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Abstract

The associativity of the regular semidirect product of existence varieties introduced by Jones and Trotter
was proved under certain conditions by Reilly and Zhang. Here we establish associativity in many new
cases. Moreover, we prove that the regular semidirect product is right distributive with respect to the join
operation. In particular, both associativity and right distributivity yield within the varieties of completely
simple semigroups. Analogous results are obtained for e-pseudovarieties of finite regular semigroups.

2000 Mathematics subject classification: primary 20M17,20M07.

Introduction

The wreath product and, more generally, the semidirect product constructions originate
in group theory, but they have also been playing a central role in the theory of finite
semigroups for a long time. Since a semidirect product or the wreath product of regular
semigroups need not be regular, these constructions have been modified in the context
of regular semigroups in several ways, see [3,6,9]. In the present paper, we deal with
the product introduced in [9] by Jones and Trotter. They noticed that Reg (A * B),
the set of all regular elements in a usual semidirect product A * B, is a (regular)
subsemigroup in A * B provided A and B are regular semigroups and one of them is
completely simple. They introduced a partial operation—called the regular semidirect
product—on the set of all e-varieties of regular semigroups as follows: if ^ and "f
are e-varieties such that ^ or Y c 'gy, the (e-)variety of all completely simple
semigroups, then fy *f "V is defined to be the e-variety generated by all semigroups

© 2000 Australian Mathematical Society 0263-6115/2000 $A2.00 + 0.00

85
https://doi.org/10.1017/S1446788700001853 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001853


86 Bernd Billhardt and Maria B. Szendrei [2]

RegCA * B) with A e W and B € Y. Furthermore, they established a number
of important properties of this product, and provided interesting decompositions of
certain e-varieties, for example of L.y and Sy', the e-varieties of all locally inverse
and of all E-solid semigroups.

The regular semidirect product of e-varieties is a generalization of the usual product
of group varieties and is analogous to the semidirect product of pseudovarieties of finite
semigroups. These classical products are well known to be associative (see [4,13,14]).
The equality ( ^ *r Y) *r TV = <% *r (Y *r W) has been proved recently by Reilly
and Zhang [15] in cases, where at least two of the e-varieties %, Y, W are group
varieties and some additional conditions are fulfilled.

The aim of this paper is to prove associativity under more general conditions. We
establish the equality {<% *r Y) *r W = ^ *r (Y *r *O if either (i) W c <gy, Y or
W c <gy a n d r * r ^ c L / or gy, or (ii) Y, W c Vy.

Analogously, the semidirect product of e-pseudovarieties—the finitary analogues of
e-varieties—can also be defined. Note that an interesting relationship is presented by
Auinger and Trotter [ 1 ] between the usual semidirect product of certain pseudovarieties
and the regular semidirect product of related e-pseudovarieties.

It turns out that our arguments carry over to e-pseudovarieties. What is more,
in this context, 'overall' associativity is obtained in the sense that the equality
{<% *rY)*rW = <% *r (Y *r W) is verified for any e-pseudovarieties <&,Y,W,
where both sides are defined, that is, for any e-pseudovarieties *%, Y, W such that at
least two of them are e-pseudovarieties of completely simple semigroups.

In Section 1 we summarize the notions and results needed in the paper. The aim
of Section 2 is to prove that if <2<\ Y are e-varieties such that ty or V c ^y and
SC generates W, then {X wrr B : X e SC, B 6 f\ generates ^ *r f, where X wrr B
stands for the subsemigroup of all regular elements of the usual wreath product of
X by B. As a corollary, we obtain that {(A wrr B) wrr C : A e <2f, B e f, C € W}
generates ( ^ *r Y) *r W provided at least two of the e-varieties %, Y, W are con-
tained in ^y. Another corollary is the right distributivity of the regular semidi-
rect product with respect to the join operation. Section 3 is devoted to proving
that {A wrr (fi wrr C) : A e ^ , B e V, C e W\ generates W *r (Y *r W) provided
^ , Y, W are e-varieties such that at least two of them are contained in *€y and
Y *r W c LJ or gy. In Section 4 we establish the equality (W *r Y)*rW =
fy *r (Y *r W) in case (i) above and in cases, where either Y c <$ u jjf 2? and
W c <gy or Y c <€y and W C Sf. (Here Sf and S£ST stand for the varieties of all
groups and of all left zero semigroups, respectively.) In Section 5 first we investigate
the regular semidirect products, where one of the factors is a variety of rectangular
bands. We show among others that, for every e-variety Y with Y 2 Sf-2^•, we have
Y *r @,@ = Y*r &2T, where 8Z2? and Sf.9B denote the varieties of all right zero
semigroups and of all rectangular bands, respectively. Moreover, we verify that the
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regular semidirect product of completely simple varieties is 'almost always' equal to a
regular semidirect product, where one of the factors is a group variety. These two re-
sults allow us to obtain from the main result in Section 4 the general associativity result
mentioned above. In the last section we summarize our results on e-pseudovarieties.

Associativity of another product of e-varieties based on a generalization of the
A.-semidirect product to regular semigroups, where the second factor is locally 3?,-
unipotent is investigated in [2].

1. Preliminaries

For the standard notions and notation in semigroup theory the reader is referred
to [7]. A class of regular semigroups is termed an existence variety, or briefly an
e-variety ([5], see also [11]) if it is closed under forming direct products, regular
subsemigroups and homomorphic images. Note that a class of completely regular
semigroups or that of inverse semigroups constitutes an e-variety if and only if it
is a variety of unary semigroups in the usual sense when, for a completely regular
semigroup, the unary operation maps each element to its inverse within the maximal
subgroup containing it, and, for an inverse semigroup, the unary operation maps each
element to its unique inverse. For example, the classes of all groups, all completely
simple semigroups, all completely regular semigroups, all inverse semigroups, all
orthodox semigroups, all locally inverse semigroups, all £-solid semigroups and
all regular semigroups form e-varieties. We introduce notation for the following e-
varieties:

&—trivial semigroups,
±£ 2?—left zero semigroups,

—right zero semigroups,
rectangular bands,

—groups,
—left groups,
—right groups,
—completely simple semigroups,

)—completely simple semigroups whose subgroups belong to a group
variety Y,

f.—completely regular semigroups,
—locally inverse semigroups (that is, regular semigroups whose regular

submonoids are inverse semigroups),
LY—regular semigroups whose regular submonoids belong to an e-variety V,
§5?—£-solid semigroups (that is, regular semigroups whose subsemigroup

generated by the idempotents is completely regular),
—regular semigroups.
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Let ^ be a class of regular semigroups. The e-variety generated by if is denoted
by (if)*. Denote by Pif, Srif and Hif the classes consisting of all direct products of
members of if, of all regular subsemigroups of members of if and of all homomorphic
images of members of if, respectively. It is easy to see that PSrif c SrPif and
YW€ c HP^7. If <«f c LJ or if c gy, then it was proved by Yeh [16] that also
SrHif c HSrif, and, as it is usual with varieties of algebras, we have (if), = HSrPif.
However, the inclusion SrHif ^ H S ^ does not hold for any class if of regular
semigroups, and the class (HSr)

2if might be larger than H S ^ , see an example by
Kadourek [10]. Using the terminology that a regular semigroup T regularly divides a
regular semigroup 5 if T is a homomorphic image of a regular subsemigroup of 5, the
latter fact can be expressed also in the way that regular divisibility is not a transitive
relation. Put

={S e &y : there exist 50, S, , . . . , 5t € ^J ' such that

So € if, Sk = S and Si+l regularly divides 5,: (i = 0, 1, . . . k - 1)}.

Clearly, we have D 0 0 ^ = (Xo( H S r )*^ and HD00^7 = S.D00^ = D°°H^ =
D°°Srif = D00^7.

The operator P allows us to form the direct^product of any set of members in the
given class. The above inclusions containing P do not imply the inclusion PD°°if c
poop^' j i e n c e w e ha v e to iterate the operators D00 and P transfinitely in order to
get (if }e from <€. More precisely, we obtain (if )e as the union Eif of the following
transfinite sequence E,if (i is an ordinal):

and

(D°°P(Ety) if i = k + 1 for some ordinal it;
E/ v == \

IU*<. ^k& if i is a limit ordinal.

For, it is routine to verify that Eif is closed under the operations P, Sr and H, and
so it is an e-variety. Furthermore, an easy transfinite induction shows that, for every
ordinal i, E& is contained in any e-variety containing if, and so the same is true
for Eif.

For simplicity, we consider every class of regular semigroups as an abstract class,
that is, we suppose that every class contains each isomorphic copy of its members.

If S and T are semigroups, then by writing T < S we mean that T is a subsemigroup
in 5. If T is a regular subsemigroup in 5, then we write that T <r S. The set of all
regular elements of a semigroup 5 is denoted by Reg(S).

As usual, we denote by S1 the smallest monoid containing S. Then S1 is equal to
5 if 5 has an identity element ls , and 5 = 5U( l j ) with l s £ 5 otherwise. If T < S

https://doi.org/10.1017/S1446788700001853 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001853


[5] Semidirect product of e-varieties 89

and T has no identity, then we choose 1T to be equal to 15. So, for any semigroups
5, T with T < S, we have Tl < Sl.

