INDICES OF FUNCTION SPACES AND THEIR RELATIONSHIP TO INTERPOLATION

DAVID W. BOYD

A special case of the theorem of Marcinkiewicz states that if T is a linear operator which satisfies the weak-type conditions (p, p) and (q, q), then T maps L^{r} continuously into itself for any r with $p<r<q$. In a recent paper (5), as part of a more general theorem, Calderón has characterized the spaces X which can replace L^{r} in the conclusion of this theorem, independent of the operator T. The conditions which X must satisfy are phrased in terms of an operator $S(\sigma)$ which acts on the rearrangements of the functions in X.

One of Calderón's results implies that if X is a function space in the sense of Luxemburg (9), then X must be a rearrangement-invariant space. In this paper, starting with the assumption that X is rearrangement invariant, we reduce the conditions which X must satisfy to conditions on a pair of numbers (α, β) called the indices of X. The result is that X may replace L^{r} in the theorem of Marcinkiewicz if and only if $p<\alpha^{-1}$ and $\beta^{-1}<q$.

A rearrangement-invariant space is given completely by a function norm ρ and a measure space Ω. In case ρ is the L^{r} norm, it is immediate that $\alpha=\beta=r^{-1}$. In general, though, α and β depend both on ρ and on Ω. This may be illustrated by calculating α and β when ρ is an Orlicz norm. To avoid unduly lengthening this paper we shall report on this elsewhere; see (4).

1. Function spaces. Let $(\Omega, \mathscr{T}, \mu)$ be a totally σ-finite measure space which satisfies one of the following restrictions:
(1) $\quad \Omega$ is non-atomic with infinite measure;
(2) Ω is non-atomic with finite measure;
(3) $\quad \Omega$ is purely atomic with atoms having equal measure 1.

Let $\mathscr{M}(\Omega)$ and $\mathscr{P}(\Omega)$ denote the class of measurable and non-negative measurable functions on Ω, respectively. According to Luxemburg (9, p. 3) a function norm $\rho: \mathscr{P}(\Omega) \rightarrow[0, \infty]$ is a mapping which satisfies the following conditions for all $f, g,\left\{f_{n}\right\}$ in $\mathscr{P}(\Omega)$, for all $E \in \mathscr{T}$ with $\mu(E)<\infty$ and characteristic function χ_{E}, and for all constants $a \geqq 0$:

$$
\begin{align*}
& \rho(f)=0 \Leftrightarrow f=0 \text { a.e., } \quad f \leqq g \text { a.e. } \Rightarrow \rho(f) \leqq \rho(g), \tag{4}\\
& \rho(f+g) \leqq \rho(f)+\rho(g), \rho(a f)=a \rho(f) ; \\
& \rho\left(\chi_{E}\right)<\infty ; \tag{5}\\
& \text { there exists } A_{E}<\infty \text { such that } \int_{E} f d \mu \leqq A_{E} \rho(f) ; \tag{6}\\
& f_{n} \uparrow f \text { a.e. } \Rightarrow \rho\left(f_{n}\right) \uparrow \rho(f) \text { (Fatou property). } \tag{7}
\end{align*}
$$

Received May 28, 1968.

The space $L^{\rho}(\Omega)$ consists of all $f \in \mathscr{M}(\Omega)$ such that $\rho(|f|)<\infty$, with norm $\|f\|=\rho(|f|)$. $L^{\rho}(\Omega)$ is a Banach space when functions which differ at most on a null set are identified.

Two functions $f, g \in \mathscr{M}(\Omega)$ are said to be equimeasurable if, for all $y>0$,

$$
\mu\{x:|f(x)|>y\}=\mu\{x:|g(x)|>y\} .
$$

In this case we write $f \sim g$.
We say that L^{ρ} is rearrangement-invariant if $f \sim g$ and $f \in L^{\rho}$ implies $g \in L^{\rho}$, and that ρ is a rearrangement-invariant norm if $f \sim g$ implies $\rho(|f|)=\rho(|g|)$. By an equivalent renorming we may assume that a rearrange-ment-invariant space has such a norm; see (10).

The non-increasing rearrangement of $f \in \mathscr{M}(\Omega)$ onto $\mathbf{R}^{+}=[0, \infty)$ is the non-increasing, left-continuous function $f^{*} \in \mathscr{P}\left(\mathbf{R}^{+}\right)$for which, if m denotes Lebesgue measure,

$$
m\left\{t \in \mathbf{R}^{+}: f^{*}(t)>y\right\}=\mu\{x \in \Omega:|f(x)|>y\}, \quad \text { all } y>0
$$

For the existence of f^{*} and more details, see (5).
One way of generating rearrangement-invariant norms for $\mathscr{M}(\Omega)$ is the following: let ρ be a rearrangement-invariant norm for $\mathscr{M}\left(\mathbf{R}^{+}\right)$and define

$$
\begin{equation*}
\rho_{\Omega}(f)=\rho\left(f^{*}\right) \quad \text { for all } f \in \mathscr{P}(\Omega) \tag{8}
\end{equation*}
$$

In (1) this was used as a definition. In (10) it is shown that for Ω satisfying (1), (2) or (3), all rearrangement-invariant norms arise in this way. We shall write $L^{\rho}(\Omega)$ for the space determined in $\mathscr{M}(\Omega)$ by ρ_{Ω}.

