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ON THE SOLVABILITY AND CONTINUATION TYPE 
RESULTS FOR NONLINEAR EQUATIONS 

WITH APPLICATIONS, II 

BY 

P. S. M I L O J E V I C , * 

ABSTRACT. In this paper we continue our study of the solvability 
of nonlinear equations involving uniform limits of A-proper and 
pseudo A-proper maps under a new growth condition (1) that we 
began in [14,15]. Applications of our results to quasimonotone, 
ball-condensing pertubations of c -accretive maps and maps of 
semibounded variation and of type (M) are also given. 

Introduction. Let X and Y be normed spaces with an admissible scheme 
T = {En, Vn; Fn, Wn} and T.X-+ Y a nonlinear map such that 

(1) ||Tx|| + (Tx,Kx)/ | |Kx| |^oo as ||x||->oo, 

where K\K-^> Y* is a suitable map with ||Kx||-^°° as ||x||—>°°. Consider the 
equation 

(2) T(x) = f (xeXJeY) 

and a sequence of finite dimensional equations associated with (2) 

(3) WnTVn(u) = Wn(f), (ueEn). 

Unlike the existing (approximation) solvability results for A-proper like maps 
in the literature (see, e.g. [23,16,19 and 20, except Theorem 2.6, cf. Remark 
2.7(b)]) we have begun recently the study of Eq. (2) under the new growth 
condition (1). The first results in that direction were announced in our January 
1977 note [14] and later in [15] where we have dealt in detail with the 
approximation—solvability results for Eq. (2) involving A-proper maps and 
their applications to elliptic differential equations. Solvability of equations 
involving monotone and (generalized) pseudo-monotone maps that satisfy 
condition (1) has been earlier studied by Wille [28], Browder [3], Hess [12], 
Milojevic-Petryshyn [19] etc. 
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The purpose of this paper is to establish some solvability type results for Eq. 
(2) involving a much wider class of the so-called uniform limits of A-proper 
and pseudo A-proper maps satisfying condition (1). In Section 2 we apply our 
abstract results in establishing some new solvability results for equations 
involving quasimonotone maps, ball-condensing perturbations of a-stable maps 
(and, in particular, of strongly accretive type) and maps of semibounded 
variation and of type (M). At the end we briefly discuss a continuation theorem 
for uniform limits of A-proper maps, whose detailed discussion will be given 
later in [18]. The results of Section 1 are existential extensions of our 
approximation-solvability results for Eq. (2) involving A-proper maps. The 
results of this paper are also valid for multivalued maps as stated in [14]. 

SECTION 1. Let {En} and {Fn} be two sequences of oriented finite dimensional 
spaces and Vn and Wn continuous linear maps of En into X and Y onto Fn, 
respectively. 

DEFINITION 1. A quadruple of sequences T = {En, Vn ; Fn, Wn} is said to be an 
admissible scheme for (X, Y) if dim En = dim Fn for each n, Vn is injective, 
dist(x, Vn(En)) —> 0 as n —» o° for each x in X, and {Wn} is uniformly bounded. 

For various examples of admissible schemes we refer to [19, 20, 23] 

DEFINITION 2 ([23]). A map T.X^Y is said to be approximation proper 
(A-proper) with respect to T if TnWnTVn :En —> Fn is continuous for each n 
and if { V ^ u ^ ) | unk eEnJ is any bounded sequence such that \\Tnk(unk)-
Wnk(/)ll —* 0 as k —» oo for some / in Y, then there exists an x in X such that (i) 
Tx=f and (ii) x belongs to the closure of {V^iu^J}. T is said to be pseudo 
A-proper w.r.t. T if we do not require (ii) in Definition 2. 

Many examples of A-proper and pseudo A-proper maps and their uniform 
limits can be found in [23,16,19, 20] (see also Section 2). We just state here 
some needed ones. The first example is due to Browder [4] when Y = X* and 
T is bounded, and in this generality it is a special case of maps of type (KS+) in 
[24]. 

EXAMPLE 1. Let X and Y be reflexive Banach spaces, K:X—> Y* a linear 
homeomorphism and ^ : X —> R weakly upper simicontinuous at 0 with ^(0) = 
0. If T:X—> Y is quasibounded, demicontinous and such that 

( T x - T y , K ( x - y ) ) ^ c ( | | x - y | | ) - * ( x - y ) (x ,yeX) 

for some function c:R+-*R+ with c(0) = 0 and c(r)>0 if r > 0 , then T is 
A-proper w.r.t. T = {Xn, Vn; Yn, Qn} with X n c X . 

