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Abstract. Let H be a subgroup of a group G. Then, we call H weakly
s-supplemented in G if G has a subgroup T such that HT = G and H ∩ T ≤ HsG,
where HsG is the largest s-permutable subgroup of G contained in H. In this paper, we
use the weakly s-supplemented subgroups to characterize the structure of groups. A
series of known results in the literature are unified and generalized.
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1. Introduction. All groups G considered in this paper are finite groups.
The structure of a group G under the assumption that some primary subgroups

of G are well situated in G has been investigated by many authors in the literature. For
instance, Ito has proved that a group G of odd order is nilpotent provided that all the
minimal subgroups of G lie in the centre of G (see [6, III, Theorem 5.3]). An extension
of Ito’s results is the following statement: (1) For an odd prime p, if every subgroup of
order p lies in the centre of G, then G is p-nilpotent; (2) if all elements of G of order 2 or
of order 4 lie in the centre of G, then G is 2-nilpotent (see [6, IV, Theorem 5.5]). Along
this direction, Buckley [2] proved that a group G of odd order is supersolvable if every
minimal subgroup of G is normal in G. Some other generalizations have also been
obtained by using the theory of formation and some generalized normal subgroups
(see, for example, [1, 4, 10, 17, 19, 22]).

Recall that a subgroup H of a group G is said to be permutable (or quasinormal)
in G if HT = TH for any subgroup T of G. A subgroup H of a group G is said to be
s-permutable (or π -quasi-normal) in G if HP = PH for any Sylow subgroup P of G. A
subgroup H of a group G is said to be c-normal [16] (c-supplemented [18]) in G if there
exists a normal subgroup (a subgroup) T of G such that HT = G and H ∩ T ≤ HG,
where HG is the normal core of G. On the other hand, Skiba [15] called a subgroup
H of a group G weakly s-permutable in G if G has a subnormal subgroup T such
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that H ∩ T ≤ HsG, where HsG is the largest s-permutable subgroup of G contained
in H.

The following is the definition of a weakly s-supplemented subgroup introduced
by Skiba in [15].

DEFINITION 1.1 ([15, Definition 2.9]). Let H be a subgroup of a group G. H is
said to be weakly s-supplemented in G if G has a subgroup T such that HT = G and
H ∩ T ≤ HsG, where HsG is the largest s-permutable subgroup of G contained in H. In
this case, T is said to be a weakly s-supplement of H in G.

It is easy to see that all normal subgroups, c-normal subgroups, c-supplemented
subgroups, permutable subgroups, s-permutable subgroups and weakly s-permutable
subgroup of G are all weakly s-supplemented. The following examples show that the
converse is not true.

EXAMPLE 1.2. Let G = A5 = A4C5. Then C5 is weakly s-supplemented in G since
C5A4 = G and C5 ∩ A4 = 1. Obviously, C5 is not normal, c-normal, permutable,
s-permutable and also not weakly s-permutable in G.

EXAMPLE 1.3. Let G = 〈a, b | a4 = 1, a2 = b2 and b−1ab = a−3〉. Then �(G) =
〈a2, b2〉 = 〈a2〉 × 〈b2〉. Since G is a 2-group, 〈b2〉 is s-permutable in G. In particular,
〈b2〉 is weakly s-supplemented in G. However, 〈b2〉 is not c-supplemented in G. In fact,
〈b2〉 has only a supplemented subgroup G in G, but 〈b2〉 ∩ G = 〈b2〉 is not normal in G.

In this paper, we shall use the weakly s-supplemented subgroups to describe the
structures of some finite groups. A number of previously known results in the literatures
are unified and generalized.

2. Preliminaries. Recall that a class of groups F is a formation if F is closed under
homomorphic images and every group G has a smallest normal subgroup (which is
called the F-residual of G and is denoted by GF) whose quotient is in F. A formation F

is said to be s-closed if every subgroup of G is in F whenever G ∈ F. A formation F is
said to be saturated if it contains every group G with G/�(G) ∈ F. A map f from the
set of all primes to the set of all formations is said a formation function. A formation
F is said to be local if there exists a formation function f such that F = LF(f ), where
LF(f ) = {G|G/CG(H/K) ∈ f (p) for all chief factors H/K of G and every p ∈ π (H/K)}.
It is well known that a formation F is saturated if and only if F is local.

In this paper, we denote by N the class of the nilpotent groups, and by Hp the class
of the p-nilpotent groups. It is well known that both N and Hp are s-closed saturated
formations.

Let F = LF(f ) is a saturated formation. A chief factor H/K of a group G is
said to be f -central in G (see [3] or [5, definition 2.4.3]) if G/CG(H/K) ∈ f (p). The
symbol ZF

∞(G) denotes the F-hypercentre of a group G, that is, it is the product of all
normal subgroups of G whose G-chief factors are f -central. A subgroup H is said to be
F-hypercentral in G if H ≤ ZF

∞(G). If F = N, then ZN
∞(G) is precisely the hypercentre

Z∞(G) of G.
Let p be a prime and G a group. Then we write Pp(G) = {x ∈ G | |x| = p}; P4(G) =

{x ∈ G | |x| = 4}; P∗
p(G) = {x ∈ G | |x| = p or |x| = 4}; P(G) = ∪p∈π(G)Pp(G).