If Ω satisfies (2) with $\mu(\Omega)=a$, then $\operatorname{supp} f^{*} \subset[0, a]$, hence we sometimes regard f^{*} as being defined only on $[0, a]$ and will write $\Omega^{*}=[0, a]$. If Ω satisfies (3), then f^{*} is a step function constant on $(n-1, n]$, for $n \in \mathbf{Z}^{+}=\{1,2,3, \ldots\}$ thus we shall sometimes regard f^{*} as the sequence $\left\{f^{*}(n)\right\}$, and write $\Omega^{*}=\mathbf{Z}^{+}$. There will never be any confusion about using the notation f^{*} both for the function on \mathbf{R}^{+}and for its restriction to Ω^{*}. If Ω satisfies (1), we define $\Omega^{*}=\mathbf{R}^{+}$.

The associate space of a function space $L^{\rho}(\Omega)$ plays an important rôle in the following discussion. Given a function norm ρ, the associate norm ρ^{\prime} is defined on $\mathscr{P}(\Omega)$ by

$$
\begin{equation*}
\rho^{\prime}(g)=\sup \left\{\int_{\Omega} f g d \mu: \rho(f) \leqq 1\right\} . \tag{9}
\end{equation*}
$$

The space $L^{\rho^{\prime}}$ is called the associate space of L^{ρ}. If ρ_{Ω} is a rearrangementinvariant norm on $\mathscr{M}(\Omega)$ defined as in (8), then $\left(\rho_{\Omega}\right)^{\prime}=\left(\rho^{\prime}\right)_{\Omega}$; see (1).

Furthermore, we have

$$
\begin{equation*}
\left(\rho_{\Omega}\right)^{\prime}(g)=\rho^{\prime}\left(g^{*}\right)=\sup \left\{\int_{\Omega^{*}} f^{*} g^{*}: f \in \mathscr{M}(\Omega), \rho\left(f^{*}\right) \leqq 1\right\} . \tag{10}
\end{equation*}
$$

Having defined ρ^{\prime}, we can define $\rho^{\prime \prime}=\left(\rho^{\prime}\right)^{\prime}$. A result due independently to Lorentz (unpublished) and Luxemburg (9, p. 9) states that $\rho^{\prime \prime}=\rho$ for norms having the Fatou property (7).

We shall often use the notation $\langle\zeta, g\rangle=\int_{\Omega} f g d \mu$, depending on context to indicate which Ω is meant.
2. Operators satisfying weak-type conditions. The notion of an operator of weak type (p, q) was introduced by Marcinkiewicz (see, e.g., 12, p. 111, Chapter 12, §4), and modified by Stein and Weiss (11). Calderón showed that the Stein and Weiss definition was equivalent to the operator being a continuous mapping between a pair of Lorentz spaces, except in one extreme case. In our situation, only the original Lorentz spaces, Λ_{p} and M_{p}, introduced in (8) are involved. These are rearrangement-invariant spaces defined by the norms

$$
\begin{align*}
& \lambda_{p}(f)=\gamma \int_{0}^{\infty} t^{\gamma-1} f^{*}(t) d t, \quad \gamma=p^{-1}, \quad 1 \leqq p<\infty, \tag{11}\\
& \mu_{p}(f)=\sup _{i>0} t^{\gamma-1} \int_{0}^{t} f^{*}(s) d s, \quad \gamma=p^{-1}, \quad 1 \leqq p<\infty, \tag{12}
\end{align*}
$$

respectively. The space Λ_{∞} is by definition the closure in L^{∞} of the space of bounded functions with support in a set of finite measure, and M_{∞} is defined to be $L^{\infty} . \Lambda_{p}$ is equivalent to the space $L_{p, 1}$ and M_{p} is equivalent to $L_{p, \infty}$, as defined in ($\mathbf{5}$, Theorem 6).

On the space of measurable functions $\mathscr{M}(\Omega)$ we introduce the topology of convergence in measure on sets of finite measure. A continuous mapping of $\Lambda_{p}(\Omega)$ into $\mathscr{M}(\Omega)$ is said to be quasilinear if there is a constant A such that, for all $f, g \in \Lambda_{p}(\Omega)$, and $\lambda \in C$,

$$
\begin{equation*}
|T(f+g)| \leqq A(|T f|+|T g|) \text { a.e. and }|T(\lambda f)|=|\lambda||T f| \text { a.e. } \tag{13}
\end{equation*}
$$

The mapping T is said to be of weak type (p_{1}, p_{2}) if T maps $\Lambda_{p_{1}}$ continuously into $\mathscr{M}(\Omega)$ and there is a constant c such that, for all $f \in \Lambda_{p_{1}}$ and almost all $t>0$,

$$
\begin{equation*}
(T f)^{*}(t) \leqq c t^{-1 / p_{2}} \lambda_{p_{1}}(f) \tag{14}
\end{equation*}
$$