If 5, T are semigroups and (f> : S -> T is a surjective homomorphism, then </> can
be uniquely extended to a surjective monoid homomorphism S1 —> Tl, which we
denote by 0 ' . For, if 5 has an identity, then surjectivity of </> ensures that ls4> is an
identity in T, that is, ls(/> = IT and 0 is a monoid homomorphism. So <f>1 = </>. If 5
has no identity, then define \s<i>1 = IT-

If A, B are non-empty sets, then the set of all mappings of A into B is denoted by
BA. If B is a semigroup, then BA stands for the direct power of B to the exponent A,
and the product of the elements a, fi in the semigroup BA is denoted by afl or a • /3.
In contrast, if a e fi4 and ft € CB for some sets A, B, C, then their composition is
denoted by a o p.

For any a € BA, the equivalence relation on A induced by a is denoted by ker a.
Suppose now that a e BA is surjective. If /3 e CB is any mapping, then a o ^ C 1

and ker (a o yS) 2 ker a. Conversely, for every mapping £ € CA with ker £ 2 ker a,
there exists a unique mapping r\ e CB such that f = a o i ) . This 77 is denoted by £a.

Let A and B be semigroups. Denote by End A the endomorphism monoid of A.
By a (te_/?) action of B on A we mean an antihomomorphism e : B -* End A, ?(->•£,.
For brevity, we denote as, by 'a {a € A, t e £ ) . If Z? is a monoid, then this action is
said to be left unitary if £la is the identity automorphism, or, equivalently, if l"a = a
for every a e A. The semidirect product A * £? of A by 5 with respect to this action
is defined on the set A x B by the multiplication

(a, t)(b, u) = (a- 'b, tu) (a,beA, t,ue B).

A straightforward calculation shows that A * B is a semigroup.
The wreath product of a semigroup A by a semigroup S is the semidirect product

of the direct power AB' of A by B with respect to the following action: for every
a € AB' and t e B, we define fa; e AB' by *('<*) = (xt)ot (x e B1). Notice that this
action is left unitary provided B has an identity. The wreath product of A by B is
denoted by A wr B.

There is a natural embedding of any semidirect product A* B, where the action of
B on A is left unitary provided B has an identity, into A wr B:

v : A * B -> A wr B, (a, b)v = (a, b), where a : Bl -*• A, xa = xa (x € B1).

A semidirect or the wreath product of regular semigroups need not be regular.
However, Jones and Trotter [9] introduced a regular version of the semidirect product,
and initiated the study of the product of e-varieties induced by this product. They
noticed that if A and B are regular semigroups, B acts on A and at least one of
A and B is completely simple, then Reg (A * B) forms a (regular) subsemigroup
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in A * B, and they defined the regular semidirect product A *r B of A by B to be
Reg(A * B). In particular, Reg(A wr B) is a regular subsemigroup in A wr S, which
we denote by A wrr B. Since a homomorphism maps regular elements to regular ones,
we have (Regt<4 * B))v c Reg(A wr B) for the natural embedding v, and so A *r B
is embeddable into A wrr fi as long as the action of B on A is left unitary provided B
has an identity.

Given two e-varieties W, V such that f or T^c 'tfy, their regular semidirect
product is defined in [9] as follows:

<% *r r = (A *r B : A e <&\ B € ̂  and B acts on A such that

the action is left unitary provided £ has an identity),,.

Since each A *r B in the generating set is embeddable into A wrr B, we obtain the
following result.

RESULT 1.1. Iffy and V are e-varieties such that fy orf c <gy, then we have

We also need the following results from [9].

RESULT 1.2. Let f, W be e-varieties such that V orW c

(i) We have Y*rW£ LJ if and only if either

(Ul)
or

(LI2)

(ii) \

(ESI)

or

Ve have V*r7,

y

•v

V c S,

r

C LJ>

STifana

and W c <gy

and IP c L / .

f on/y if either

and W<ZSy

(ES2)

RESULT 1.3. L r̂ A, S fee regular semigroups such that A 6 ^ y and B acf5 o/i A.
Then (A * B) • E(A * B) C Reg(A * B).

RESULT 1.4. Lcr y fee any e-variety. Then we have

(i) f * f J J C L r ,
(ii) -Sf ̂  c r * r ^ ^ i j r g 4?^, and
(iii)
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RESULT 1.5. For any e-varieties V, W with V,W<Z <€y, we have V*rW C <gy.

Since every semidirect product of a left zero semigroup by another semigroup is
isomorphic to their direct product, we get the following result, see [15].

RESULT 1.6. For any e-variety V, we have &2? *r V = ££2? V Y.

2. Generating sets of W *r V via those of ^

First we determine the regular elements of a semidirect product of regular semi-
groups. This lemma plays a crucial role throughout the paper. In the main result of
the section, we prove that if ^ , V are e-varieties such that % or y c 'tfy, and
f C f such that W = {SC)e, then % *r V = {X wrr B : X e 2C, B e f)e. As
a consequence, we obtain that {(A wrr B) wrr C : / l 6 f , B e f , C e W] gener-
ates the e-variety ( ^ *r V) *r "W provided at least two of the e-varieties % ,V,W
are in "tfy. Moreover, we establish that (V, £ / %) *r V = V,6/ ( ^ *r ^ ) f o r ^ y
e-varieties % (i e I) and V if either % c ^ ^ for each / e / o r f c < ^ ^ .

The regular elements in a semidirect product of regular semigroups can be described
in the following way.

LEMMA 2.1. Let A and B be regular semigroups and let B act on A. Then

Reg(A * B) — {(a, b) e A * B : there exists b' € V(b) such that bba ># a in A).

Moreover, if (a, b) 6 A * B, x € V(a) and b' € V(b) such that bb'a > <? a, then
C'x, b') e V((a, b)).

PROOF. Suppose first that (a, b) € Reg(A * B). Then there exists (a', b') e
V((a, b)), that is, there exist a' e A and b' e B such that (a, b)(a', b')(a, b) = (a, b)
and(a\ b')(a, b)(a', b') = (a1, fc')hold. This implies that V € V(b)anda-ba'-bb'a = a.
Hence it is immediate that a € A • bb'a, and so a <& bba.

The reverse inclusion follows if we prove the last statement. Suppose that (a,b) €
A * B, x € V(a) and b' € V(b) such that bb'a ><e a. It is obvious that bb'x e V{bb'a)
also holds, and so bb'x • bb'a is an idempotent ^"-related to bb'a. Therefore, bb'a > & a
implies a • bb'x • bb'a = a, whence (a, b)(b'x, b')(a, b) = {a, b). Since b'x • ya • b'bb'x =
b\bb'x • bb'a • bb'x) = b'(bb'x) = b'x, we also have (6it, b'){a, b)Cx, b') = (vx, b'), proving
that (b'x, b') € V((a, b)). D

Now we intend to show that if a regular semigroup Q is obtained from another
one, say A [from other ones, say A, (i e /)] by forming a regular subsemigroup or a
homomorphic image [or the direct product], then QWTTB is obtained from A wrr B
[from A, wrr B (i e /)] by making use of the same operator.
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LEMMA 2.2. Let A,A',B be semigroups such that A' < A. Then A'WTB <
Awrfl.

PROOF. This is obvious. •

LEMMA 2.3. Let A,A',B be regular semigroups such that A' < r A and A or
B €cgy. ThenA'wnB < r Awrrfl.

PROOF. By Lemma 2.2, we have A' wrr B = Reg(A' wr B) < A'V/TB < A wr B,
and so A'wrr fl < r Reg(Awrfl) = Awrrfi. D

LEMMA 2.4. Let A, A, B be semigroups, and let <j> : A -*• A be a surjective
homomorphism. Then the mapping <t> : AwrB —> AvitB defined by (a,b)<& =
(a o 0, b) is a surjective homomorphism.

PROOF. Straightforward. •

LEMMA 2.5. Let A, A, B be regular semigroups, where A or B e ^S^. Let <j> :
A -*• A be a surjective homomorphism. Then the mapping 4>r : A wrr B —*• A wrr B
defined by (a, b)Q>r — (a o </>, b) is a surjective.Jiomomorphism.

PROOF. The mapping <I>r considered here is the restriction to regular elements of
the homomorphism <I> defined in Lemma 2.4. Therefore, all we have to show is
that if (a, b) e Reg(A wr B), then there exists a e A8' such that a = or o </> and
(a,b) € Reg(Awrfi).