For notations and terminologies not mentioned in this paper, the reader is referred
to [3, 5, 14].
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For the sake of convenience, we first cite some known results in the literature which
will be useful in the following.

LEMMA 2.1 [20, Theorem I.6.1]. Let G be a group, H ≤ G and H s-permutable in
G. Then

(1) if H ≤ K ≤ G, then H is s-permutable in K.
(2) if θ is a homomorphism of G, then Hθ is s-permutable in Gθ .

LEMMA 2.2 [21, Lemma 2.2]. Let G be a group. If H is a p-subgroup of G for some
prime p and H is s-permutable in G, then the following properties hold:

(1) H ≤ Op(G).
(2) Op(G) ≤ NG(H).

LEMMA 2.3 [4, Lemma 5]. Let F be an s-closed saturated formation and H a subgroup
of a group G. Then H ∩ ZF

∞(G) ⊆ ZF
∞(H).

LEMMA 2.4. Let G be a group, H ≤ G and H be weakly s-supplemented in G. Then
(1) if H ≤ K ≤ G, then H is weakly s-supplemented in K.
(2) if N � G and N ≤ H, then H/N is weakly s-supplemented in G/N.
(3) if N � G and (|N|, |H|)=1, then HN/N is weakly s-supplemented in G/N.
(4) if N/�(N) is a soluble chief factor of G and H ≤ N, then H is s-permutable

in G.

Proof. For the proofs of statements (1)–(3), the reader can be referred to [15,
Theorem 2.10]. We now prove statement (4). Since H is weakly s-supplemented in G,
there exists a subgroup T of G such that HT = G and H ∩ T ≤ HsG. Let N1 = N ∩ T .
Then N1 is normal in T and so N1�(N)/�(N) is normal in T�(N)/�(N). Since
N/�(N) is a soluble chief factor of G, N/�(N) is an elementary abelian group and
consequently, N1�(N)/�(N) is normal in N/�(N). This shows that N1�(N)/�(N)
is a normal subgroup of G/�(N). Hence, N1�(N)/�(N) = 1 or N1�(N)/Z�(N) =
N/�(N). If N1�(N)/�(N) = 1, then N = N ∩ HT = H(N ∩ T) = H since H ≤ N.
This means that H is normal in G and thereby H is s-permutable in G. If
N1�(N)/�(N) = N/�(N), then T = G and so H = H ∩ T ⊆ HsG. This implies that
H = HsG is s-permutable. �

LEMMA 2.5. Let G be a group and p a prime such that pn+1 � |G| for some integer
n ≥ 1. If (|G|, (p − 1)(p2 − 1) . . . (pn − 1))=1, then G is p-nilpotent.

Proof. Suppose that the assertion is false and let G be a counterexample of minimal
order. It is obvious that every subgroup of G satisfies the hypothesis of the lemma. The
minimal choice of G implies that G is a minimal non-p-nilpotent group. By [13, Theorem
10.3.3] and [5, Theorem 3.4.11], G = [P]Q is a subdirect product of a Sylow p-subgroup
P of G and a Sylow q-subgroup Q of G for some primes p, q ∈ π (G). It is easy to see
that every proper quotient group of G satisfies the hypothesis. Thus, �(P) = �(G) = 1
and so P is an elementary abelian p-group. Since NG(P)/CG(P) is isomorphic to a
subgroup of Aut(P) and |Aut(P)| divides p

n(n−1)
2 (p − 1)(p2 − 1) · · · (pn − 1) for |P| �

pn, NG(P)/CG(P) = 1. This result induces that G is p-nilpotent by the well-known
Burnside’s theorem (see [13, Theorem 10.1.8]). This contradiction completes the proof.
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Recall that the generalized Fitting subgroup F∗(G) of a group G is the product of
all normal quasi-nilpotent subgroups of G. We shall need the following well-known
facts of the generalized Fitting subgroup (see [7, Chapter X]) to prove our new
results. �

LEMMA 2.6. Let G be a group. Then the following statements hold:
(1) If N is a normal subgroup of G, then F∗(N) ≤ F∗(G).
(2) F(G) ≤ F∗(G) = F∗(F∗(G)). If F∗(G) is soluble, then F∗(G) = F(G).
(3) If N is a normal subgroup of G and N ≤ F∗(G), then F∗(G)/N ≤ F∗(G/N).
(4) If N is a normal subgroup of G and N ≤ Z(G), then F∗(G)/N = F∗(G/N).