In case $p_{2}>1$, this is equivalent to requiring that, for some constant c_{1}, possibly different from c,

$$
\begin{equation*}
\mu_{p_{2}}(T f) \leqq c_{1} \lambda_{p_{1}}(f) \tag{15}
\end{equation*}
$$

We shall be concerned entirely with the case $p_{1}=p_{2}$.
The space $\Lambda_{p}+\Lambda_{q}$ is defined to be the function space consisting of all functions of the form $f+g$, with $f \in \Lambda_{p}, g \in \Lambda_{q}$, and the norm

$$
\begin{equation*}
\|f+g\|=\inf \left\{\lambda_{p}\left(f_{1}\right)+\lambda_{q}\left(g_{1}\right): f_{1} \in \Lambda_{p}, g_{1} \in \Lambda_{q}, \text { and } f_{1}+g_{1}=f+g\right\} \tag{16}
\end{equation*}
$$

If $1 \leqq p, q<\infty$, it can be shown that $f \in \Lambda_{p}+\Lambda_{q}$ if and only if

$$
\begin{equation*}
\int_{0}^{\infty} \min \left(t^{1 / p}, t^{1 / q}\right) f^{*}(t) t^{-1} d t<\infty \tag{17}
\end{equation*}
$$

We define the class of operators $W(p, q ; \Omega)$ to consist of those linear operators T mapping $\Lambda_{p}+\Lambda_{q}$ continuously into $\mathscr{M}(\Omega)$ which are of weak types (p, p) and (q, q) simultaneously.

If X and Y are Banach spaces, $[X, Y]$ will denote the space of bounded linear operators from X into Y, and $[X]$ will denote $[X, X]$. With this notation, our problem is to characterize those function norms ρ for which

$$
\left[L^{\rho}(\Omega)\right] \supset W(p, q ; \Omega)
$$

We first reduce the problem to the rearrangement-invariant case.
Lemma 1. If $1 \leqq p<q \leqq \infty$, and if ρ is a function norm on $\mathscr{M}(\Omega)$, such that $\left[L^{\rho}(\Omega)\right] \supset W(p, q ; \Omega)$, then $L^{\rho}(\Omega)$ is rearrangement-invariant.

Proof. The class $W(p, q ; \Omega)$ contains all operators in $\left[L^{1}(\Omega), L^{\infty}(\Omega)\right]$, so that $\left[L^{\rho}(\Omega)\right] \supset W(p, q ; \Omega) \supset\left[L^{1}(\Omega), L^{\infty}(\Omega)\right]$.

However, according to (5, Theorem 3(i)), this implies that L^{ρ} must satisfy the following condition:

$$
\begin{equation*}
f \in L^{\rho} \text {, and for all } t>0, \int_{0}^{t} g^{*}(s) d s \leqq \int_{0}^{t} f^{*}(s) d s \Rightarrow g \in L^{\rho} \tag{18}
\end{equation*}
$$

Thus, in particular, $f \in L^{\rho}$ and $g \sim f$ implies $g \in L^{\rho}$ so that L^{ρ} is rearrange-ment-invariant.

By earlier remarks and Lemma 1, we may assume without loss of generality that $\rho=\rho_{\Omega}$ is a rearrangement-invariant norm and even that it is of the form (8).

To state our next lemma, we need the following special operators which act on functions in $\mathscr{M}\left(\mathbf{R}^{+}\right)$. Let $\gamma=p^{-1}$, then

$$
\begin{align*}
& P_{p} f(t)=t^{-\gamma} \int_{0}^{t} s^{\gamma-1} f(s) d s \tag{19}\\
& Q_{p} f(t)=t^{-\gamma} \int_{t}^{\infty} s^{\gamma-1} f(s) d s \tag{20}
\end{align*}
$$

The domains of the operators consist of all $f \in \mathscr{M}\left(\mathbf{R}^{+}\right)$for which the respective integrals are finite a.e. By restriction, P_{p} and Q_{p} are defined for $f \in \mathscr{M}\left(\Omega^{*}\right)$. In case $\Omega^{*}=[0, a]$, formulas (19) and (20) are still valid for $0 \leqq t \leqq a$. In case $\Omega^{*}=\mathbf{Z}^{+}$, the operators take the form

$$
\begin{align*}
& P_{p} f(n)=n^{-\gamma} \sum_{k=1}^{n} c_{p k} f(k), \tag{21}\\
& Q_{p} f(n)=n^{-\gamma} \sum_{k=n+1}^{\infty} c_{p k} f(k), \tag{22}
\end{align*}
$$

where $c_{p k}=\int_{k-1}^{k} s^{\gamma-1} d s$.
The next lemma shows that we can restrict our study entirely to the operators P_{p} and Q_{q}. In it, if $f \in L^{\rho}(\Omega)$, we regard f^{*} as being a function in
$L^{\rho}\left(\Omega^{*}\right)$, and $P_{p} f^{*}, Q_{q} f^{*}$ are to be interpreted as in the remarks following equation (20).