If X is compactly embedded in a Banach space Z, then as ^ we can take 
^(x) =||x||z, X G X . Hence, all (linear and nonlinear) maps arising, say, in the 
theory of partial differential equations that satisfy Gârding like inequality in 
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Example 1 in a space compactly embedded in a bigger space (say L2) are of 
A-proper type. As a second example of ^ we can take ^ (x) = (Cx, Kx), where 
C : X - H > Y is completely continuous. 

Recall that if X is a Banach space and D<=:X bounded, then the ball-
measure of non-compactness of D is defined by x(D) = inf{r>01D <= 
Uï B(xh r), xt e X and n > 0 integer}. A map T : D c X —» Y is said to be k-ball-
contractive if x(T(Q))<kx(Q) for each Q c i D ; it is ball-condensing if 
* (T(Q))<x(Q) for each Q c D with x ( Q ) ^ 0 . For the theory of these maps, 
see [22, 26]. 

EXAMPLE 2 ([16]). Let F n <= X and Fn c: Y with Pn and Wn continuous linear 
projections of X onto En and Y onto Fn, respectively such that Pn(x) —» x and 
Wn(y)—» y for each x in X and y in Y If T:X—> Y is continuous, surjective 
and a-stable, i.e. for some c > 0 . 

||Tnx - Tny || > c ||x - y || for all x , y e £ , , n > 1, 

and F : X —» Y is k-ball contractive with k < c, or ball condensing if c = 1, then 
T + F is A-proper w.r.t r o = {En, P n ; Fn, Wn}. In particular, as T one can take a 
strongly monotone or strongly accretive or strongly K-monotone map. 

The importance of this example is that it provides maps that can be treated 
by the theory of A-proper maps, but not by the other existing ones. The 
A-properness of I + A-T with A c-monotone and T k-ball contractive, 
k - c < 1, was proven in [27]. 

DEFINITION 3. A map H: [0 , l]xX—» Y is said to be an A-proper homo-
topy on [0,1] x X w.r.t. T if WnH:[0, l ] x V n (E n ) -»F n is continuous and if 
for all bounded sequences {V^it^J \ ̂  e Enu) and {fnk}<=[(), 1] such that 
|| WnkH(tnk, V n k ( i v ) ) - Wnk(/)|| -> 0 as k -^ oo for some /, there are subsequences 
tnk(i) -> 'o and Vnk(o(wnk(n) -» x0 with H(t0, x0) = /. 

If / in Definition 3 is given in advance, we say that H(t, x) is A-proper at /, 
while if t0 is given in advance, H(t, x) is said to be A-proper on X at t0. 

We say that T.X-+Y satisfies condition: 
(*) if {xn}c:X is bounded whenever Txn —»/ in Y; 

(* *) if Txn —>/ in Y with {xn} bounded, then Tx = f for some x in X. 

THEOREM 1 ([14]). Let T:X^> Y satisfy condition (1), G:X-*Ybe bounded 
and such that (Gx, Kx) = \\Gx\\ • ||Kx|| for all x e X, G x ^ 0 for all large \\x\\ and 
Hlx(t,x) = tT(x) + iJLG(x) an A-proper homotopy on [0, l ] x X w.r.t. T for each 
jit > 0 small. Suppose that either one of the following two conditions holds for all 
large n: 

(i) deg(/xWnGVn, V^1 (B(0, r)), 0) + 0 for all large r>0 and small JUL > 0 ; 
(ii) there is Kn : Vn(JEn) —> F^ and a linear isomorphism Mn:En->Fn such 
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that 

(4) (Wng,Knx) = (g,Kx) for all xeV n (E n ) , geY; 

(5) (Mnu,KnVnu)>0 for all 0j=ueEn. 

Then, if in addition, T either satisfies condition (* *) or is pseudo A-proper, T is 
surjective, i.e. T(X)=Y. 

Proof. We shall show that all the hypotheses of Theorem 2.1 in [20] hold 
with Tt = T for all t e [0,1]. Let / G Y be fixed. Then by (1) there exists an rf > 0 
and 7 > 0 such that 

(6) | | T x - t / | | > 7 for all \\x\\>rf, t e [0 ,1 ] , 

(7) \\Tx\\ + (Tx,Kx)l\\Kx\\>0 for all \\x\\>rf, Gx^O. 