Let (a, b) e Reg(Jwrfi). Then Lemma 2.1 shows that there exists b' e V(b)
£i

such that bb>a > & a in A , that is, (xbb')a > & xa in A for any x € Bx. For every
a e A, let us choose and fix an inverse a' of a in A. Since A is regular and 0 is a
surjective homomorphism, for each a e A, there exist mutual inverse elements r-a, r'a
in A such that r-a<$> = a and r'a(j> = a'. Let us fix such a pair for each a e A. Define
a € AB' in such a manner that

xa = rxS • r[xbb,w • r(xbbr)S

for every x € Bl. Then (xbb')a = r{xbVW for each x € B\ and hence bb'a >.& a
easily follows. Thus (a,b) e Reg (A wr B). Moreover, for every x € B\ we have

x(ao<f>) = (xa)4> = (rx3 • r'(xb&ys • r(xW)s)<l> = xa • ((xbb')a)' • (xbb')a,

where e = ((xbb')a)' • (xbb')a is an idempotent j£f-related to (xbb')a. Since
(xbb')a > jf xa, we infer that xa • e = xa, proving that x(a o <f>) = xa (x e Bl),
that is, a o <j> = a. The proof is complete. •
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LEMMA 2.6. Let At (i e /) and B be semigroups. Define a mapping

as follows: for every (a, b) € (Y\ieI At) wr B, let (a, b)<t> be F e Y\i€i (
A> w r B)<

where, for each i 6 /, iF = (iFt, iF2) € A, wr B such that iF2 = b andx{iF\) =
i(xa) for any x € Bl. Then 4> is an embedding.

PROOF. Let (a, b), (B, c) e (n,-€/ At) wr B, and let (a, b)<t> = F, (0, c)<P = G.
In order to show that <J> is injective, suppose that F = G. Then b = iF2 = iG2 = c
and i(xa) = x(iFi) — x{iG{) = i(x0) are valid for every / e / and* 6 Bl. Thus
we see that b = c and a = 0 which was to be shown.

In order to verify that <t> is a homomorphism, we have to prove that ((a, b)(0, c)) $ =
FG. By definition, we have

(a, 6)(0, c) = (a • % be)

and, for every / 6 / , we obtain that

i(FG)2) = /(FG) = iF • iG = (iF,, iF2)(iG,, iG2)

= (iF, •'^(/G,), /F2 • »G2).

However, since (a, b)<t> = F and (0, c)<t> = G, we have

jF2 = b,x(iFt) = i(xa) and /G2 = c, x(iG,) = J

for every / € / andx e Bl. Thus be = iF2 • iG2 — i(FG)2 easily follows. Moreover,
for any / e / and x e B', we infer that

i(x(a • bp)) = I(JCO • (JC«/8) = i(xa) • i((xb)B) =x(iFl)

Hence we see that ((or, &)(/?, c)) <J> = FG, and the proof is complete. •

LEMMA 2.7. Let A< (i e /) and B be regular semigroups such that either At €
^y for every i e / or B e 'tfy. Define a mapping <Pr : (fLe/^;) wrrfl ->
f]/6/(A,-wrrfl) as follows: for every (a,b) € (n,-6/A,-) wrrfi, to (a, &)<£,. fee
F e n,-6/ (A, wrrB), where, for each i € /, /F = (iF,, i'F2) € A.-wrrS JMC/I

/F2 = 6 andx(iF[) = i(xa)for any x € Bl. Then <&r is a/i embedding.
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PROOF. The mapping 4>r defined here is the restriction to regular elements of
the embedding <I> given in the previous lemma. Since <J> maps regular elements to
regular ones, and an element in the direct product ]~[,e/ Ô i wrr B) is regular if and
only if each of its components is regular, we see that (Reg ((Y[iei A,) wr B)) <t> c
Y\ie, Reg (A, wr B). Thus the assertion follows by Lemma 2.6. •

We can summarize the results obtained so far as follows.

PROPOSITION 2.1. Let 3C c &>y and let B e &y such that either SC c
or B e <#&. Let Q be one of the operators H, Sr, P, D00 and E = { )e. Then,
for any Q € Q^T, we have QvmB e SrQ{XwrrB : X 6 <T} j / Q = P and
gwrr B e Q[X wrr B : X e SC\ otherwise.

PROOF. TO get the statement for the operators H, Sr and P, we apply Lemma 2.3,
Lemma 2.5 and Lemma 2.7, respectively. By applying the statements obtained for H
and Sr, an induction on n shows that, for every natural number n, we have Q wrr B €
(HSr)"{X wrrB : X € .T}provided Q e (HSr)".2\ Hence we infer the statement for
D00. Finally, the statements for D°° and P allow us to prove by transfinite induction that,
for every ordinal i, we have 2 wrr B 6 E,{X wrr fl : X e f ) provided Q e E,^T.
Thus we deduce the statement for E = { )e. ^. •

Now we are ready to prove the main result of the section.

THEOREM 2.1. Let %, f be e-varieties such that W orY c <#y, and let 3C C.ty
such that ty = (3t)e. Then <% *r r = {X wrrfl : X e SC, B e V)e.

PROOF. By Result 1.1, we have ^ *r f = (A wrrfi : A e <%, B e f)e. Hence
the inclusion ^ *r ~f 2 {X wrrfi : X e 3£, B e V)e is obvious, and, in order to
prove the reverse inclusion, it suffices to show that, for any A € ^/ and B e V, we
have A wrrfl € {Xwrrfl : X e SC, B € ~V)e. However, this follows immediately
from Proposition 2.1. •

This theorem has two important corollaries. The first one is applied in Section 4
when proving associativity of the regular semidirect product under certain conditions.

COROLLARY 2.1. Let 9/, Y, W be e-varieties such that at least two of them are
contained in tfy. Then {9/ *r Y) *r W is defined, and it is generated by

& = {(A wrr B) wrr C: A € V,B e f, C € W}.

PROOF. The first assertion is obvious by Result 1.5 and by definition. The second
one follows from Theorem 2.1, since ^ *r f = {A wrr B : A e ^ , B € f)e by
Result 1.1. •
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The second corollary is the right distributivity of the regular semidirect product
with respect to the join operation.

COROLLARY 2.2. Let % (/ € /) and V be e-varieties such that either % c
for each i e / orV c <gy. Then we have ( Vi e , <%) *r V = \fieI(% *r Y).

PROOF. Notice that V,e, ^ = (U,e/ %)» and aPPlv Theorem 2.1 to see that

( \J %yr r={x wrr B : X e (J %, B e r) c / \]{% *rt)) = \j\% *rr).
iel iel ' iel e /€/iel iel ' iel e /€/

The reverse inclusion is obvious. D

3. Generating sets of ^ *r V via those of V

The topic of this section is similar to the topic of Section 2. It is natural to
try to follow the line developed in the previous section. However, the analogue of
Lemma 2.6 (or, equivalently, that of Lemma 2.7) does not hold even for groups (see
[14, pp. 39-40]). Thus the analogues of Theorem 2.1 and Corollary 2.1 are proved
only under certain restrictions.

For our later convenience, first we introduce a generalization of the wreath product
and regular wreath product constructions.

Let A, B and B be semigroups such that B < B. Then S = {(a, b) e A wr B :
b € B] is a subsemigroup in A wr B, and it is a semidirect product of the direct power
AB' of A by B. The action is, however, not necessarily left unitary if B has an identity.
We denote this 5 by A wr B[B]. In particular, if A and B are regular semigroups and
A or B € ^y, then Reg(A wr B[B]) is a regular subsemigroup in A wr B[B], and
we denote it by A wrr B[B].

Now we verify the analogues of Lemma 2.2 through Lemma 2.5.

LEMMA 3.1. Let A,B,B' be semigroups such that B' < B. Then A v/rB'[B] is
a subsemigroup in A wr B, and the mapping <$> : A wr B'[B] -> A wr B' defined by
(a, b)<t> = (a|(B')t, b) is a surjective homomorphism.

PROOF. Obvious. •

LEMMA 3.2. Let A, B, B' be regular semigroups such that A or B € tfj? and
B' < B. Then A wrr B'[B] is a regular subsemigroup in A wrr B, and the mapping
<Pr : AwrrB'[B] -> A wrrB' defined by (a,b)<$>r = (a\(B:y,b) is a surjective
homomorphism.
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PROOF. The first assertion is clear. The mapping 4>r is a restriction to regular
elements of the homomorphism <t> defined in the previous lemma. Therefore, all we
have to show is that if (P, b) e Reg(A wr B'), then there exists a e AB' such that
a|(B.)i = P and (a, b) € Reg(A wr B'[B]).

Since (P, b) € Reg(A wr B'), Lemma 2.1 ensures that there exists b' e V(b) such
that bb'p >xP'm A( B ) ' , that is, (ybb')P > # yP in A for every y € (B')1. Let us
choose and fix an element r in A, and define a e ABin the following manner: for
every* e B\ put

xp if* € (£ ' ) ' ;

ifx i (B')1 a n d * W e B';

if *M>' £ B'.

Obviously, we have a\iB'y = P- By the property of p mentioned above, we have
(xbb')a > & xa for every * € (B')1. Furthermore, if * £ (B')1, then the equality
(xbb')a = xa follows immediately from the definition. Thus bb'a >& a in AB>, and
so (a, fc) e Reg(A wr B'[B]). The proof is complete. D

REMARK 3.1. Notice that this proof does not utilize the fact that B is regular. It
suffices to assume that B' is regular and A ot.B' e tfy. Thus the following more
general statement also holds. Let A, B, B be semigroups such that A, B are regular,
A or B e ^5^ and B < B. Then the mapping T : A wrr B[B] - • A wrr B defined
by (a, fr)T = (a|Bi, fc) is a surjective homomorphism.