Lemma 2. Let ρ be a rearrangement-invariant norm on $\mathscr{M}\left(\mathbf{R}^{+}\right)$, let $1 \leqq p<q \leqq \infty$, and let Ω satisfy (1), (2) or (3). Then $\left[L^{\rho}(\Omega)\right] \supset W(p, q ; \Omega)$ if and only if there are constants A, B such that for all $f \in L^{\rho}(\Omega)$,

$$
\begin{equation*}
\rho_{\Omega^{*}}\left(P_{p} f^{*}\right) \leqq A \rho_{\Omega^{*}}\left(f^{*}\right) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{\Omega^{*}}\left(Q_{q} f^{*}\right) \leqq B_{\rho_{\Omega^{*}}}\left(f^{*}\right) \tag{24}
\end{equation*}
$$

Proof. By (5, Theorem 8), interpreted in our notation, if $T \in W(p, q ; \Omega)$, there is a constant $c=c(p, q ; T)$ such that, for all $f \in \Lambda_{p}+\Lambda_{q}$,

$$
\begin{equation*}
(T f)^{*} \leqq c\left(p^{-1} P_{p}+q^{-1} Q_{q}\right) f^{*} . \tag{25}
\end{equation*}
$$

If (23) and (24) hold for all $f \in L^{\rho}(\Omega)$, then $L^{\rho}(\Omega) \subset \Lambda_{p}+\Lambda_{q}$ follows by using (10). Thus (23), (24), and (25) together imply that if $f \in L^{\rho}(\Omega)$, then

$$
\begin{equation*}
\rho_{\Omega}(T f)=\rho_{\Omega^{*}}\left((T f)^{*}\right) \leqq C_{\rho_{\Omega^{*}}}\left(f^{*}\right)=C_{\rho_{\Omega}}(f), \tag{26}
\end{equation*}
$$

so that $T \in\left[L^{\rho}(\Omega)\right]$, with $\|T\| \leqq C=c\left(p^{-1} A+q^{-1} B\right)$.
Conversely, assume that $\left[L^{\rho}(\Omega)\right] \supset W(p, q ; \Omega)$. We observe that

$$
P_{p} \in W\left(p, q ; \Omega^{*}\right) \quad \text { and } \quad Q_{q} \in W\left(p, q, \Omega^{*}\right)
$$

directly from the definitions involved. Certainly then, if Ω is one of the spaces $[0, a], \mathbf{R}^{+}$or \mathbf{Z}^{+}so that $\Omega=\Omega^{*}$, then

$$
P_{p}, Q_{q} \in W\left(p, q ; \Omega^{*}\right) \subset\left[L^{\rho}\left(\Omega^{*}\right)\right]
$$

which proves (23) and (24).
If $\Omega \neq \Omega^{*}$, we use the fact that there is an almost one-to-one measurepreserving transformation $\tau: \mathscr{T} \rightarrow \mathscr{T}^{*}$, where \mathscr{T} and \mathscr{T}^{*} are the rings of measurable subsets of Ω and Ω^{*}, respectively. (See Halmos (6, pp. 173-174) for the non-atomic case; the atomic case is trivial.) This isomorphism is used to construct operators $\widetilde{P}_{p}, \widetilde{Q}_{q} \in W(p, q ; \Omega)$ such that $\widetilde{P}_{p}, \widetilde{Q}_{q} \in\left[L^{\rho}(\Omega)\right]$ if and only if $P_{p}, Q_{q} \in\left[L^{\rho}\left(\Omega^{*}\right)\right]$.

For example, let $\Omega^{*}=\mathbf{R}^{+}$, and define

$$
\begin{equation*}
S_{t}=\tau^{-1}([0, t]), \quad \Delta_{t}=\tau^{-1}\{t\}, \quad 0 \leqq t<\infty . \tag{27}
\end{equation*}
$$

Then define

$$
g(x)= \begin{cases}t^{\gamma-1}, & \text { if } x \in \Delta_{t}, \tag{28}\\ 0, & \text { if } x \notin \Delta_{t} \text { for any } t .\end{cases}
$$

Then $g \in \mathscr{M}(\Omega)$ and $g^{*}(t)=t^{\gamma-1}$. Now define

$$
P_{p} f(x)= \begin{cases}t^{-\gamma} \int_{s_{t}} f g d \mu, & \text { if } x \in \Delta_{t}, \tag{29}\\ 0, & \text { if } x \notin \Delta_{t} \text { for any } t .\end{cases}
$$

One readily shows that if $f \in L^{\rho}(\Omega)$, then there is an $\tilde{f} \in L^{\rho}(\Omega)$ with $\tilde{f} \sim f$ and such that $\left(\widetilde{P}_{p} \tilde{f}\right)^{*}=P_{p} f^{*}$. Then, we have $\widetilde{P}_{p} \in W(p, q ; \Omega) \subset\left[L^{\rho}(\Omega)\right]$, thus $P_{p} \in\left[L^{\rho}\left(\Omega^{*}\right)\right]$ and (16) holds.