Hence, (6) is equivalent to conditions (HI) (and (H2) in Theorem 2.1 of [20], 
while our assumption on H implies (H3) in this theorem. It remains to show 
condition (H4) of Theorem 2.1 in [20], that is that for all large n and fx > 0 , 

deg(WnTVn + i*WnGVn, Bn(0, rf), 0) + 0. 

Consider the mapping H^(t, x) = tT(x) + JLLG(X) for (t, x) e [0,1]xB(0, rf) for JUL 

fixed. If for some t e [0,1] and x e dB, H^(t, x) = 0, then t£ 0 and consequently, 
T(x) = - (fx/r)G(x). Hence, 

||Tx|| + (Tx, Kx)/\\Kx\\ = (fji/r) ||Gx||-(fjt/t)(Gx, Kx)l\\Kx\\ 

= (jx/0 ||Gx|| - (IJL/0 ||GX|| = 0, 

in contradiction to (7). Thus, 0^H^([0, l]xdB). 
Next, we shall prove that for all large n, 

tWnTVn(x) + |x WnGVn(x) 7^0 for xedBn, te[0,l]. 

If this were not the case, then for all fc > 1 there are tnk e [0,1] and xnk € dBnk 

such that 

t^W^TV^xJ + f ^ G V J x J = 0. 
Since the homotopy H^ is A-proper, it follows that rnfc(i) -» t0, Vnk(i)(xrik(i)) —» x 0e 
6B and H^(t0, x0) = 0, in contradiction to the above property of H^. Now the 
homotopy theorem for the Brouwer degree implies that for all large n 

deg(WnTVn + nWnGVn, Bn, 0) = deg(nWnGVn, Bn, 0). 

Thus, if condition (i) of the theorem holds, hypothesis (H4) of Theorem 2.1 in 
[20] is satisfied. 

Let us now show that (H4) holds when (ii) is satisfied. To that end it is 
sufficient to show that (i) holds. So, define the new homotopy Un : [0, l ] x f î n - > 
Fn by Un(t,x) = (l-t)Mn(x) + tiiWnGVn(x). If for some n and t e [0 ,1 ] , x e 
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dBn, Un(t, x) = 0, we have t^ 0 and for a = 1/t, 

a(Mnx, KnVnx) = (Mnx, KnVnx)- /ut(WnGVnx, KnVnx) 

= (Mnx, K n V n x) - ^(GVnx, KnVnx)<(Mnx, KnVnx), 

which is a contradiction. Hence, LTn(f, x) ^ 0 for all f e [0, 1] and x e d(Bn), and 
the Brouwer homotopy theorem implies that for all n 

deg(^WnGVn, Bn9 0) = deg(Mn, Bn, 0) ^ 0. 

Hence, in either case, (H4) holds and, if T satisfies condition (* *), T(X) = Y 
by Theorem 2.1 in [20]. 

Condition (* *) in Theorem 2.1 [20] was used at the final stage of proof. Let 
us now show that the theorem remains valid if it is replaced by the pseudo 
A-properness of T (in our case Tt = T for all t). Condition (6), the bounded-
ness of G and (H4) imply that for all large n and JLI > 0 fixed independent of n, 

deg(WnTVn + nWnGVn, Bn, WJ) + 0 

Hence, in particular, choosing jutn —» 0 as n —» oo5 we can find xn e Bn for all 
large n such that 

WnTVn(xn) + iinWnGVn(xn)= WJ, 

and consequently, \\WnTVn(xn)- WJ\\ = ju,n ||WnGVn(xn)|| -> 0 as w->oo. The 
solvability of Tx=f now follows from the pseudo A -properness of T. • 
The following elementary proposition imposes some conditions on T and G 
that guarantee the A-properness of the homotopy H^(t,x). 

PROPOSITION 1 [14]. If G and T + JULG are A-proper maps for each JLL > 0 with 
T and G bounded, then H^(t, x) = tT(x) + JLIG(X) is an A-proper homotopy on 
[0,1] XX. 

Actually, in the above proofs we used the homotopy H^iUx) only in the 
sense that H^(l, x) is an A-proper map and that H^(t, x) is A-proper at 0 e Y 
when restricted to [0,1] x (X\JB(0, r)) for some large r > 0. Thus, only these two 
properties of H^(t, x) suffice. In view of this and the next proposition we obtain 
another particular set of condition on T and G for which Theorem 1 holds (cf. 
[15]). 