LEMMA 3.3. Let A, B, B be semigroups and 0 : B —> B a surjective homomor-
phism. Then

P - {(a, b) € A wr B : ker^1 c kera}

is a subsemigroup in A wr B, and the mapping <t> : P —> A wr B defined by (a, b)<t> =
(a^i, b<p)—for the definition ofa^i see Section 1—is a surjective homomorphism.

PROOF. Let a, p e AB> with ker^1 c kera, ker p, and let b e Bl. Then, for every
x,y e Bl with *</>' = y</>', we have (xb)<f>1 — (yb)(j)x since 01 is a homomorphism,
and so (xb, yb) e ke r0 ' . This implies (xb,yb) e ker^ whence x ( ^ ) = (x&)/J =
(yfr)/J = y(bP) follows. Thus we have shown that ker0 ' c kerfcj8. Furthermore, we
alsoha\ex(a-bP) = xa• {xb)P = ya• (yb)P = y(a-bP), whenceker(/>' C ker(a-bB)
can be deduced. Therefore, (a, b), (P, c) G P implies (a, b)(P, c) = (a-bp, be) € P,
and so P is, indeed, a subsemigroup in A wr B.

If (P, b) e A wr 7?, then (01 o )3, b) e P for every b e B with 2>0 = fc, and, clearly,
(01 o ^, 6)4> = ()8, ft). Thus * is surjective. Now let (a, ft), (£, c) € P. Then

((a, 6)(/3, c))4> = (a • *j8, fcc)<I> = ((a
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and

(a, b)<t>(fi, c)4> = (ct4i,b4>)(fi*,c4>) = (a,. • "fi^M • c<f>).

In order to verify that these elements are equal, it suffices to check the equality of the
first components. Consider any x € Z?',then

o «,

= xa-(xb)p=x(a-hp).

Since (a • */?)#' is the unique mapping such that a • bP = </>' o (a • bP)^, we infer that
(a • */J)̂ i = cfyi • **^i. This shows that <t> is a homomorphism. D

LEMMA 3.4. Let A, B, B be regular semigroups such that A or B 6 ^y, and let
<j> : B —*• B be a surjective homomorphism. Then

Pr = {(a, b) e A wrrfi : ker</>' C kera}

w a regular subsemigroup in A wrr B, and the mapping <£>r : Pr —>• A wrr 5 defined
by (a, b)<Pr = (a^i, ft0) is a surjective homomorphism.

PROOF. Clearly, Pr = P D (A wrr 5 ) , where P is the subsemigroup in A w r B
introduced in the previous lemma. Therefore, Pr is a subsemigroup in A wrrB. We
intend to prove that Pr is regular. Let (a, b) € Pr, then it is a regular element in A wr 5 ,
and so, by Lemma 2.1, there exists b' € V(6) such that bb'a >& ainAB\ Let us choose
and fix an inverse a' of a for each a e A. Define £ G AB* in the way that *£ = (xa) '
for every x e Bl. Then, clearly, we have £ e V^a), and Lemma 2.1 ensures that
(*£, 6') 6 V((a, £)). However, ker</>' c kera, which implies by the definition of £
that also ker0 ' c ker£ and ke r0 ' c ker*£. Thus (*£, 6') € Pr, showing that (a, b)
is regular also in Pr. Consequently, we have Pr = Reg(P) < r A wrr S.

The mapping defined in the lemma is the restriction to Pr of the homomorphism
given in the previous lemma. Therefore, in order to prove the second statement, it
suffices to show that if ((5, b) e Reg(A wr B), then there exists (a, b) e Pr such that
(a, b)<S> = (/?, b). Since (/3, b) e Reg(A wr~B), by Lemma 2.1, there exists V e V(b)
such that bb'p > % $ in A *', that is, (ybb')P > % yfi in A for every y e f l ' . Since S is
regular, there exists a pair b, b' of mutual inverse elements in B such that b<f> = b and
b'(p = b'. Define a = (p1 o p. Then (a, 6) e P and (a, &)<!> = (P, b) immediately
follow. Moreover, for every JC 6 Bl, we have

(xbb')a = {xbb')(<pl o p) = ((xbb')tf>l)P

= (X(p
l • bb')P ><e (x<j>l)p = x(4>1 op)= xa,
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and so bb'a ># a in A8'. This implies, by Lemma 2.1, that (or, b) 6 A wrrfi. Thus
(a, b) € Pr which completes the proof. •

By making use of Lemma 3.2 and Lemma 3.4 instead of Lemma 2.3 and Lemma 2.5,
respectively, an argument similar to that in the proof of Proposition 2.1 verifies the
following analogue of Proposition 2.1.

PROPOSITION 3.1. Let A e Sf,y and let 3C c Sf,y such that either A e tfy or
SC c <gy. Then, for any Q € Sr3C U H&, we have A wrr Q e HSr{A wrrX :
X € 5C\, and for any Q e D00 3C, we have A w r r g e D°°{A wrrX : X € SC\.

This proposition implies the following analogue of Theorem 2.1.

THEOREM 3.1. Lefft ,y be e-varieties such that °l/ or V c <gy, and let SCcf
such that y = D°° . r . Then W *rY = {A wrrX :AeW,Xe SC)e.

The condition that ~V = D00 ^" seems to be rather strong in general. However, if
J c t / o r gy, then D°°& = HSr^T, and so f = D°°^T is satisfied if and only
if y = (<2T)e and P JT c HSr^T. Thus we obtain the following corollary.

COROLLARY 3.1. Let ty, y be e-varieties*such that either y C <gy or both
c <gy and y <z LJ or gy. Let % C y SIICA rfctf
c HSr^T. rAen ^ *r r = (A wrrX : A e «r, X €

Let us notice that the extra condition on the generating set involved in this corollary
is satisfied by the generating set 3£ of *% *r y presented in Result 1.1. We prove
somewhat more. Denote the generating set given in the definition of % *r y by
SC*. We have seen that 3C c SC* c SrSC. First we show that YSC* c ^T*. If
A, e ^ , fi, e y and fi, acts on A, for every i e / , then Jl j e / Bt acts on f] ,€ / A,-
componentwise. Note that n,€ / Bi has an identity if and only if each B, (i e /) has
an identity, and if this is the case, then the action of f ] i e / B, on ]~]/6/ A, is left unitary
if and only if the action of B, on A, is left unitary for all i € / . Thus YX* c X*
follows. This implies YSC c P^T* c SC* c Sr^*.

Now, by applying Corollary 3.1 instead of Theorem 2.1, the argument in the proof of
Corollary 2.1 shows that % *r {V *r W) = (A wrr (B wrr C) : A 6 <2t, B e ^ , C e
>T )e provided at least two of %, r , >T are in ^y mdy*rW<ZLS or gy. Thus
we deduce the following corollary.

COROLLARY 3.2. Let W, y, W be e-varieties such that at least two of them are
contained in <€y. Then <% *r (y *r W) is defined, and

= {A wrr (S wrr C) : A €<ft,B ey,C € W]
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is a subclass in <fr *r (f *r W). If, moreover, V*rW C LJ? or gy {see Result 1.2),
then W *r (Y *r W) is generated by 2?.

4. Associativity of the regular semidirect product

The aim of this section is to prove by applying the tools developed in the former
sections that ( ^ *r V) *r W = % *r (V *r W) holds for the e-varieties ^ , Y, If if
either <% c <gy and f*rWc.LJox Sy, or one of V, W is contained in <f and
the other one in <gy, or f - &2f and W c tfy. First we determine under what
conditions a regular wreath product has an identity element. Then we introduce a con-
struction originating in the wreath product of transformation semigroups (see [4,13]),
and obtain a new generating set 3f" for the e-varieties considered in Corollary 3.2. Fi-
nally, we compare ^f and 2?*, thus providing the sufficient conditions for associativity
mentioned above.

First we show that a wreath product Awrfi[a regular wreath product A wrr B] has
an identity if and only if both A and B have identities.

LEMMA 4.1. Let A and B be any semigroups. Then AWTB has an identity if and
only if both A and B have identities. If this is the case, then the identity ofAwrB is
(^A, Is), where eA e AB is such that x€A — lA for every x € B.

PROOF. Suppose that (a, b) 6 A wr"S is an identity. Since the second projection of
A wr B to B is a surjective homomorphism, we infer that b = lB e B. Moreover, for
every £ e AB, we have (a, 1B)(?, 1B) = (£, lfi)(a, 1B) = (£, 1B), whence it follows
that a = \AB € AB. Since the direct power AB of A has an identity if and only if
A has an identity, and in this case, IAB = eA, we obtain that a = eA. Conversely, it
is straightforward to check that if 1̂  e A and lB e B, then (eA, lB) is an identity
inAwrfi. •

Now we investigate the identity element in the regular wreath product.

LEMMA 4.2. Let A and B be regular semigroups such that A or B 6 "tfy. Then
A wrr B has an identity if and only if both A and B have identities. If this is the case,
then the identity of A wrrB is (eA, lB), where eA € AB is such that x€A = 1,4 for
every x e B.