The other cases are treated similarly.
3. Indices of rearrangement-invariant spaces. In this section we reduce the question of whether (23) and (24) hold for a given function norm ρ to a consideration of the indices of $L^{\rho}(\Omega)$.

We begin by introducing certain semigroups of operators acting on functions in the classes $\mathscr{M}\left(\Omega^{*}\right)$. If $\Omega^{*}=[0, a]$ or \mathbf{R}^{+}, we define

$$
\begin{equation*}
\left(E_{s} f\right)(t)=f(s t) \quad \text { for } 0<s<\infty, \quad t \in \Omega^{*} \tag{30}
\end{equation*}
$$

where, for $\Omega^{*}=[0, a]$ and $t>a$, we set $f(t)=0$.
If $\Omega^{*}=\mathbf{Z}^{+}$, we define

$$
\begin{equation*}
\left(E_{m} f\right)(n)=f(m n), \quad m, n \in \mathbf{Z}^{+} \tag{31}
\end{equation*}
$$

To keep the notation uniform, let $S(\Omega)=(0, \infty)$ if $\Omega^{*}=[0, a]$ or \mathbf{R}^{+}, and $S(\Omega)=\mathbf{Z}^{+}$if $\Omega^{*}=\mathbf{Z}^{+}$.

If ρ is a rearrangement-invariant norm, then

$$
\begin{equation*}
h\left(s, L^{\rho}(\Omega)\right)=\sup \left\{\rho\left(E_{s} s^{*}\right): f \in L^{\rho}\left(\Omega^{*}\right), \rho(f) \leqq 1\right\}, \quad \text { for } s \in S(\Omega) \tag{32}
\end{equation*}
$$

In case Ω is non-atomic, it can be seen that $h\left(s ; L^{\rho}(\Omega)\right)$ is the norm of E_{s} as a member of $\left[L^{\rho}\left(\Omega^{*}\right)\right]$. However, in case $\Omega^{*}=\mathbf{Z}^{+}$, the norm of E_{n} in $\left[L^{\rho}\left(\mathbf{Z}^{+}\right)\right]$ is 1 for all m, since if $f(n)=0$ for all $n \neq 0(\bmod m)$, then $\left(E_{m} f\right)^{*}=f^{*}$. By restricting consideration to non-increasing functions in (32), we shall have $h\left(m ; L^{\rho}\left(\mathbf{Z}^{+}\right)\right)<1$ for some norms ρ.

Lemma 3. Let $h(s)=h\left(s ; L^{\rho}(\Omega)\right)$. Then
(a) h is non-increasing;
(b) For $s, t \in S(\Omega), h(s t) \leqq h(s) h(t)$;
(c) If $\theta(s)=-\log h(s) / \log s$, and if $S(\Omega)=(0, \infty)$ then the following limits exist,

$$
\begin{align*}
& \alpha=\lim _{s \rightarrow 0+} \theta(s)=\inf _{0<s<1} \theta(s) \tag{33}\\
& \beta=\lim _{s \rightarrow \infty} \theta(s)=\sup _{s>1} \theta(s) \tag{34}
\end{align*}
$$

(d) If $S(\Omega)=\mathbf{Z}^{+}$, and θ is as above, then

$$
\begin{equation*}
\beta=\lim _{n \rightarrow \infty} \theta(n)=\sup _{n \in \mathbf{Z}^{+}} \theta(n) \tag{35}
\end{equation*}
$$

Proof. (a) is obvious, since $f^{*}\left(s_{1} t\right) \leqq f^{*}\left(s_{2} t\right)$ for $s_{1}>s_{2}$, for all $f^{*} \in L^{\rho}\left(\Omega^{*}\right)$.
(b) In case $\Omega^{*}=\mathbf{R}^{+}$or \mathbf{Z}^{+}, we have $E_{s} E_{t}=E_{s t}$ for all $s, t \in S(\Omega)$, thus $h(s t) \leqq h(s) h(t)$ is clear.

For $\Omega^{*}=[0, a]$, we have $E_{s} E_{t}=E_{s t}$ unless $s>1$ and $t<1$, in which case we have $E_{s} E_{t} f=\chi_{\left[0, s^{-1]}\right.} E_{s t} f$. This is enough to show that (b) holds.
(c) This is a consequence of (b) which is easily derived from (7, p. 244) by writing $f(x)=\log h\left(e^{x}\right)$.
(d) The proof depends on both (a) and (b) and can be found in (3, Lemma 2).

Definition. Let ρ be a rearrangement-invariant norm, and Ω a measure space satisfying (1), (2) or (3). The number $\beta=\beta(\rho, \Omega)$ defined by (34) and (35) above is called the lower index of $L^{\rho}(\Omega)$. If Ω is non-atomic, the number $\alpha(\rho, \Omega)$ defined by (33) is called the upper index of $L^{\rho}(\Omega)$. For Ω atomic, we define $\alpha(\rho, \Omega)=1-\beta\left(\rho^{\prime}, \Omega\right)$.