3. Main results.
LEMMA 3.1. Let p be a prime and G a group with (|G|, (p − 1)(p2 − 1) · · · (pn −

1))=1, for some integer n ≥ 1. Suppose that there exists a subgroup D of G with order pn

such that all the subgroups H of G with |H| = |D| or |H| = 2|D| (if the Sylow p-subgroup
P of G is a non-abelian 2-group and |P : D| > 2) not having a p-nilpotent supplement in
G are weakly s-supplemented in G, then G is p-nilpotent.

Proof. Suppose that the statement is false and let G be a counterexample of minimal
order. Then pn+1||G| by Lemma 2.5. We proceed the proof by the following steps.

(1) Every proper subgroup of G is p-nilpotent.
Let L be a proper subgroup of G. Then (|L|, (p − 1)(p2 − 1) · · · (pn − 1))=1. If

pn+1 � |L|, then by Lemma 2.5, L is p-nilpotent. Now assume that pn+1||L|. Let D1 be a
subgroup of L of order pn and H a subgroup of L with |H| = |D1| or |H| = 2|D1|. Then
by the hypothesis, H has a p-nilpotent supplement T in G or is weakly s-supplemented in
G. In the former case, L = L ∩ HT = H(L ∩ T) and L ∩ T is a p-nilpotent supplement
of H in L. In the latter case, by Lemma 2.4(1), H is weakly s-supplemented in L. This
shows that L satisfies our hypothesis. The minimal choice of G implies that L is
p-nilpotent.

(2) G has a normal Sylow p-subgroup P satisfying the following properties:
(i) G = [P]Q, where Q is a Sylow q subgroup of G;
(ii) P/�(P) is a chief factor of G;
(iii) If P is abelian, then P is an elementary abelian group;
(vi) exp(P) = p or exp(P) = 4.
In fact, by(1), G is a minimal non-p-nilpotent. Hence (2) holds by [13, (10.3.3)]

and [5, Theorem 3.4.12].
(3) P is not cyclic.
Suppose that P is cyclic. If exp(P) = p, then |P| = p and so |Aut(P)| = p − 1.

If exp(P) = 4, then |P| = 4 and so |Aut(P)| = 2. It is well known that NG(P)/CG(P)
is isomorphic to some subgroup of Aut(P). Since P ⊆ CG(P) and (|G|, p − 1) = 1,
NG(P)/CG(P) = 1. Thus, by Burnside’s theorem, G is p-nilpotent. This contradiction
shows that P is not cyclic.

(4) Let H be a subgroup of P with |H| = |D| or |H| = 2|D| (when P is a non-abelian
2-group and |P : D| > 2); then H is s-permutable in G.

Let T be any supplement of H in G. Then HT = G and so P = P ∩ HT = H(P ∩
T). Since P/�(P) is the chief factor of G, P/�(P) is an elementary abelian p-group
and hence (P ∩ T)�(P)/�(P) is normal in P/�(P). Now, since (P ∩ T)�(P)/�(P)
is normal in T�(P)/�(P), (P ∩ T)�(P)/�(P) is normal in G/�(P). It follows that
P ∩ T ⊆ �(P) or P ∩ T = P. If P ∩ T ⊆ �(P), then H = P is normal in G, which
contradicts (2). If P ∩ T = P, then T = G is not p-nilpotent. Thus, by the hypothesis,
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H is weakly s-supplemented in G. It follows from Lemma 2.4(4) that H is s-permutable
in G. Therefore, (4) holds.

(5) |P : D| > p.
Suppose that |P : D| = p. Then |P| = pn+1 and so every maximal subgroup H of

P is s-permutable in G by the hypothesis and (4). This induces that HQ is a proper
subgroup of G and hence HQ is p-nilpotent. Thus, Q is normal in HQ. It follows from
(3) that Q is normal in G, a contradiction. Therefore, |P : D| > p.

(6) Final contradiction.
By our hypothesis and (4), all subgroups H of P with |H| = |D| or |H| = 2|D|

(when P is a non-abelian 2-group and |P : D| > 2) are s-permutable G. Then by (5),
the subgroup HQ is a proper subgroup of G for any such subgroup H. Hence HQ is
p-nilpotent. This implies that Q is normal in HQ. It follows from (3) that Q is normal
in G. This final contradiction completes the proof.

COROLLARY 3.2. Let p be a prime and G a group with ( |G|, (p − 1)(p2 − 1) · · · (pn −
1))=1, for some integer n ≥ 1. Suppose that there exists a subgroup D of G such that
1 < |D| < pn+1 and all subgroups H of G with |H| = |D| or |H| = 2|D| (when the Sylow
p-subgroup P of G is a non-abelian 2-group and |P : D| > 2) not having a p-nilpotent
supplement in G are weakly s-supplemented in G. Then G is p-nilpotent.