PROOF. The argument in the previous lemma applies if we notice that the second
projection of A wrrB to B is surjective, and (£, 1B) 6 A wrr B for every £ € AB

provided 1B e B. The latter property is clear. By Lemma 2.1, we have C£, v) e
A wrr B for every £ e AB and y € B. Hence the second projection of A wrr B to B
is, indeed, surjective. •
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REMARK 4.1. It is easy to see that the above proofs apply not only for the wreath
products A w r B and A wrr B but also for any semidirect products A * B and A *r B,
respectively, where the action of B on A has the following two properties: (i) the
action is left unitary provided B has an identity, and (ii) B acts on A by monoid
endomorphisms (that is, b\A = \A for every b e B) if A has an identity.

Lemma 4.1 and Lemma 4.2 allow us to identify l^wre and IAWITB with (eA, 1B).
More precisely, if lA e A and 1B € B, then we proved lAwrB = \AvmB — (^A. 1B)-
In the opposite case, IAWFB £ A w r B and IAW^B £ AwrrB. Then we can adjoin
identities to A and B, and we can choose both 1AWFB and IAWITB to be (eA, 1B), where
€A e (A1)8' such that xeA = lA for every x e f l 1 . This is convenient for us because
in this way (AwrB) 1 and (A wrr B)' are subsemigroups in A' wr B'.

The following construction which comes from the notion of the wreath product of
transformation semigroups plays a crucial role in this section.

Let A, B, C be semigroups. The wreath product B wr C acts naturally on the direct
power AB'x C ' of A as follows. For every (0, c) e B wr C and a € AB'x C ' , define
</J-c)a to be the mapping B1 x C1 -> A given by (JC, y) ((/3-c)a) = (x • y/3, yc)a. It is
straightforward to see that this is, indeed, an action. This action defines a semidirect
product of AB'x C ' by B wr C which we denote by AB'xC" • (B wr C).

Suppose now that A, B, C are regular and at least two of them are in tfy'. Then
B wrr C is defined, and the restriction of the action of B wr C on AB'x C' to B wrr C
determines a semidirect product of AB'x C ' by B w r r C which we also denote by
AB'x C ' *(B wrr C). Clearly, AB'x C ' *(B wrr C) is asubsemigroup in AB'x C' *(B wr C).
Futhermore, Reg(AB'*c' * (BwrrC)) forms a (regular) subsemigroup in AB'x C' *
(B wrr C) which we denote by AB'x C ' *r (B wrr C).

Note that the action of B wr C [B wrr C] on A B'x c ' is left unitary if B wr C [B wrr C]
has an identity. For, if B wr C [B wrr C] has an identity, then, by Lemma 4.1 [4.2],
we have l s e B, l c € C, and the identity of B w r C [BwrrC] is (eB, l c ) . Thus,
for every a. e AB'x C ' and (JC, y) € B1 x C1 = B x C, we have (JC, y) ((e»lc)a) =
(JC • yeB, y • l c ) a = (JC • 1B, y • l c ) a = (x, y)a.

Now we are ready to present a new generating set for the e-varieties ^ *r (V *r W)
mentioned in Corollary 3.2.

PROPOSITION 4.1. Let fy, f, IP be e-varieties such that at least two of them are
contained in <€&. Then <% *r {V *r IP) is defined, and

^ * = {AB'xC'*r (BwrrC): A e ^ B e ^ . C e f )

is a subclass in <fr *r {V *r HP). If, moreover, V *r1P c LJ or £& (see Result 1.2),
then <% *r (V *r IP) is generated by 2F\
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PROOF. The first statement is clear by definition. Therefore, by Corollary 3.2, it
suffices to verify that A wrr (B wrr C) e H S r ^ * for every A e f . B e ^ C e f .
The statement in Remark 3.1 implies that A wrr (B wrr C) is a homomorphic image
of A wrr (B wrr C)[Bl wr C1]. Now we prove that the latter semigroup is embeddable
into (AfllwrC')(BCl)'xCl *r (5C'wrr C).

Let us define a mapping

x C

in the way that (a, (B, c))<t> = (a, OS, c)), where yS : C1 -*• Bc ' is given by xfi = x/3
for every B e fic', and a : (Bc>)1 x Cl -»• Afi'wrC' is defined by (f, JC)S = (?x)a
for every £ e (Bc') ' and * e C1. Since Bc> < (B1)0', by our convention, we have
lflCi = eB, the identity in (Bl)c>. Therefore, £ can be considered as an element in
(B')c ' , and so (£, x) e B1 wr C1. Since (/J, c) is the image of (ft, c) via the natural
embedding of B wrr C, considered as a regular semidirect product fic' *r C, into the
regular wreath product flc' wrr C, we see that (/}, c) is, indeed, in Bc' wrr C. Let
(a, 06, c)), (a, OS, c)) € A wr (B wrr C)[Bl wr C1]. If (a, OS, c))<& = (a, (^, c))<D,
then (^, c) = (yS, c) follows. The equality a = a implies a = a since a = (eslc)o; =
{eB, lc)a = (ffl. lc)« = (ffllc)a = a. Thus we obtain that 4> is injective.

To see that O is a homomorphism, it suffices to prove the equality of the first
components in ((a, (B, c)) • (a, 0, c))) <I> and (a, (B, c))<t> • (a, (fi, c))<J>, that is, the

equality (a • <̂ CW) = a • (/3c)a. For, the observation that <t> on the second component
is a natural embedding ensures the equality required in the second component. For
every (%,x) e (Bc')1 x C1 c B1 wrC1, we have

, x) (a • (^ c§) = (?, x)a • (£, x) (&e%) = « , *)« • (? • JC^, xcj*

= (t;,X)a • (!; -XB,XCW = (t;,x)Z • ((!;,X)(P,C))Z

Thus we have shown that 4> is an embedding. In particular, it assigns regular elements
to regular elements. So its restriction to A wrr (B wrr C)[Bl wr C1] is an embedding
into (ABi ™c'yBcl)'xC K ( f i c w r r Q T h e l a t t e r s e mig r o up obviously belongs to &*,
and so we proved that A wrr (B wrr C) € HS r ^*. D

The following lemma is, actually, a consequence of the associativity of the wreath
product of transformation semigroups (see [4,13]). For completeness, we give a proof
in our setting.

LEMMA 4.3. Let A, B, C be arbitrary semigroups. Define a mapping

TC^ AB'x C '*(BwrC)
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as follows. If(y, c) € (A wr B) wr C and yu y2 are the components of the mapping
y : C1 —>• A wr B = ABl x B, then let yi : Bl x Cl —* A be the mapping defined by
(x, y)yi = x(yy\), and put (y, c ) * = (yi, (y2, c)). Then * is an isomorphism.

PROOF. First we show that * is injective. Let (y, c), (S, d) € (A wr B) wr C such
that (y, c )* = (5, J ) * . Then yx = %u y2 = 82 and c = J. In order to show that
(y,c) = (5, d), it suffices to verify that yx = 5j. However, the equality pi = 5i
says that, for every y e C , yyi and y5] are equal mappings in AB' whence y\ = 8\
follows.

In order to check surjectivity, let(£, (P, c)) € ^B 'x C ' • (B wrC). Define y : C -+
AWTB = AB' x B by yy = ( ( - , ^)^, j)S). Here (- , y)£ is the mapping B1 -> A
such that JC((—, y)^) = (x, y)i- (x e Bl). It is obviuos that yi = §, y2 = ^, and so
(y, c )* = (£, (/J, c)).

Finally, we show that * is a homomorphism. Let (y, c), (3, d) e (A wr B) wr C.
Then, by definition, we see that

= (y • C5, cd)* = ( ( y ^ ) , , ((y • C5)2,

Here the following holds in A wr B for every y e C1:

and

y(y • C5) = yy • (yc)S = (yyu yy2)((yc)8u (yc)S2)

= (yyi • yniyc)Su yy2 • (yc)S2) = (yy, • ^y^Su y(y2 • CS2)).

Hence we obtain that

(1) y(y-cS)i=yyi-yyKyc)Sl foreveryy e C,

and

(2) ( y • CS)2 = y2 • C82.

Furthermore, we have

(y, c ) * • (8, d ) * = (pi, (n, cM8u (82, d)) = (y, • l»-e$u (y2 •
 <32, cd)) .

By (2), it is clear that the components of ((y, c)(8, d))V and (y,c)V • (5,
belonging to B wr C coincide. It remains to prove that

For every (x, y) 6 B1 x C1, we have

£ (*, y) ((w'c^i) = (*, y)n •
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and

(x, y)(^S)l = x (y(y • c<5),) = x (yYl • yn(yc)Sl) by (1)

= x(yYl) • x (yyKyc)81) = x(yYl) • (x • yyjKiyc^)

= (x,y)yi • (* -yy2,yc)Su

which completes the proof. •

Hence we obtain the following consequence for regular wreath products.

LEMMA 4.4. Let A, B, C be regular semigroups such that at least two of them are in
<€y. Then both (A wrr B) wrr C and AB'xC'*r(B wrr C) are defined, Reg((A wr B) wr C)
constitutes a {regular) subsemigroup in (A wr B) wr C, we have

(A wrr B) wrr C < r Reg((A wr B) wr C),

and the restriction * r : Reg((A wr B) wr C) ->• AB'xC' *r (B wrr C) of the isomor-
phism W defined in Lemma 4.3 is an isomorphism.