The next lemma gives an alternative definition of α in case Ω is atomic. We introduce two new operators on sequences:

$$
\begin{equation*}
F_{m} f(n)=f([(n-1) / m]+1) \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{m} f(n)=F_{m} E_{m} f(n)=f(m[(n-1) / m]+m) \tag{37}
\end{equation*}
$$

Here $[x]$ denotes the integer part of x.
Lemma 4. Let ρ be a rearrangement-invariant function norm, and let F_{m} be as in (36). Define

$$
\begin{equation*}
k\left(m, L^{\rho}\left(\mathbf{Z}^{+}\right)\right)=\sup \left\{\rho\left(F_{m} f^{*}\right): f \in L^{\rho}\left(\mathbf{Z}^{+}\right), \rho(f) \leqq 1\right\} \tag{38}
\end{equation*}
$$

Then

$$
\begin{equation*}
m h\left(m ; L^{\rho^{\prime}}\left(\mathbf{Z}^{+}\right)\right)=k\left(m ; L^{\rho}\left(\mathbf{Z}^{+}\right)\right) \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(\rho, \Omega)=\lim _{m \rightarrow \infty} \frac{\log k\left(m ; L^{\rho}\left(\mathbf{Z}^{+}\right)\right)}{\log m} \tag{40}
\end{equation*}
$$

Proof. Let $f \in L^{\rho}\left(\mathbf{Z}^{+}\right), g \in L^{\rho^{\prime}}\left(\mathbf{Z}^{+}\right)$. Then it is easy to see that

$$
\begin{align*}
\left\langle F_{m} f^{*}, G_{m} g^{*}\right\rangle & =m\left\langle f^{*}, E_{m} G_{m} g^{*}\right\rangle \tag{41}\\
& \leqq \rho\left(f^{*}\right) \operatorname{mh}\left(m ; L^{\rho^{\prime}}\left(\mathbf{Z}^{+}\right)\right) \rho^{\prime}\left(G_{m} g^{*}\right) .
\end{align*}
$$

Now $G_{m}\left(L^{\rho^{\prime}}\left(\mathbf{Z}^{+}\right)\right)$, consists of all sequences which are constant in blocks of length m. Furthermore, $F_{m} f^{*}$ is such a sequence, thus by the levelling property of rearrangement-invariant norms (see 10, p. 99), we have

$$
\begin{equation*}
\sup _{g^{*} \neq 0} \frac{\left\langle F_{m} f^{*}, G_{m} g^{*}\right\rangle}{\rho^{\prime}}\left(G_{m} g^{*}\right) \quad=\rho\left(F_{m} f^{*}\right) \tag{42}
\end{equation*}
$$

Thus, by (41) and (42) we have

$$
\begin{equation*}
\rho\left(F_{m} f^{*}\right) \leqq \rho\left(f^{*}\right) m h\left(m ; L^{\rho^{\prime}}\left(\mathbf{Z}^{+}\right)\right) \quad \text { for all } f \in L^{\rho}\left(\mathbf{Z}^{+}\right), \tag{43}
\end{equation*}
$$

which shows that

$$
\begin{equation*}
k\left(m ; L^{\rho}\left(\mathbf{Z}^{+}\right)\right) \leqq m h\left(m ; L^{\rho^{\prime}}\left(\mathbf{Z}^{+}\right)\right) \tag{44}
\end{equation*}
$$

To prove the reverse inequality is even easier since

$$
\begin{equation*}
m\left\langle f^{*}, E_{m} g^{*}\right\rangle \leqq\left\langle F_{m} f^{*}, g^{*}\right\rangle, \quad \text { for } f \in L^{\rho}, g \in L^{\rho^{\prime}} \tag{45}
\end{equation*}
$$

Finally, (40) is an immediate consequence of (39).
Lemma 5. Let α, β denote the indices of $L^{\rho}(\Omega)$ and $\alpha^{\prime}, \beta^{\prime}$ the indices of $L^{\rho^{\prime}}(\Omega)$. Then $\alpha=1-\beta^{\prime}, \beta=1-\alpha^{\prime}$ and $0 \leqq \beta \leqq \alpha \leqq 1$.