THEOREM 3.3. Let p be a prime and F a saturated formation containing Hp. Suppose
that G is a group with (|G|, (p − 1)(p2 − 1) · · · (pn − 1))=1, for some integer n ≥ 1. Then
G ∈ F if and only if G has a normal subgroup E such that G/E ∈ F and there exists a
subgroup D of E such that 1 < |D| < pn+1 and all subgroups H of E with |H| = |D| or
|H| = 2|D| (when the Sylow p-subgroup P of E is a non-abelian 2-group and |P : D| > 2)
not having a p-nilpotent supplement in G are weakly s-supplemented in G.

Proof. The necessity part is obvious. We need only to prove the sufficiency
part. Suppose that the statement is false and let G be a counterexample of minimal
order. Obviously, (|E|, (p − 1)(p2 − 1) · · · (pn − 1))=1 and either H has a p-nilpotent
supplement in E or H is weakly s-supplemented in E by Lemma 2.4(1). Now, Corollary
3.2 implies that E is p-nilpotent. Let P be a Sylow p-subgroup of E and T a normal
Hall p′-subgroup of E. Then T is normal in G. We now proceed to prove the theorem
via the following steps.

(1) T = 1.
If T �= 1, then we first claim that G/T (with respect to E/T) satisfies the hypothesis

of the theorem. In fact, (G/T)/(E/T) � G/E ∈ F. Let N/T be an arbitrary subgroup
of E/T with |N/T | = |DT/T | or |N/T | = 2|DT/T |. Then N = [T ]L, where L is
a Sylow p-subgroup of N. Thus, |L| = |D| or |L| = 2|D|. By the hypothesis, either
L has a p-nilpotent supplement M in G or L is weakly s-supplemented in G. This
means that either N/T = TL/T has a p-nilpotent supplement MT/T � M/T ∩ M
in G/T or N/T is weakly s-supplemented in G/T by Lemma 2.4(3). Hence, G/T
satisfies the hypothesis. The minimal choice of G implies that G/T ∈ F. Let fi (i=1,2)
be a full and integrated formation functions such that Hp = LF(f1) and F = LF(f2),
respectively. Since T is a normal p′-subgroup of G, G/CG(Ti+1/Ti) ∈ f1(q) for every
chief factor Ti+1/Ti of G with Ti+1 ≤ T and every prime q dividing |Ti+1/Ti| (see, [5,
p 98, Example 2]). Since Hp ⊆ F, f1(q) ⊆ f2(q) by [5, Corollary 3.1.16]. It follows that
G/CG(Ti+1/Ti) ∈ f2(q). Therefore, G ∈ F by G/T ∈ F. This contradiction shows that
T = 1.
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(2) Suppose that Q is a Sylow q-subgroup of G, where q �= p is a prime divisor of |G|.
Then PQ = P × Q.

By (1), P = E � G. Hence, PQ is a subgroup of G. Obviously, D is a subgroup of
PQ and all subgroups H of PQ with |H| = |D| or |H| = 2|D| (when P is a non-abelian
2-group and |P : D| > 2) not having a p-nilpotent supplement in PQ are weakly s-
supplemented in PQ by Lemma 2.4(1). Hence by Corollary 3.2, PQ is p-nilpotent. It
follows that Q � PQ and so PQ = P × Q.

(3) Final contradiction.
Let M be an arbitrary non-identity normal subgroup of G contained in P and Gp

a Sylow p-subgroup of G. By (2), we have MQ = M × Q for any Sylow q-subgroup of
G. This induces that Op(G) ≤ CG(M) and [M, G]=[M, GpOp(G)] = [M, Gp] � G. Since
[M, Gp] < M, there exists a normal subgroup N of G such that M/N is a chief factor of
G and [M, G] ≤ N. This implies that M/N ≤ Z(G/N). Let f be the full and integrated
formation function such that F = LF(f ). Then G/CG(M/N) = 1 ∈ f (p). The arbitrary
choice of M implies that there exists a normal chain of G contained in P such that every
chief factor M/N is f -central. It follows that G ∈ F. The final contradiction completes
the proof. �

REMARK 3.4: The sufficiency of Theorem 3.3 would be false in general if the
condition “|H| = 2|D|” is removed. For example, if we let H = 〈a, b | a4 = 1, a2 =
b2 and b−1ab = a−1〉 to be a quaternion group with G = [H]〈α〉, where α is an
automorphism of H of order 3. Let p = 2 and n = 1. Then it is not difficult to show
that 〈a2〉 is a unique subgroup of G with order 2 and 〈a2〉 is normal in G. Hence, 〈a2〉
is weakly s-supplemented in G. But it is obvious that G is not a 2-nilpotent group.

LEMMA 3.5. Let G be a group and p a prime factor of |G|. Suppose that every
element of Pp(G) is contained in Z∞(G) and 〈x〉 is weakly s-supplemented in G for every
x ∈ P4(G). Then G is p-nilpotent.