PROOF. It is clear that if (£, (0, c)) e AB'*C' * (B wr C) is a regular element,
then (0, c) e B wr C is necessarily regular. Therefore, Reg(AB'xC" • (B wr C)) =
Reg(AB'xC" * (fiwrrC)) = AB'xC' *r (B wrr C). Since both the isomorphism *
and its inverse assign regular elements to regular ones, we infer from Lemma 4.3
that Reg((A wr B) wr C) is a regular^subsemigroup in (A wr fi) wr C and * r is an
isomorphism. Since Reg((A wrr B) wr C) c Reg((A wr B) wr C), we obtain that
(A wrr B) wrr C < r Reg((A wr#) wr C). •

An immediate consequence of this lemma is the following result.

LEMMA 4.5. If 9/ ,"¥,W are e-varieties such that at least two of them are con-
tained in 'gy, then f c S , i " holds for the classes defined in Corollary 2.1 and
Proposition 4.1, respectively.

This implies the following theorem.

THEOREM 4.1. Let W, y, W be e-varieties such that at least two of them are
contained in tfy. Then {<% *r y) *r W c <% *r (y *r W).

In the rest of this section we look for special cases, where the reverse inclusion also
holds. First we find sufficient conditions which ensure that & = 2f*.

LEMMA 4.6. Let A, B, C be regular semigroups such that B acts on A and C acts
on A * B, and consider the semidirect product (A * B) * C. Suppose that one of the
following conditions holds: (i) A 6 tfy, (ii) B € <&, (iii) C € <£. Then, for every
((a, b), c) 6 Reg((A * B) * C), we have (a, b) 6 Reg(A * B).
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PROOF. The statement is obvious in case (ii) since if B € # , then A * B =
Reg(A * B).

Let ((a, 6), c) e (A * B) * Cbe regular. Then there exists ((a', b'), d) e(A*B)*C
such that ((a, b), c)((a', b'), d)((a, b), c) = ((a, fe), c), that is,

(3) cc'c = c and (a, b) • c(a', b') • c</(a, b) = (a, b).

In case (iii), d is the group inverse of c and cd = l c . Therefore, the second equality
shows that (a, b) e Reg(A * B). In case (i), it suffices to observe, by Result 1.3,
that c(a', b') • cc\a, b) is idempotent. This follows since (3) implies c<J(a, b) • c(a', b') •
cc\a, b) = cc'(a, b) whence c(a', b') • cc>(a, b) e E(A * B). •

Now we can establish the sufficient conditions mentioned.

LEMMA 4.7. Let W ,~P ,W be e-varieties such that at least two of them are con-
tained in <€y. Assume that, moreover, one of the conditions (i) % C <€ y, (ii) -y C <g
and (iii) IP C <S are satisfied. Then & — 2?* holds for the classes defined in Corol-
lary 2.1 and Proposition 4.1, respectively.

PROOF. Let A e %, B e V and C € /^. It is clear that (A wrrfl) wrrC c
Reg(G4 wrB) wr C). Conversely, Lemma 4.6 implies that Reg((A wr B) wr C) c
Reg((AwrrS)wrC). Since either C e tfy or AwnB e ^y, we have
Reg((A wrr B) wr C) = (A wrr B) wrr C. Thus

Reg((A wr B) wr C) = (A wrr B) wrr C,

and so, by Lemma 4.4, (A wrr B) wrr C is isomorphic to AB> xC' *r (B wrr C). Hence
we deduce that ^ = 2f\ D

Another case, where we are able to find a relation between <3f and 2f* which implies
the inclusion reverse to that in Theorem 4.1 is when V = S£2? and IP c ^ ^ but
W <£&. One of the reasons that this case can be handled is that a semidirect product
of a left zero semigroup by an arbitrary semigroup is necessarily their direct product.

Let A, B, C be semigroups such that B e 1£2?. Then B x C has no identity, and
so we are allowed to choose lBxC = (1B, lc)- Let us identify Bl and C1 with the
subsemigroups S 1 = {(b, l c ) : b € B1} and C1" = {(1B) c) : c € C1} of B1 x C\
respectively. Thus B1, C1 < B1 x C1, and we can consider the actions of B and of
C on AB xC' involved in the definition of the semidirect products A wr B[B' x C1]
and A wr C[Bl x C1], respectively. Consider the semigroup A wr B[Bl x C1] which
we prefer now to denote AB x C ' * B, and define an action of C on AB x C' * B
'componentwise', that is, put c(a, b) = (ca, &)foreveryc € Cand(a, b) e AB'xC'*B.
Thus we have defined (AB'xC' *B)*C.
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LEMMA 4.8. Let A, B, C be regular semigroups such that B € S£2t and C e

(i) The mapping 0 : (AB'xC' * B) * C -> A wr (B x C)[B' x C1] defined by
{{a, b), c)0 = (a, (b, c)) is an isomorphism.

(ii) The subset Reg((AB'xC' * B) * C) forms a (regular) subsemigroup in
(AB'xC' * B) * C, we have (AB'xC" *rB)*rC < r Reg((AB'xC' * B) * C), and
the mapping ©r : Reg((AB'xC" * B) * C) -» A wrr (B x C)[Bl x C1] cfe/^rf &y
((a, b), c)@r = (a, (6, c)) is an isomorphism.

(iii) The restriction of the homomorphism @rT to (AB'xC' *r 5) *r C, where T w
the homomorphism of A wrr(5x C)[B' xC ' ]o« 'o^ wrr(fix C) given in Remark 3.1,
is surjective.

PROOF, (i) The mapping 0 is obviously bijective. A straightforward calculation
shows that it is also a homomorphism. All we have to notice is that *(%*) = (*c)a for
every a e A B x C ' , b € B andc e C.

(ii) By definition, Reg(Awr(5 x C)[Bl x C1]) = Awrr(fi x C)[Bl x C1].
Since 0 and 0" 1 assign regular elements to regular ones, we obtain from (i) that
Reg((AB'xC' * B) * C) is a (regular) subsemigroup in (AB'xC' * B) * C and 0 r is an
isomorphism. Clearly, we have (AB'xC' *r B) *r C<r Reg((AB'xC' * B) * C).

(iii) By (ii) and Remark 3.1, 0 r T is the mapping Reg((AB'xC' * B) * C) ->•
A wrr (B x C), ((a, b), c) t->- (ct\(BxC)>. (̂ » ^)), and it is a surjective homomorphism.
We have to prove that each elemenf of A wrr (B x C) has an inverse image in
the subsemigroup (AB'xC' *r B) *r C of Reg((AB'xC' * B) * C). Let (y, (b, c)) e
A wrr(fi x C). Since it is regular, we have (b', c') e V((b, c)) by Lemma 2.1 such
that i"-w>y >x Y in A(BxC)'. Here (*, c)(*', c') = (b, cd) since B € if^". For
brevity, we denote cc' by c°, and so we have (*c0)y > & y in A( B x O' . The inverse
images of (y, (fe, c)) under 0 r T are the elements ((a, 6), c) e Reg((AB'xC' * B) * C),
where a e /^ 'xC s u ch that a\(B>lc)> = Y- So, in order to reach our goal, we
have to extend the definition of y to the set S1 x C1 such that the mapping a ob-
tained has the property that ((a, b), c) 6 (AB'xC' *r B) *r C, or, equivalently, both
((a, b), c) € Reg((AB'xC' *B)*C) and (a, b) € Reg(AB'xC' *B) . By (ii), the former
property is equivalent to requiring that (a, (b, c)) € Reg(A wr (B x C)[BX x C1]),
and, by Lemma 2.1, this is satisfied if

(4) • (bc\>#a holds in B'xC'

Again applying Lemma 2.1 and the fact that B e _Sf 2f, we see that the latter property
is equivalent to the condition that

ha>su holds in AB'xC"(5) ha>seu holds in
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Define a : B1 x C1 -*• A in the following way:

(x,y)Y i f ( x , y ) e ( B x C ) ' ;

(x,c°)y if* e Bandy = lc;
(b, y)y if x = lB andy € C.

(x,y)a =

Recall that B € J£?^ and C € ^y\^, and therefore neither B nor C has an identity.
Hence it follows that a is well defined. We verify ((a, b), c) e (AB'xC' *r B) *r C
by showing that (4) and (5) are satisfied. If (x, y) e (B x C)1, then (*, v) (<*c\) =
((*, y)(Z>, c°))a = ((*, y)(2>, c°))y = (x, y) (*«°V) > * (jc,y)y = (*,y)a. If* €
B, then (x, l c) (<fc-c°k) = ((*, lc)(6, c°))« = (JC, c°)a = (JC, c°)y = (JC, l c)o. Fi-
nally, if y e C, then (1B, y) {^\) = ((1B, y)(b, c°))a = (b, yc°)a = (b, yc°)y =
«b,y)(b,c°))y = (b, y) ((4-c°V) > <* (b,y)y = (lB,y)a. Thus we have shown
that (4) is valid. It remains to verify (5). If JC e B, then we have (JC, v) (ba) =
(xb, y)a = (x,y)a for every y e Cl. If y € C, then (lfl,y)(^() = (b, y)a =
(b,y)y = (lB,y)a. Finally, we have (lB, l c) (*a) = (6, l c)o = (6, c°)y =
(1B, lc) ((ic°V) >jjf (1B, l c )y = (Is, lc)a. Thus we have shown that (5) also
holds. Hence ((a, b),c) e (AB'xC> *r B)*r C. Clearly, a\(BxO> = y, and so
((a, b), c)@rT = (y, (b, c)). Thus A wrr(B x C) is, indeed, a homomorphic image
of (AB'x C"*rB)*rC. " D

REMARK 4.2. The analogy between the statements of Lemma 4.3 and Lemma 4.4
and the statements of Lemma 4.8 is not "by accident: the isomorphisms 0 and ©r

can be considered as modifications of the isomorphisms * in Lemma 4.3 and tyr in
Lemma 4.4, respectively.