Proof. For $\Omega^{*}=\mathbf{Z}^{+}, \alpha=1-\beta^{\prime}$ and $\alpha^{\prime}=1-\beta$ by definition. If $\Omega^{*}=[0, a]$ and if $f \in L^{\rho}, g \in L^{\rho^{\prime}}$, and $s<1$, one has

$$
\begin{align*}
\left\langle E_{s} f^{*}, g^{*}\right\rangle & =\int_{0}^{a} f^{*}(s t) g^{*}(t) d t \tag{46}\\
& =s^{-1} \int_{0}^{a s} f^{*}(t) g^{*}(t / s) d t=s^{-1}\left\langle f^{*}, E_{s^{-1}} g^{*}\right\rangle
\end{align*}
$$

Thus, taking supremums over f and g with $\rho(f) \leqq 1, \rho(g) \leqq 1$, we have

$$
\begin{equation*}
h\left(s, L^{\rho}\right)=s^{-1} h\left(s^{-1}, L^{\rho^{\prime}}\right), \tag{47}
\end{equation*}
$$

which clearly shows that $\alpha=1-\beta^{\prime}$ and dually $\beta=1-\alpha^{\prime}$.
A similar calculation works in case $\Omega^{*}=\mathbf{R}^{+}$.
The fact that $\beta \geqq 0$ follows immediately from the fact that h is nonincreasing. Then $\alpha \leqq 1$ follows from $\alpha=1-\beta^{\prime}$.

To prove that $\beta \leqq \alpha$, we deal first with Ω non-atomic. Then Lemma 3(b) applies to show that $h(s) h\left(s^{-1}\right) \geqq h(1)=1$. Thus, for $s<1, \theta(s) \geqq \theta\left(s^{-1}\right)$, which proves that $\alpha \geqq \beta$.

For the case $\Omega^{*}=\mathbf{Z}^{+}$, we use Lemma 4. Note that if F_{m} is defined by (36), then $E_{m} F_{m} f=f$ for all $f \in L^{\rho}\left(\mathbf{Z}^{+}\right)$. Thus, if we write $k(m)=k\left(m ; L^{\rho}\left(\mathbf{Z}^{+}\right)\right)$, as defined by (38), then

$$
\begin{equation*}
\rho\left(E_{m} F_{m} f^{*}\right) \leqq h(m) k(m) \rho\left(f^{*}\right), \quad \text { for } f \in L^{\rho}, \tag{48}
\end{equation*}
$$

so that $h(m) k(m) \geqq 1$.
But then $\log k(m) / \log m \geqq \theta(m)$, proving that $\alpha \geqq \beta$ upon using (40).
Our main theorem may now be proved. It will be convenient in the proof to use the notation $P_{p} \in\left[\mathscr{D}^{\rho}\right], Q_{q} \in\left[\mathscr{D}^{\rho}\right]$ to mean that there are constants A and B so that (23) and (24) hold, respectively. (The \mathscr{D} refers to the fact that only non-increasing functions are considered in equations (23) and (24).)

Theorem 1. Let ρ be a rearrangement-invariant function norm and let Ω be a measure space satisfying (1), (2) or (3). Then $\left[L^{\rho}(\Omega)\right] \supset W(p, q ; \Omega)$ if and only if

$$
\begin{equation*}
\alpha(\rho, \Omega)<p^{-1} \quad \text { and } \quad \beta(\rho, \Omega)>q^{-1} . \tag{49}
\end{equation*}
$$

Proof. By Lemma 2, we need only show that

$$
\begin{equation*}
\alpha p<1 \Leftrightarrow P_{p} \in\left[\mathscr{D}^{\rho}\right] \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta q>1 \Leftrightarrow Q_{q} \in\left[\mathscr{D}^{\rho}\right] . \tag{51}
\end{equation*}
$$

In fact, only one of the implications (50) or (51) need be proved, since if $f \in L^{\rho}, g \in L^{\rho^{\prime}}$, then

$$
\begin{equation*}
\left\langle P_{p} f^{*}, g^{*}\right\rangle=\left\langle f^{*}, Q_{p^{\prime}} q^{*}\right\rangle \tag{52}
\end{equation*}
$$

where $p^{\prime}=p(p-1)^{-1}$. From this, it follows immediately that

$$
\begin{equation*}
P_{p} \in\left[\mathscr{D}^{\rho}\right] \Leftrightarrow Q_{p^{\prime}} \in\left[\mathscr{D}^{\rho^{\prime}}\right] . \tag{53}
\end{equation*}
$$

However, by Lemma 4, we have

$$
\begin{equation*}
\alpha p<1 \Leftrightarrow \beta^{\prime} p^{\prime}>1 \tag{54}
\end{equation*}
$$

Combining (53) with (54) proves our assertion.
In case Ω is non-atomic, we choose to prove (50). In fact,

$$
P_{p} \in\left[\mathscr{D}^{\rho}\right] \Leftrightarrow P_{p} \in\left[L^{\rho}\left(\Omega^{*}\right)\right]
$$

in this case. This is a consequence of $\left(P_{p} f\right)^{*} \leqq P_{p} f^{*}$ which is a special case of the following well-known inequality of Hardy, Littlewood, and Polya (see, e.g., 1, p. 601, formula (1)):

$$
\begin{equation*}
\int_{\Omega}|f g| d \mu \leqq \int_{\Omega^{*}} f^{*} g^{*} d \mu^{*} \tag{55}
\end{equation*}
$$

By (2, Theorem 1), $P_{p} \in\left[L^{\rho}\left(\mathbf{R}^{+}\right)\right]$if and only if

$$
\begin{equation*}
\int_{0}^{1} s^{1 / p-1} h\left(s, L^{\rho}\left(\mathbf{R}^{+}\right)\right) d s<\infty \tag{56}
\end{equation*}
$$

which is the case if and only if $\alpha p<1$.
For $\Omega^{*}=[0, a]$, the proof that $P_{p} \in\left[L^{\rho}\left(\Omega^{*}\right)\right]$ is not substantially different from that for $\Omega^{*}=\mathbf{R}^{+}$just referred to.