PROPOSITION 2. Suppose that G and T are as in Proposition 1 with the 
boundedness of T replaced by the condition 

(8) there exist an R > 0 and c > 0 such that (Tx, Kx) > —c \\Kx\\ for all \\x\\ > R. 

Suppose also that K is bounded with ||KJC|| —»°° as \\x\\—>o° and that Kn satisfies 
condition (4) of Theorem 1 with {Kn(xn)} bounded whenever {xneVn(En)} 
is bounded. Then, if G:X^>Y is bounded and (Gx, Kx) = \\Gx\\ • ||XJC||, xeX, 
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the homotopy HIJi(t,x) = tT(x) + ixG(x) is A-proper at O e Y on [0,1]x 
(X\B(0,Ro))forRo>R. 

Proof. Let {Vnk(utlk)eX\B(0, R0)} be bounded, tk -»• t, tke[0, l ] and ak = 
U W ^ H ^ K J H O as k^oo ( ( 1>o fixed). If 0 < f < l , then 

I I W ^ T V ^ d ^ J + ^ W ^ G V ^ K j N ^ + ^ ^ I I W ^ G V ^ C ^ J I H O as k^oo 
r tk t • rk 

and by the A-properness of T+JUIG, a subsequence Vr
nk(i)(iink(0) —» x0 with 

fTxo+|LlGxo = 0. 
If t = 0, then using the properties of G and K and condition (4), 

l|GVnt(u„k)|| = (W^GV^(uJ, KnkVntV^(uJ) p ^ d O I I - 1 

= [ ( W ^ t , V ^ d ^ ) ) , KnkVnfc(u„t))- t fc(TVnt(iO, K V J i O ) ] ^ \\KVnkUnk\\r
l 

^^WK^V^^H^WKV^ii^JWr' + t^-^O as k ^ - . 

Hence, by the A-properness of G, Vnk()(un ())—» ^o with Gx0 = H(0, x0) = 0. 

• 
REMARKS. (1) When T is also A-proper, Theorem 1 was first announced in 

[14], while details can be found in [15]. 

(2) Analysing the proof of Theorem 1, we see that condition (1) can be 
replaced by condition (*) for T (which implies (6)) and (7). It is clear that 
condition (7) is implied by: ||Tx||-*°° as ||x||—»o°. As remarked in [20], the last 
condition is equivalent to (1) provided condition (8) of Proposition 2 holds. 
This fact has been used by many authors in the study of monotone like and 
A-proper maps (cf. [3,19] and the references there in). In view of this fact, we 
see that a special case of Theorem 1 (ii), which corresponds to the hypotheses 
on T and G in Proposition 2, extends Theorem 4 in [24] and is also related to 
Theorem 2.6 in [20] whose hypotheses imply a stronger K-coercivity condition 
on T + JULG. Let us also add that Proposition 2 was motivated by Theorem 8 of 
F. Browder [3] and that conditions (4) and (5) have been used earlier, in a 
different context, in, for example, [23, 24]. 

(3) Unlike the results in [20, 24], Theorem 1 (i) gives a new surjectivity result 
for uniform limits of A-proper with respect to a general admissible scheme T 
maps T; in particular, we do no require that T satisfies condition (4). When 
Y = X or Y = X*, there are natural choices for K, Kn and Mn for which 
condition (4) holds (cf., e.g., [23]). However, in general, the choice of K, Kn 

and Mn will depend on a given problem and their existence may impose 
considerable restriction on T. Illustration of this fact is given in Corollaries 3 
and 4 in Section 2. 

(4) If Y = X, K = J the normalized duality map, G - 1 and if T = I-F, with 
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F:X—»X 1-set contractive, satisfies conditions (1) and (* *), then Theorem 1 
(i) (i.e., T(X) = X) is still valid (see [15] and [17] for details). 