Proof. Suppose that the statement is false and let G be a counterexample of minimal
order. Then we can prove the following facts:

(1) Every proper subgroup of G is p-nilpotent.
Suppose that H is a proper subgroup of G. Let x ∈ Pp(H). Then by the

hypothesis, x ∈ Z∞(G). By Lemma 2.3, x ∈ Z∞(G) ∩ H ⊆ Z∞(H). Let x ∈ P4(H).
By the hypothesis, 〈x〉 is weakly s-supplemented in G. Then by Lemma 2.4(1), 〈x〉 is
weakly s-supplemented in H. Thus, the hypothesis holds for H. The minimal choice of
G implies that H is p-nilpotent.

(2) G = [P]Q is a subdirect product of a Sylow p-subgroup P of G and a Sylow
q-subgroup Q of G, P/�(P) is a chief factor of G and exp(P) = p or exp(P) = 4.

By (1), G is a minimal non-p-nilpotent. Hence (2) holds by [13, (10.3.3)] and [5,
Theorem 3.4.11].

(3) exp(P) = 4.
Suppose that exp(P) = p. Then by the hypothesis, P ⊆ Z∞(G) and consequently

G/Z∞(G) � (G/P)/(Z∞(G)/P) is p-nilpotent. It follows that G is p-nilpotent, a
contradiction.

(4) |x| = 4, for every x ∈ P \ �(P).
Suppose that there exists an element x ∈ P \ �(P) of order 2. Let T = 〈x〉G. Then

T ≤ P and T�(P)/�(P) is normal in G/�(P). Since P/�(P) is a chief factor of G,
P = T and so exp(P) = 2, which contradicts (3).
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(5) P is not cyclic.
Suppose that P is cyclic. Then by (3), we know |P| = 4 and hence |Aut(P)| = 2. It

is well known that NG(P)/CG(P) is isomorphic to some subgroup of Aut(P). Since P ⊆
CG(P), NG(P)/CG(P) = 1. By Burnside’s theorem, G is p-nilpotent, a contradiction.
Therefore P is not cyclic.

(6) Final contradiction.
By (4) and the hypothesis, 〈x〉 is weakly s-supplemented in G for every x ∈ P \ �(P).

Then by Lemma 2.4(4), 〈x〉 is s-permutable in G. Hence 〈x〉Q is a proper subgroup of
G by (2) and (4). Therefore, 〈x〉Q is p-nilpotent and so Q is normal in 〈x〉Q, for every
x ∈ P \ �(P). It follows that Q is normal in G. The final contradiction completes the
proof. �

COROLLARY 3.6. Let G be a group. Suppose that every element of P(G) is contained
in Z∞(G) and 〈x〉 is weakly s-supplemented in G for every x ∈ P4(G). Then G is nilpotent.

PROPOSITION 3.7. Let F be a saturated formation containing N. Suppose that a group
G has a normal subgroup E such that G/E ∈ F and 〈x〉 is weakly s-supplemented in G for
every x ∈ P4(E). Then G ∈ F if and only if every element of P(E) is contained in ZF

∞(G).

Proof. The necessity is obvious. We need only to prove the sufficiency. Suppose
that the statement is false and let G be a counterexample of minimal order. We now
proceed to prove the theorem via the following steps.

(1) GF is a p-group for some prime p and GF satisfies the following conditions: (i)
GF/�(GF) is a chief factor of G. (ii) exp(GF) = p or exp(GF) = 4 (if |p| = 2 and GF is
non-abelian). (iii) If GF is abelian, then GF is an elementary abelian group.

Since G/E ∈ F, GF ⊆ E. Let x ∈P(GF). Then by the hypothesis, x ∈ ZF
∞(G). By

[5, Corollary 3.2.9], ZF
∞(G) ∩ GF ⊆ Z(GF) ⊆ Z∞(GF) and so x ∈ Z∞(GF). Let x ∈

P4(GF). By the hypothesis, 〈x〉 is weakly s-supplemented in G. Then by Lemma 2.4(1),
〈x〉 is weakly s-supplemented in GF. Corollary 3.6 implies that GF is nilpotent.

Since F is a saturated formation, there exists a maximal subgroup M of G
such that MGF = G. Let Z = ZF

∞(G) ∩ M. We claim that Z ⊆ ZF
∞(M). In fact, since

[ZF
∞(G), GF] = 1 (see [5, Corollary 3.2.9]), Z ⊆ CG(GF). This induces that every G-

chief factor H/K contained in Z is also an M-chief factor and GF ⊆ CG(H/K).
Hence M/CM(H/K) � MCG(H/K)/CG(H/K) � G/CG(H/K). Consequently, Z ⊆
ZF

∞(M). Since M/M ∩ GF ∼= MGF/GF = G/GF ∈ F, MF ⊆ GF. This implies that
every element of P(MF) is contained in ZF

∞(M). Hence, M (with respect to MF)
satisfies the hypothesis. The minimal choice of G implies that M ∈ F.

