters) 620, L1
 Shimasaku, K., $et\ al.$ 2003, ApJ (Letters) 586, L111