For uniform limits of pseudo A-proper maps we have 

THEOREM 2 ([14]). Let K, Mn and Kn be as in Theorem 1, Kx = 0 only ifx = 0 
and G.X-+Y bounded and such that (Gx, Kx)> -c \\Kx\\ for all x and some 
c > 0 . Suppose that T:X—> Y satisfies condition (1) and that for each continu
ous increasing function IJJ:R+-*R+ with 

(9) ^flijfciD+^^&O^ as W ^ T O 

there exists a map F:X->Y such that (Fx, Kx) = \\Fx\\ \\Kx\\, \\Fx\\ = ij/(\\Kx\\) for 
xeX and T + F+ JLLG is pseudo A-proper for each fx >0. Then, if T + Fsatisfies 
condition (* *) or is pseudo A-proper, T(X) = Y 

Proof. For feY, define Tfx = Tx — f, xeX. Since Tf satisfies the same 
conditions as T, it is sufficient to show that Tx = 0 is solvable. Let r > 0 be fixed 
and observe that if ||Tx|| + (Tx, Kx)/||Kjc||<r, then ||x||<l? for some R>0. Let 
\\f : R+ —> JR+ be continuous and such that i/f(||Kx||) = 0 for | |x | |<R and condition 
(9) holds. For F that corresponds to this $ we get that T + F+IJLG is 
K-coercive, i.e. (Tx+Fx + JULGX, KX)/||1CX|| —» °° as ||x||—»°°. Consequently, for 
each fx—»0 there exists [23] x ^ e X such that T X ^ + F X ^ + JLIGX^ = 0. Since 
T + F is also K-coercive and (Tx^+Fx^, Kx^)/||KxJ|<fic, we get that {x^} is 
bounded with Tx^ +FxfJL —> 0 as JUI —» 0. Thus, Tx0 + Fx0 = 0 for some x0 in X if 
T + F satisfies (* *). If x0 = 0, then ||Tx0|| = ||Fx0|| - *l/(\\Kx0\\) = 0 and so Tx0 = 0. 
If x 0 ^ 0 , (Tx0 + F x 0 , K x 0 ) / | M and so ||Tx0|| = 
||Fxo|| = ^(||l&Co||) = 0,i .e. Txo = 0. 

Next, let T-\-F be pseudo A-proper. Since it is IC-coercive, Tx0 + Fx0 = 0 for 
some x0 in X and, as before, we get that Tx0 = 0. • 

REMARK. Condition (9) holds if, e.g. T is bounded or (Tx, Kx)> - c1\\Kx\\ 
for some x e X and some cx>0. 

SECTION 2. We now state briefly some special cases of the abstract results in 
Section 1. 

If K.X^ Y*, according to Brezis [1], T : X - * Y is a map of type (KM) if 
xn -* x in X, Txn —* / in Y and lim sup(Txn, K(xn - x)) < 0 imply that Tx = /. 

A map T.X-+Y is K-quasimonotone if xn —* x in X, then 
lim sup(Txn, K(xn — x)) > 0. This class was introduced independently by Calvert-
Webb [6] and Hess [11] for K = I, Y = X* and later studied by many authors 
(see, e.g. [10], [24], [20]). It is known that under suitable conditions pseudo-
monotone maps [13] are of type (M) and/or are generalized pseudo-monotone 
[1, 5]. Under suitable conditions on K and T, it has been shown in [24, 20] that 
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K-quasimonotone, pseudo K-monotone and generalized pseudo K-monotone 
maps are uniform limits of A-proper maps. In addition to many examples of 
pseudo A-proper maps (see, e.g. [23]) we have the following new useful result. 

PROPOSITION 3. Let X and Y be reflexive and T = {En, Vn ; Fn, Wn} with 
En<^X, Fn c Y and Vn the inclusion map. Let K : X —» Y* be bounded, weakly 
continuous at 0, uniformly continuous on closed balls in X, a-positively 
homogeneous, Kx^O for x^O, R(K)=Y* and Kn as in Proposition 2. Let 
T:X—>Y be K-quasibounded (i.e., {Txn} is bounded whenever {x„} and 
{(TXn, KXn)} are bounded), demicontinuous and of type (KM) and G:X-^Y 
bounded, weakly continuous and of type (KS) (i.e., if xn —* x and 
lim(Txn,K(xn-x)) = 0, then xn—»x). Then TIX = T+ILG is pseudo A-proper 
w.r.t. r for each JLI>0. 