Now by using [5, Theorem 3.4.2], we see that (1) holds.
(2) exp(GF) = 4 and |x| = 4 for x ∈ P \ �(P).
This can be obtained by using the same similar argument in Lemma 3.5(2–3).
(3) |GF/�(GF)| = 2.
Suppose that any subgroup T/�(GF) of GF/�(GF) with order 2 is not

normal in G/�(GF). Obviously, T = 〈x〉�(GF) for some x ∈ T \ �(GF). By (2) and
our hypothesis, 〈x〉 is weakly s-supplemented in G. Using Lemma 2.4(4), 〈x〉 is
s-permutable in G. It follows from Lemma 2.1 that T/�(GF) is s-permutable
in G/�(GF). Hence by Lemma 2.2, O2(G/�(GF)) ≤ NG/�(GF)(T/�(GF)) and so
|G/�(GF) : NG/�(GF)(T/�(GF)| = 2α for some positive integer α. This shows that the
number of all subgroups of GF/�(GF) with order 2 is even, which contradicts [6,
Theorem III, 8.5]. The contradiction shows that there exists a subgroup T/�(GF) of
GF/�(GF) with order 2 which is normal in G/�(GF). But since GF/�(GF) is a chief
factor of G, GF/�(GF) = T/�(GF). Consequently , |GF/�(GF)| = 2.
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(4) Final contradiction.
By (3), GF/�(GF) = 〈x〉�(GF)/�(GF) for some x ∈ GF. It follows that GF = 〈x〉.

Then by (1), GF is an elementary abelian group, which contradicts (2). This final
contradiction completes the proof. �

LEMMA 3.8. Let G be a group. Suppose that every element of P(F∗(G)) is contained
in Z∞(G) and 〈x〉 is weakly s-supplemented in G for every x ∈ P4(F∗(G)). Then G is
nilpotent.

Proof. Suppose that the statement is false and let G be a counterexample of
minimal order. By Lemma 2.3, we know that Z∞(G) ∩ F∗(G) ⊆ Z∞(F∗(G)). Then
by the hypothesis, every element of P(F∗(G)) is contained in Z∞(F∗(G)). On the
other hand, by Lemma 2.4(1), 〈x〉 is weakly s-supplemented in F∗(G) for every x ∈
P4(F∗(G)). Corollary 3.6 implies that F∗(G) is nilpotent. Consequently, F∗(G) = F(G).
Let F∗(G) = F , p be the smallest prime dividing |F | and P a Sylow p-subgroup of F .
We now proceed the proof by proving the following claims.

(1) GN = G, that is, G/N is not nilpotent for any proper normal subgroup N of G.
By Lemma 2.6(1), F∗(GN) ≤ F . By Lemma 2.3, Z∞(G) ∩ GN ≤ Z∞(GN). Hence,

by the hypothesis and Lemma 2.4(1), we see that every element of P(F∗(GN))
is contained in Z∞(GN) and 〈x〉 is weakly s-supplemented in GN for every x ∈
P4(F∗(GN)). If GN < G, then the minimal choice of G implies that GN is nilpotent
and so F∗(GN) = GN. Thus, by Proposition 3.7, G is nilpotent. This contradiction
shows that GN = G and so G/N is not nilpotent for any proper normal subgroup
of G.

(2) Z∞(G) = Z(G)
By [5, Corollary 3.2.9], Z∞(G) ∩ GN ⊆ Z(GN). Since GN = G, Z∞(G) = Z(G).
(3) P ≤ Z(G).
Obviously, P is normal in G. Let Q be a Sylow q-subgroup of G, where q �= p is a

prime dividing |G|. Then PQ is a subgroup of G. We claim that PQ is p-nilpotent. In
fact, by the hypothesis and Lemma 2.3, Pp(P) = Pp(PQ) ⊆ PQ ∩ Z∞(G) ⊆ Z∞(PQ).
By the hypothesis and Lemma 2.4(1), we also see that 〈x〉 is weakly s-supplemented in
PQ for every element x of P4(PQ). It follows from Lemma 3.5 that PQ is p-nilpotent.
Therefore, Q is normal in PQ and so PQ = P × Q. Consequently, Op(G) ≤ CG(P) and
thereby G/CG(P) is a p-group. Now by using our claim (1), we obtain that CG(P) = G,
that is, P ≤ Z(G).

(4) Final contradiction.
By our claim (3) and Lemma 2.6(4), F∗(G/P) = F∗(G)/P = F/P. Obviously 2 �

|F/P|. Suppose that q is an arbitrary prime dividing |F/P| and T/P is a subgroup of F/P
of order q. Then there exists an element x ∈ T of order q such that T/P = 〈x〉P/P. By
the hypothesis and our claim (2), x ∈ Z∞(G) = Z(G). Hence 〈x〉P/P ⊆ Z(G/P). This
shows that G/P satisfies the hypothesis. The minimal choice of G implies that G/P is
nilpotent, which contradicts (1). This final contradiction completes the proof. �

Now, by using the above lemmas and proposition, we can prove the following
theorem.