More precisely, one can see that the mapping T : (A B'x c ' * B) * C —*• (A wr B) wr C
definedby ((a, b), c)F = (y, c), where, for every y e C\wehaveyyi : B1 -*• A such
that x(yyi) = (x, y)or (x e B1) and yy = (yyi, b) is an embedding. The mapping
A : A wr (B x C)[BX x C1] -+ AB'xC' • (B wr C) given by the rule (a, (fc, c))A =
(a, (/J, c)), where fi : C1 -> B is defined by y/5 = b (y 6 C1) is also an embedding.
Denote the images of f and A by T and U, respectively. Denote by f and A the
isomorphisms of (AB'xC" * B) * C onto T and of A wr (B x C)[Bl x C1] onto U
induced by F and by A, respectively. It is straightforward to see that the isomorphism
* defined in Lemma 4.3 has the property that 7 * C U and f/*"1 c T. Moreover,
we also have 0 = F^A"1. This shows our assertion for 0 and 4*. By restricting
our considerations to the regular elements, we obtain the respective statement for 0 r

LEMMA 4.9. LetW,y,Wbe e-varieties such Y = %2? and W c <€& but
W <£<#. Then &' C S r HS r ^ holds for the classes defined in Corollary 2.1 and
Proposition 4.1, respectively.
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PROOF. Let Z = A8'xC" *r (B wrr C) be an arbitrary element in 3?*, where A e f ,
B eV and C e # . Since y = _Sf J^ and B wrr C is a regular semidirect product of
the direct power Bc' by C, we obtain that B wrr C is isomorphic to Bc ' x C. Since
A8'*c' *r (5 wrr C) is naturally embeddable into AfllxC' wrr (fi wrr C), we infer that
Z € Sr{AB'xC" wrr(Bc' x C)}. Since AB'xC' e ̂ , B C ' € y. Lemma 4.8 implies that
Z e SrH{(A *r B) *r C} for some A e ^ . B e f and for appropriate actions. Here
(A *r B) *r C is naturally embeddable into (A *r B) wrr C and A *r B into A wrr B.
By Lemma 2.3, we see that (A *r B) *r C is isomorphic to a regular subsemigroup in
(A wrr B) wrr C. Thus (A *r B)*rC e Sr^, and so Z 6 S r HS r ^ . D

Combining Lemma 4.7 and Lemma 4.9 with Corollary 2.1, Proposition 4.1 and
Theorem 4.1, we obtain the main result of this section.

PROPOSITION 4.2. Let %, V, W be e-varieties such that one of the following con-
ditions are satisfied

(i) ^ C <gy, f orW c <gy and Y*rW^LJor S5? {see Result 1.2);
(ii) rc^UJffflffi/^C^y;
(iii) r c <€y and f c ^ .

Then (<% *rV)*rW = W *r (V *r W).

S. Regular semidirect products of varieties of completely simple semigroups

In this section we first investigate the regular semidirect products, where one of
the factors is a variety of rectangular bands. Then we show that 'almost each' regular
semidirect product of completely simple e-varieties is equal to a regular semidirect
product, where one of the factors is a group variety. This allows us to generalize
Proposition 4.2 by deleting from it the assumption that one of Y and W lies in a
particular subvariety of completely simple semigroups.

First we establish the analogue of Result 1.6

PROPOSITION 5.1. For any e-variety V, we have 3&2F *r f = 3£2? v V.

PROOF. The inclusion 2%2f v V c @2f *r f is obvious for any e-variety V. In
the sequel we prove the reverse inclusion.

Let A € 8?.2?, C e V, and assume that C acts on A. We intend to show that
A*rCe &?,2?vt'. By Lemma 2.1, an element (a, c) € A * C is regular if and only if
there exists d e V(c) such that cda >s? a. However, the relation >s? is the equality
on a right zero semigroup, therefore (a, c) is regular if and only if there exists d € V(c)
such that cc'a — a. Consider the direct product A x C and the mapping x '• A x C —>•
A*C defined by (a, c)x = (ca, c) ((a, c) e A x C). For any (a, c), (b, d) € A x C,
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we have (a, c)x(b, d)x = (ca, c)(db, d) = (ca • cdb, cd) = (cdb, cd) since A is a right
zero semigroup. Furthermore, ({a, c)(b, d))x = (ab, cd)x — (b, cd)x = (cdb, cd),
and so we see that x is a homomorphism. By the observation at the beginning of the
proof it is easy to see that (A x C)x — A*rC. For, A x C is a regular semigroup,
and so (A x C)x Q Reg(A * C) = A*r C. To verify the reverse inclusion, let
(a, c) e A*r C. Then ccia = a for some d € V(c), and hence (a, c) — ("a, c)x-
Clearly, we have A x C 6 J ^ v y, and thus A *r C € ^ ^ v V follows. Hence,
by the definition of SP, 2? *r f, we obtain that MS? * , f c ^?^T v f . •

Since S&& = 2!2? v &P.2?, Corollary 2.2, Result 1.6 and Proposition 5.1 imply
the following corollary.

COROLLARY 5.1. For any e-variety V', we have 3f,9B *rf = @38 V f.

The regular semidirect products y *r &?,2f with "Y any e-variety are much larger
in general than !%% v "f, and they turned out to be especially interesting, see [8,9].
Now we establish that this is not the case with the regular semidirect products of the

PROPOSITION 5.2. For any e-variety V, we have V *r ££2F = jSf ̂  v y.

PROOF. The inclusion j£f 2? v y c y *r jgf 2? is clear by definition. Now we
establish the reverse inclusion.

Let A be any regular semigroup and L a left zero semigroup. Define Ao to be the
left zero semigroup on the set A. Define a mapping \j/ : Ao *• AL x L —* A wrr L by
the rule (ao, a, e)xfr = (a, e), where \La = ao • ea and a\L = a. We intend to verify
that ir is a surjective homomorphism of the direct product of the left zero semigroups
AQ and L and of the direct power AL of A.

By Lemma 2.1, an element (ft, f) € A wr L is in A wrr L if and only if f fl > & fi
in AL'. However, observe that, for any fi € A° and/ € L, we have (f(i)\L = fi\L.
For, if x € L, then x(fP) = (xf)fi = xfi. Therefore, ( 0 , / ) e A wrr L if and only
if fP > i? 1LJ8 in A. Since for any (ao, a, e) € Ao x AL x L, we have lLa =
ao • ea < eg ea, this shows that (a, e) € A wrrL. Conversely, if (fi,f) € A wrrL,
then//J > jf 1L/J in A which implies that lLp = u • fP holds for some u € A. Thus
("> P\L,/ )Vr = O. / ) ' proving that Vf is a surjective mapping onto A wrr L.

In order to verify that it is a homomorphism, consider {a^, a, e), (bo,p,f) €
Ao x AL x L. Then

((ao, a, e)(bo, p,f)W = (ao, a0, e)f = (y, e),

where \Ly = ao • e(a.p) andy\L = a)8. Furthermore, we have

(oo, a, e)yj/ • (*>0, P,f)f = (5, e)(/?,/) = (5 • ei8, e),
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where \La = a^ • ea, \Lp = bo-fP,a\L =a and/?|L = £. Thus

= oo • e(aP) = ao-ea-ep = \La • e/f = lL(a • %

and, for any x e L,

xy = x(aP) - xa • xfi = xa • (xe)fi = xa • (xe)0 = x(S • %.

Thus we have checked that \fr is also a homomorphism.
If A e V and L e &&, then Ao x AL x L e 3?2T v V. The assertion in the

previous paragraph shows that A wrrZ, 6 3f 2? v "V. By Result 1.1 we infer that
V *r %2£ c jg?^" v V, and the proof is complete. •

COROLLARY 5.2. For any e-variety V with "V g !%2f, we have V *r 3?,38 =

PROOF. Since we have @.@) = &2? *r @2? by Result 1.6, Proposition 4.2 implies
that V*r@,38 = Cr*rS?$r)*r3!2r. By applying Proposition 5.2, Corollary 2.2
and Result 1.6, we see that

(y *r &&) *r star = (sear v r) *r ms? = (^zr *r &&) v ( r *r star)

Result 1.4 (ii) ensures that f *r@2? 2 -Sf ̂  whence V *r0P,2? => J ? ^ follows.
Thus we infer that Y *r@,SS = V *,&&. U

In the following two propositions we provide regular semidirect products which are
equal to regular semidirect products one of whose factors is a variety of groups. As
a corollary, we establish that 'almost always' this is the case with regular semidirect
products of varieties of completely simple semigroups.