Proof. Let /UL > 0 be fixed and {xHk e X n J bounded and such that ||Wnit(Txnk + 
nGxJ-W^(g)\\-*0 as k ^ o o . Since 

(Txnk + ^Gxnk, K(xnk)) = (Wnk(Txnk + nGxJ - Wnk(g), K^ixJ 
+ (Wnk(g),Xnk(xnk)), 

by condition (4), the sequence {(Txnk + |ULGxnk, Kxnk)} is bounded and conse
quently, {TxHk + iiGxnk} is bounded by the K-quasiboundedness of T. By the 
reflexivity of X, we may assume that xnk -* x0. Then, as in [19] 

(Txnk + jLLGxUk, K(xnk - x0)) -> 0 as k -* oo. 

Next, by the boundedness of G, we may assume that Txnk —* y0 and Gxnk -* 
G(x0) and either lim sup(Gxnk, K(xnk - x0)) ^ 0 or lim sup(Gxnk, K(xnk - x0)) > 0. 

Suppose first that lim sup(Gxnk, K(xnk - x0)) ^ 0 and passing to a subsequ
ence, we may assume that a =lim(Gxnk, K(xnk - x0)) < 0 with a 7^-0° by the 
boundedness of G and K. Hence, by property (KS) of G, xnk -» x0 and 

lim sup(Txnk, K(xUk - x0)) = lim(Txnk + JUGX^, K(xUk - x0)) 

- fx lim(Gxnk, K(xnk - x0)) = 0 

by the boundedness of {GxHk} and continuity of K. By property (KM) of T, 
Tx0 = y0. To show that Tx0 + JLLGX0 = g,\et veX be arbitrary and vn eXn such 
that vn —» v. Then 

(Tx0 + JULGXQ-g,Kv) = Hm(Txnk + fxGxnk - g, K(vnk)) 

= lim(Wnk(Txnk + j x G x J - Wnk(g), Knk(vnk)) = 0. 

Thus, since R(K) is dense in Y* and (Tx0+ JLLGX0- g, <o) = 0 for each co G R(K), 
it follows that Tx0 4- JLLGX0 = g. 

Next, suppose that lim sup(Gxnk, K(x n k -x o ) )>0 . Passing to a subsequence, 
we may assume that lim(Gxnk,K(xrlk-xo))>0 and consequently, 

lim sup(Txnk, K(xnk - x0)) = lim sup(Txnk + jmGxnk, K(xnk - x0)) 
- jut lim(Gxnk, K(xnk - x0)) < 0. 
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Again, by property (KM), Tx0 = y0 and Tx0 + (JLGX0 = g as before. Hence, 
T+JLLG is pseudo A-proper. • 

In view of the results of Kadec and Asplund, in the rest of the paper (except 
Theorem 4) we may assume without loss of generality that X and X* are 
locally uniformly convex. Let T:X—>X* be such that for some R>0, 

(10) ||Tx|| + ̂ ^ > 0 for all \\x\\>R. 

Ml 
Let ifs:R+^>R+ be a continuous increasing function such that i/f(f) = 0 for 
t^jR and 

(11) ^ W ) + (^_*ao as Ml-oo. 

Let J^ : X - > 2X* be the duality mapping corresponding to this \\f, i.e., J^(0) = 0 
for t<R and 

J„(x) = {w G X* | (w, x) = ||w|| • M|, IMI = *(MI»-

PROPOSITION 4. Let X be reflexive and separable and T:X—>X* 
quasibounded, demicontinuous, of type (M) and satisfy condition (10). Then, i/ 
J^ is weak/y continuous, T + J^, is peudo A-proper w.r.t. r o = {Xn, Vn;X^, V^}. 

Proof. Let {xnk e X n J be bounded and such that for some g e X * 

\\VZmxJ + J*(x^))-VZ(g)\\-»0 as fc-oo. 

Going to a subsequence if necessary, we may assume that either ||xnJ|<JR for 
all k or ||xnJ|>.R for all k. If the first case happens, then T(xnk) + J^(xnk) = 
T(xnk) and by Proposition 3 (JLL=0), we get xUk^ xoeB(0, R) with Tx0= g, 
i.e., Tx0 + J ^ o = g. 

Next, suppose that ||xnJ|>jR for all k. Then, since J^ restricted to 
X \ B ( 0 , R) is weakly continuous and of type (S), we have xnk - ^ x 0 e X and 
Txo + ^ o ^ 1 g as in Proposition 3 (JLL = 1). Hence, T + J^ is pseudo A-proper on 
X. • 

From our abstract results we can obtain surjectivity results for various special 
classes of mappings. We illustrate this by the following few new surjectivity 
results. 