THEOREM 3.9. Let F be a saturated formation containing N. Suppose that G contains
a normal subgroup E such that G/E ∈ F and 〈x〉 is weakly s-supplemented in G for every
x ∈ P4(F∗(E)). Then G ∈ F if and only if every element of P(F∗(E)) is contained in
ZF

∞(G).
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Proof. The necessity part is obvious. We only need to prove the sufficiency
part. Obviously, GF ⊆ E. Then by Lemma 2.6, F∗(GF) ⊆ F∗(E). By [5, Corollary
3.2.9], ZF

∞(G) ∩ GF ⊆ Z(GF) ⊆ Z∞(GF). Consequently, every element of P(F∗(GF)) is
contained in Z∞(GF). By the hypothesis and Lemma 2.4, 〈x〉 is weakly s-supplemented
in GF for every x ∈ P4(F∗(GF)). By applying Lemma 3.8, we see that GF is nilpotent
and so F∗(GF) = GF. Now by Proposition 3.7, we deduce that G ∈ F. This completes
the proof. �

4. Some applications. It is clear that all subgroups, no matter whether they
are normal subgroups, c-normal subgroups, c-supplemented subgroups, s-permutable
subgroups or weakly s-permutable subgroups, are weakly s-supplemented subgroups.

In the literature [11], a subgroup H of a group G is said to be p-nilpotent quotient-
supplemented in G if there exists a subgroup T of G such that HT = G and T/T ∩ HG

is p-nilpotent.
It is obvious that if H has a p-nilpotent supplement in G, then H is a p-nilpotent

quotient-supplemented in G. We now claim that the converse statement also holds. In
fact, if H is a p-nilpotent quotient-supplemented in G, then there exists a subgroup
T of G such that HT = G and T/T ∩ HG is p-nilpotent. If T is p-nilpotent, then
the assertion is clear. Now, we assume that T is not p-nilpotent. Since the class of
the p-nilpotent groups is a saturated formation, T ∩ HG � �(T). Hence, there exists
a maximal subgroup T1 of T such that T = (T ∩ HG)T1. This implies that HT1 = G
and T1/T1 ∩ HG = T1/T1 ∩ (T ∩ HG) � T/T ∩ HG is p-nilpotent. If T1 is p-nilpotent,
then H has a p-nilpotent supplement T1 in G. If T1 is not p-nilpotent, then we continue
to use the same argument as above. Since T is a finite group, we can eventually find a
subgroup Tn of T such that Tn is p-nilpotent and HTn = G.

Recall that a group G of order |G| = p1
α1 p2

α2 . . . pn
αn , where p1 > p2 > · · · > pn,

is said to satisfy the Sylow tower property (see [20, p. 5]) if G has a normal subgroup
of order p1

α1 p2
α2 . . . pi

αi for every i ∈ {1, 2, . . . , n − 1}.
Now, by applying Theorem 3.3, we can obtain the following corollaries.

COROLLARY 4.1. Let F be the class of all groups satisfying the Sylow tower property.
Suppose that a group G has a normal subgroup E such that G/E ∈ F. If all subgroups 〈x〉
of prime order or order 4 (if the Sylow p-subgroup P of E is a non-abelian 2-group) are
weakly s-supplemented in G, then G ∈ F.

Proof. Let p be the smallest prime number dividing |G|. Then (|G|, p − 1) = 1.
Since G/E satisfies the Sylow tower property, G/E is p-nilpotent. Now, it is obvious
that G satisfies the hypothesis of Theorem 3.3 for Hp. Hence, G must be p-nilpotent.
Let T be a normal Hall p′-subgroup of G. Then, it can be easily seen that T with respect
to T ∩ E also satisfies the hypothesis. By induction, we have that T ∈ F. This implies
that G ∈ F. �

COROLLARY 4.2. Let p be a prime and G a group with (|G|, (p − 1)(p2 − 1) · · · (pn −
1))=1, for some integer n ≥ 1. Suppose that a group G has a normal subgroup E such that
G/E is p-nilpotent. If there exists a subgroup D of E such that 1 < |D| < pn+1 and every
subgroup H of E with |H| = |D| has a p-nilpotent supplement in G, then G is p-nilpotent.

Proof. If p > 2, then it is clear that G is p-nilpotent by Theorem 3.3. We now
consider the case p = 2. Suppose that K is a subgroup of E with |K| = 2|D|. Then
there exists a subgroup L such that L < K and |L| = |D|. By the hypothesis, L has a
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p-nilpotent supplement T in G. Then, it is obvious that T is also a p-nilpotent
supplement of K in G. Thus, by Theorem 3.3, G is p-nilpotent. �

The following results now follow directly from Theorem 3.3 or the above
corollaries.

COROLLARY 4.3 (Miao, Guo, Shum [11, Theorem 3.1]). Let G be a group and p a
prime of |G| such that (|G|, p2 − 1) = 1. Then G is p-nilpotent if and only if there exists
a normal subgroup E of G such that G/E is p-nilpotent and each subgroup of E of order
p2 has a p-nilpotent quotient-supplement in G.