PROPOSITION 5.3. Let Y, W be e-varieties such that Y C <€& and^2T
. Then we have

[flfn&3T) v IP otherwise.

PROOF. By Proposition 5.1, we have W = 0Z2?*r1C. Therefore, by Proposi-
tion 4.2, we see that

y*rw = v*r (star *r W) = ( r *r star) *r w.
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Suppose first that V n <S ^ &. Result 1.4 (i) implies that

c y *rst,3? c

However, completely simple semigroups are just the regular semigroups whose local
submonoids are groups. Therefore, we have

LV =
Applying Result 1.4 (ii), we see that

Hence V *r &2T = (y n&) *r 3?,2f follows. Thus we obtain that

*r w =

In the last two steps we again applied Proposition 4.2 and Proposition 5.1.
If V n # = 2f, then f c 0ZSS. Since the subvarieties in StSB are just

&, &2f,@2?anA&!BS, the trivial equality & *r V = ^Result 1.6, Proposition 5.1
and Corollary 5.1, respectively, imply that f *r W = V v >T. Since ̂ ^ c ^ , we
have r v # = ( r n J5f ̂ ) v ( r n « 5 0 v T = ( r n XT) v ^ , completing the
proof. •

PROPOSITION 5.4. Letf,W be e-varieties such that W C jg?#. 7/ien we

PROOF. If >^ c <g, then the equality is trivial. In the opposite case, we have
Se2? c W, and so the equality to be proved is f *r W = (? v i f 5 0 *r ( ^ n Sf).
Since ^ = i f ^ V ( ^ D «?), Result 1.6, Proposition 4.2 and Proposition 5.2 imply
that

•
Now let V, W be subvarieties in *€&'. Since we have either W 3 0?.2f or

W c _£f#, Proposition 5.3 and Proposition 5.4 imply the following result.

COROLLARY 5.3. Let V, W be varieties of completely simple semigroups. Then
we have
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Finally, we return to investigate associativity of the regular semidirect product, and
prove the main result of the paper.

THEOREM 5.1. Let &, V, W be e-varieties such that one of the following condi-
tions are satisfied

(i) <% <Z<#y,V orW QVyandV*rW £LJ orgy;
(ii) y , f c <gy.

Then {<% *r 7) *r W = <% *r (? *r W).

REMARK 5.1. Result 1.2 makes it possible to formulate condition (i) by posing
restrictions on the e-varieties %, "V, W only. Thus (i) is equivalent to requiring that
(i)' <% c <gy, and y, W fulfil one of the condition (LI1), (LI2), (ESI) and (ES2).

PROOF. Taking into account Proposition 4.2, we have to prove only (ii) in the case,
where <% g tfy, V g # U i f ^ a n d ^ g # . Moreover, by Theorem 4.1, it suffices
to verify the inclusion fy *r (y *r W) -C (% *r y) *r W. We distinguish three cases
according to those listed in Corollary 5.3.

If y 2 &-8S and St.'2? c W, then we have

= '% *r ay
= («r *r (y n Sf)) *r W by Proposition 4.2

c (<% *r y) * r W.

If y c @3S and ^ ^ c 5T, then we have ^ *r ( ^ *rW) = W *r ( ( ^ n
v y^). Here V n JSf ̂  = ^ or i f 2 \ If f n i f ^ c 5^, then we obtain

ty*r{y*rW) = '%*rW<^ («r *r r ) *r )T. If r n i f a? g 5r, then we necessarily
have r n 5?2f = ^2f and ^ c ^ ^ . The latter relation together with St. 2? c ^
ensures that W = SH2? v JT, where JT = ^ D <S. Thus we have

*r ( r *r ^ ) = <% *r {&% v ^ ^ v

= C ^ *

= car*

c (<gr*

{Star*

w
ry)*

tr JV) by Corollary 5.1
*r X by Proposition

*r X by Corollary 5,

*r J^) by Proposition

by Proposition 5.1

W.

4.2

.2, since

4.2

Finally, let ^ C &&. Since F g «?, we have 5T = i f ^ V Jf, where
X = W C\<g. Then Corollary 5.3 implies that V*r W = (? v i f ^ ) * r JT. In
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particular, if Jz? 2? c ~f, then we see by Proposition 4.2 that

v *r cv *rw) = w *r cr *r x) = (& *r r) *r jr c (^ *r r) *r w.

If JSf̂ T 2 r, then V c @,<S and, since r ^ , w e have r = ^ . T v J(, where
Jt = Vr\<g. Therefore,

= W*r ((0P.36 *r JK) *r X) by Corollary 5.1

= ^ *r ( ^ ^ *r (^# *r J O ) by Proposition 4.2

= ( ^ *r ̂ ^ ) *r (^# *r JT) by Proposition 4.2

= ( ^ *r ̂ ?^T) *r {Jl *r X) by Corollary 5.2, since

- {{% *r tf-Sf) *r Jt) *r J f by Proposition 4.2
= ( ^ *r (0Z2? *r ^ ) ) *r JT by Proposition 4.2

= ( ^ *r V) *r X by Proposition 5.1

By Result 1.5, the formation of a regular semidirect product is a full operation on
the set of all varieties of completely simple semigroups. Thus we obtain the following
corollary.

COROLLARY 5.4. On the complete lattice of all varieties of completely simple semi-
groups, the regular semidirect product is an associative operation, and it is right
distributive with respect to the join operation.

6. Regular semidirect products of e-pseudovarieties

In this section we review the former arguments from the point of view how they
carry over to e-pseudovarieties of finite regular semigroups. We find that both right
distributivity with respect to the join operation and associativity hold in the complete
lattice of e-pseudovarieties.

The finitary analogue of the concept of an e-variety is the following (see [12]):
an e-pseudovariety is a class of finite regular semigroups which is closed under the
formation of finite direct products, regular subsemigroups and homomorphic images.
Notice that the class of all finite members of an e-variety forms an e-pseudovariety.

Throughout this section, the notation of the previous sections is used with the
appropriate modification 'cut down to the finite case' in its meaning. In particular, a
notation used till now for an e-variety will stand for the e-pseudovariety of all of its
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finite members. For example, *€y denotes the e-pseudovariety of all finite completely
simple semigroups and 'tfyi'V) its sub-e-pseudovariety consisting of all members
whose subgroups belong to a given e-pseudovariety "¥ of finite groups. Moreover, if ^
is a class of finite regular semigroups, then {^)e is understood as the e-pseudovariety
generated by <€ and PJ^ as the class of all finite direct products of members of c€.

In the context of e-pseudovarieties, the difficulty mentioned in Section 1 in con-
nection with expressing the generated e-variety by means of the operators D°° and P
does not occur: we have {^)e = D ^ P ^ for every class ̂  of finite regular semigroups
([12]). This is the reason that more general results are obtained for e-pseudovarieties
than for e-varieties.

The definition of the regular semidirect product *r of e-varieties carries over
immediately to e-pseudovarieties. As it was noticed in [1], Result 1.1-Result 1.5
remain valid in the latter context. One can easily see that the same is the case with
Result 1.6 and with the results in Section 2. In particular, the finitary analogue of
Corollary 2.2 formulates the right distributivity of the regular semidirect product of
e-pseudovarieties with respect to their join.

COROLLARY 6.1. Let % (i e I) and f be e-pseudovarieties such that either % c
<€& for each i e / orf c <gy. Then we have (V,6/ %) *r V = V,6/ i% *r *0-

Similarly, one can check that the statement of Theorem 3.1 is also valid for e-
pseudovarieties instead of e-varieties-JSince, for e-pseudovarieties, the equality y —
Yf°SC is equivalent to requiring that Y = {X)e and Y5C c D00^", the analogue of
Corollary 3.1 is the following corollary.

COROLLARY 6.2. Let % ,V be e-pseudovarieties such that W or f c ^y. Let
c r such that V = (2C)e and Y& c D°°^T. Then W *r V = (A wrrX :

Hence the argument after Corollary 3.1 implies the following statement.

COROLLARY 6.3. LetW ,V,W be e-pseudovarieties such that at least two of them
are contained in 'tfy. Then % *r (P *r W) is defined, and it is generated by

Taking into account the symmetry of Corollary 6.3 and of the finitary analogue
of Corollary 2.1, the arguments in Section 4 prove the equality ( ^ *r y)*rW =
<% *r ( r *r W) for any e-pseudovarieties W,V,W, where either (i) ^ c <gy and
one of V, W is in <fy, or (ii) V c y U && and W c <$y, or (iii) V c <#y and
W c <S (see Proposition 4.2).
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Finally, since the basic statements on the e-varieties of rectangular bands and of
left and right groups applied in Section 5 (for example, all the sub-e-pseudovarieties
of 3?,& are 9', Jf^", SZ2? and SP,9S; each sub-e-pseudovariety V of SP& is of the
form J£2f \/ JT, where J f = "V n &) are valid in the context of e-pseudovarieties,
the arguments in Section 5 verify the associativity of the regular semidirect product
of e-pseudovarieties.

THEOREM 6.1. Let W, V, If be e-pseudovarieties such that at least two of them
are contained in tfy. Then (<& *rr)*rW = & *r {V *r W).
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