COROLLARY 1. Let X be separable and reflexive and let T:X —>X* be 
quasibounded, demicontinuous and quasimonotone. Suppose that T satisfies con
dition (**) and either condition (1) or conditions (*) and (7) for some r>0. 
Then, if H^(f, x) = fT(x) + fxJ(x) is an A-proper homotopy at O e Y on 
[0, l ] x ( X \ B ( 0 , r)) for some large r>0 (which is so if, e.g. T is bounded or 
(Tx, x)>—c \\x\\ for all | |x||>r), T is surjective. 

COROLLARY 2. Let X be separable and reflexive and T : X ^ » X * 
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quasibounded, demicontinuous and quasimonotone and satisfy conditions (1), 
(11) and (**). Then T is surjective. 

Proof. Since J^ is maximal montone, T + J^ is demiclosed quasibounded, 
quasimonotone and satisfies condition (**). Moreover, if / is the normalized 
duality mapping, then T + J ^ + J U J is A-proper w.r.t. T0 (cf. [20,16]). The 
conclusion now follows from Theorem 3. • 

For our next corollary we need 

DEFINITION 4. Let || • \\x be a norm on X compact relative to the norm || • || on 
X and K:X-> Y*. Then T:X—» Y is said to be of semi-bounded variation, if 
for each R>0 and ||x||<K, \\y\\^R 

(Tx - Ty, K(x - y)) > ~c(R, ||x - y y , 

where c(R, cf>) > 0 is a continuous function in i? and </> such that c(R, t<t>)lt —» 0 
as t —> 0 for fixed R and c/>. 

Such maps have been studied by Browder [2], Dubinsky [8], Milojevic-
Petryshyn [20]. 

Assume that X and Y are separable Hilbert spaces and K : X —> Y a linear 
bijection. Let {Xn}c=X be a sequence of finite dimensional subspaces such that 
dist(x, Xn) -> 0 for each x in X Set Yn = K(Xn). Then dist(y, Yn) -> 0 for each 
y in Y and, if Pn :X—» Xn and Qn : Y—> Yn are the orthogonal projections, the 
scheme r o = {Xn, P n ; Yn, Qn} is projectionally complete. We have 

COROLLARY 3. 1/ A:X—» Y is o/ semibounded variation, T:X->Y con
tinuous and compact and A-^T satisfies condition (1) and either condition (8) or 
A is bounded, then (A + T)(X) = Y 

Proof. For each R > 0 and JUI > 0 , the map A + JLLK is A-proper w.r.t. T0 on 
B(0, i^) by Example 1 and clearly so is K. Since T is compact, A + T + JLLK is 
also A-proper. Since T is completely continuous and A is strongly demiclosed 
([20]), A + T satisfies condition (**). Taking G = K and Kn=Mn = 
K | X : X n -» Yn, we see that the conclusion follows from Theorem 1. • 

Using similar arguments one can establish the following continuation 
theorem, valid also in the multivalued case, whose detailed discussion will be 
given in [18] (compare also with Theorem 2.1 in [20]). 

THEOREM 3. Let H : [0,1] x X —> Y and G:X->Y be bounded and such that 
for each JLL>0 the homotopy H^it, x) = H(t, x) + JUIG(X) is A-proper at 0e Y 
when restricted to [0, l ] x ( X \ B ( 0 , R0)) for some large J R O > 0 . Suppose that 
H^(l , •) is A-proper w.r.t. T for each JUL>0, H(1, •) satisfies condition (*) and 
that K:X->Y* is such that Kx^O for \\x\\>R with H^(t, x)^0 for all \\x\\>R, 
t G [0,1] and small JLL > 0. Then, if either (H(0, x), Kx) > 0 and (Gx, Kx) > 0 for 
||x||>.R and there are Mn and Kn satisfying conditions (4) and (5) of Theorem 1, 
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or there exists an n0 —1 such that for each n > n 0 , fx>0, 
deg(WnH(0, -)Vn + |LiWnGVn, \r\B(09 r ) ) , 0 )^0 for all large r > 0 , the equa
tion H(l,x) = f is solvable for each f in Y provided also H(l, •) satisfies 
condition (* *). 

Note added in proof. The boundedness condition in Proposition 1 and the 
corresponding result in [15] can be weakened as shown in the author's Theory 
of A-proper and pseudo A-closed mappings, Habilitation Memoir, UFMG, 
Belo Horizonte, Brazil, 1980, 1-195. 
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