COROLLARY 4.4 (Miao, Guo, Shum [11, Theorem 3.3]). Let G be a group and
(|G|, 21) = 1. Then G is 2-nilpotent if and only if each subgroup of G of order 8 has a
2-nilpotent quotient-supplement in G.

COROLLARY 4.5 (Ramadan, Ezzat Mohaemed, Heliel [12, Lemma 3.8]). Let p be
the smallest prime divisor dividing the order of a group G. If 〈x〉 is c-normal in G for every
x ∈ P∗

p(G), then G is p-nilpotent.

COROLLARY 4.6 (Zhong, Li [22, Theorem 2.3]). Let G be a group and p the smallest
prime divisor dividing |G|. Suppose that there exists a normal subgroup E of G such
that G/E is p-nilpotent. If 〈x〉 is c-supplemented in G for every x ∈ P∗

p(E), then G is
p-nilpotent.

COROLLARY 4.7 (Xie, Shi, Hu [21, Theorem 3.4]). Let p be a prime number and G
a group with (|G|, p − 1) = 1. If 〈x〉 is weakly s-supplemented in G for every x ∈ P∗

p(G),
then G is p-nilpotent.

The following known result follows directly from Lemma 3.5.

COROLLARY 4.8 (Lam, Shum, Guo [8]). If p is an odd prime and every element of
Pp(G) is contained in Z∞(G), then G is p-nilpotent.

The following known result now follows directly from Theorem 3.9.

COROLLARY 4.9 (Wang [17, Theorem 3.1]). Suppose that a group G has a normal
subgroup E such that G/E is nilpotent and 〈x〉 is c-normal in G for every x ∈ P4(E). Then
G is nilpotent if and only if every element of P(F∗(E)) is contained in ZF

∞(G).

COROLLARY 4.10 (Ballester-Bolinches, Wang [1, Theorem 3.1]). Let F be a saturated
formation containing N. Suppose that G is a group and 〈x〉 is c-normal in G for every
x ∈ P4(GF). Then G ∈ F if and only if every element of P(GF) is contained in ZF

∞(G).

COROLLARY 4.11 (Li [9, Theorem 1]). Let F be a saturated formation containing N

and G a group. Then G ∈ F if and only if there exists a normal solvable subgroup E such
that G/E ∈ F and every element of P(F(E)) is contained in ZF

∞(G) and 〈x〉 is c-normal
in G for every x ∈ P4(F(E)).

COROLLARY 4.12 (Ballester-Bolinches, Wang [1, Corollary 3.2]). Let G be a group
such that 〈x〉 is c-normal in G for every x ∈ P4(F∗(G)). If every element of P(F∗(G)) is
contained in Z∞(G), then G is nilpotent.
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COROLLARY 4.13 (Li, Wang [10, Theorem 4.5]). Suppose that E is a normal subgroup
of a group G such that G/E is nilpotent. Suppose that 〈x〉 is π -quasi-normal in G for every
x ∈ P4(F∗(E)). Then G is nilpotent if and only if every element of P(F∗(E)) is contained
in Z∞(G).

COROLLARY 4.14 (Li, Wang [10, Theorem 4.6]). Let F be a saturated formation
containing N. Suppose that 〈x〉 is π -quasi-normal in a group G for every x ∈ P4(GF).
Then G ∈ F if and only if every element of P(GF) is contained in ZF

∞(G).

COROLLARY 4.15 (Zhong, Li [22, Theorem 2.5]). Suppose that p is a prime and G is
a group. If every element of Pp(GN) is contained in Z∞(G) and 〈x〉 is c-supplemented in
G for every x ∈ P4(GN), then G is p-nilpotent.

COROLLARY 4.16 (Zhong, Li [22, Theorem 2.6]). Suppose that a group G has a
normal subgroup E such that G/E is nilpotent. If every element of P(F∗(E)) is contained
in Z∞(G) and 〈x〉 is c-supplemented in G for every x ∈ P4(F∗(E)), then G is nilpotent.

COROLLARY 4.17 (Wang, Li, Wang [19, Theorem 4.4]). Let F be a saturated
formation containing N and G a group. Suppose that 〈x〉 is c-supplemented in G for
every x ∈ P4(GF). Then G ∈ F if and only if every element of P(GF) is contained in
ZF

∞(G).

COROLLARY 4.18 (Wang, Li, Wang [19, Theorem 3.3]). Suppose that a group G has
a normal subgroup E such that G/E is nilpotent. Suppose that 〈x〉 is c-supplemented in
G for every x ∈ P4(F∗(E)). Then G is nilpotent if and only if every element of P(F∗(E))
is contained in ZF

∞(G).

COROLLARY 4.19 (Wang, Li, Wang [19, Theorem 4.5]). Let F be a saturated
formation containing N. Suppose that 〈x〉 is c-supplemented in G for every x ∈
P4(F∗(GF)). Then G ∈ F if and only if every element of P(F∗(GF)) is contained in
ZF

∞(G).
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