In the remaining case, $\Omega^{*}=\mathbf{Z}^{+}$, we shall prove (51). We begin by introducing an operator T_{q} which is easier to handle than Q_{q}.

If $f \in L^{\rho}(\Omega)$, then

$$
\begin{equation*}
T_{q} f^{*}(n)=\sum_{m=1}^{\infty} c_{q, m+1} f^{*}(m n) \tag{57}
\end{equation*}
$$

where $c_{q, k}$ is defined by $\int_{k-1}^{k} u^{\gamma-1} d u, \gamma=q^{-1}$. Now, note that

$$
\begin{align*}
=n^{-\gamma} \sum_{m=1}^{\infty} \sum_{j=1}^{n} f^{*}(m n+j) \int_{m n+j-1}^{m n+j} u^{\gamma-1} d u & \leqq \sum_{m=1}^{\infty} f^{*}(m n) n^{-\gamma} \sum_{j=1}^{n} \int_{m n+j-1}^{m n+j} u^{\gamma-1} d u \tag{58}\\
= & \sum_{m=1}^{\infty}\left(\int_{m}^{m+1} u^{\gamma-1}\right) f^{*}(m n)=T_{q} f^{*}(n)
\end{align*}
$$

Similarly, using the estimate $f^{*}(m n+j) \geqq f^{*}((m+1) n)$, and the fact that $\left\{c_{q n}\right\}$ is a non-increasing sequence, we obtain

$$
\begin{equation*}
Q_{q} f^{*}(n) \geqq T_{q} f^{*}(n)-c_{q, 2} f^{*}(1) \tag{59}
\end{equation*}
$$

Thus, $Q_{q} \in\left[\mathscr{D}^{\rho}\right]$ if and only if $T_{q} \in\left[\mathscr{D}^{\rho}\right]$.
The operator T_{q} is of the type discussed in (3), and it is shown there that $T_{q} \in\left[\mathscr{D}^{\rho}\right]$ if and only if $\beta>\sigma_{0}$, where σ_{0} is the abscissa of convergence of the Dirichlet series

$$
\begin{equation*}
\zeta\left(s, T_{q}\right)=\sum_{m=1}^{\infty} c_{q, m+1} m^{-s}, \tag{60}
\end{equation*}
$$

which in this case is $\sigma_{0}=q^{-1}$. Thus, $T_{q} \in\left[\mathscr{D}^{\rho}\right]$ if and only if $\beta q>1$, proving (51) and hence (50).
4. Indices for special spaces. In (1), we showed how to compute $h\left(s ; L^{\rho}\left(\mathbf{R}^{+}\right)\right)$in case L^{ρ} is an Orlicz space L^{Φ} or a Lorentz space $\Lambda(\phi, p)$. From the expressions given there, the indices α and β can be computed using (33) and (34). The situation $\Omega^{*}=\mathbf{R}^{+}$is somewhat simpler than either of the cases $\Omega^{*}=[0, a]$ or $\Omega^{*}=\mathbf{Z}^{+}$. This is apparently due to the fact that $(0, \infty)$ is a group under multiplication.

In (4), we compute the indices α and β for $L^{\Phi}([0, a])$ and $L^{\Phi}\left(\mathbf{Z}^{+}\right)=l^{\Phi}$.

References

1. D. W. Boyd, The Hilbert transform on rearrangement-invariant spaces, Can. J. Math. 19 (1967), 599-616.
2. - The spectral radius of averaging operators, Pacific J. Math. 24 (1968), 19-28.
3. - Monotone semigroups of operators on cones, Can. Math. Bull. 12 (1969), 299-310.
4. -Indices and exponents for Orlicz spaces (unpublished manuscript).
5. A. P. Calderón, Spaces between L^{1} and L^{∞} and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299.
6. P. Halmos, Measure theory (Van Nostrand, New York, 1950).
7. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., Vol. 31, rev. ed. (Amer. Math. Soc., Providence, R.I., 1957).
8. G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37-55.
9. W. A. J. Luxemburg, Banach function spaces, Thesis, Delft Technical University, 1955.
10. - Rearrangement-invariant Banach function spaces, Queen's papers in Pure and Applied Mathematics 10 (1967), 83-144, Queen's University, Canada.
11. E. M. Stein and G. Weiss, An extension of a theorem of Marcinkiewicz and some of its applications, J. Math. Mech. 8 (1959), 263-284.
12. A. Zygmund, Trigonometric series, Vol. II (Cambridge, at the University Press, 1959).
[^0]
[^0]: California Institute of Technology, Pasadena, California

