INDICES OF FUNCTION SPACES AND THEIR RELATIONSHIP TO INTERPOLATION

DAVID W. BOYD

A special case of the theorem of Marcinkiewicz states that if T is a linear operator which satisfies the weak-type conditions (p, p) and (q, q), then Tmaps L^r continuously into itself for any r with p < r < q. In a recent paper (5), as part of a more general theorem, Calderón has characterized the spaces Xwhich can replace L^r in the conclusion of this theorem, independent of the operator T. The conditions which X must satisfy are phrased in terms of an operator $S(\sigma)$ which acts on the rearrangements of the functions in X.

One of Calderón's results implies that if X is a function space in the sense of Luxemburg (9), then X must be a rearrangement-invariant space. In this paper, starting with the assumption that X is rearrangement invariant, we reduce the conditions which X must satisfy to conditions on a pair of numbers (α, β) called the indices of X. The result is that X may replace L^r in the theorem of Marcinkiewicz if and only if $p < \alpha^{-1}$ and $\beta^{-1} < q$.

A rearrangement-invariant space is given completely by a function norm ρ and a measure space Ω . In case ρ is the L^r norm, it is immediate that $\alpha = \beta = r^{-1}$. In general, though, α and β depend both on ρ and on Ω . This may be illustrated by calculating α and β when ρ is an Orlicz norm. To avoid unduly lengthening this paper we shall report on this elsewhere; see (4).

1. Function spaces. Let $(\Omega, \mathcal{T}, \mu)$ be a totally σ -finite measure space which satisfies one of the following restrictions:

- (1) Ω is non-atomic with infinite measure;
- (2) Ω is non-atomic with finite measure;
- (3) Ω is purely atomic with atoms having equal measure 1.

Let $\mathscr{M}(\Omega)$ and $\mathscr{P}(\Omega)$ denote the class of measurable and non-negative measurable functions on Ω , respectively. According to Luxemburg (9, p. 3) a function norm $\rho: \mathscr{P}(\Omega) \to [0, \infty]$ is a mapping which satisfies the following conditions for all $f, g, \{f_n\}$ in $\mathscr{P}(\Omega)$, for all $E \in \mathscr{T}$ with $\mu(E) < \infty$ and characteristic function χ_E , and for all constants $a \geq 0$:

(4)
$$\rho(f) = 0 \Leftrightarrow f = 0 \text{ a.e.}, \quad f \leq g \text{ a.e.} \Rightarrow \rho(f) \leq \rho(g),$$

 $\rho(f+g) \leq \rho(f) + \rho(g), \quad \rho(af) = a\rho(f);$

(5) $\rho(\chi_E) < \infty;$

(6) there exists
$$A_E < \infty$$
 such that $\int_E f d\mu \leq A_E \rho(f)$;

(7) $f_n \uparrow f \text{ a.e.} \Rightarrow \rho(f_n) \uparrow \rho(f)$ (Fatou property).

Received May 28, 1968.

DAVID W. BOYD

The space $L^{\rho}(\Omega)$ consists of all $f \in \mathscr{M}(\Omega)$ such that $\rho(|f|) < \infty$, with norm $||f|| = \rho(|f|)$. $L^{\rho}(\Omega)$ is a Banach space when functions which differ at most on a null set are identified.

Two functions $f, g \in \mathcal{M}(\Omega)$ are said to be *equimeasurable* if, for all y > 0,

$$\mu\{x: |f(x)| > y\} = \mu\{x: |g(x)| > y\}.$$

In this case we write $f \sim g$.

We say that L^{ρ} is rearrangement-invariant if $f \sim g$ and $f \in L^{\rho}$ implies $g \in L^{\rho}$, and that ρ is a rearrangement-invariant norm if $f \sim g$ implies $\rho(|f|) = \rho(|g|)$. By an equivalent renorming we may assume that a rearrangement-invariant space has such a norm; see (10).

The non-increasing rearrangement of $f \in \mathscr{M}(\Omega)$ onto $\mathbf{R}^+ = [0, \infty)$ is the non-increasing, left-continuous function $f^* \in \mathscr{P}(\mathbf{R}^+)$ for which, if *m* denotes Lebesgue measure,

$$m\{t \in \mathbf{R}^+: f^*(t) > y\} = \mu\{x \in \Omega: |f(x)| > y\}, \text{ all } y > 0.$$

For the existence of f^* and more details, see (5).

One way of generating rearrangement-invariant norms for $\mathscr{M}(\Omega)$ is the following: let ρ be a rearrangement-invariant norm for $\mathscr{M}(\mathbf{R}^+)$ and define

(8)
$$\rho_{\Omega}(f) = \rho(f^*) \text{ for all } f \in \mathscr{P}(\Omega).$$

In (1) this was used as a definition. In (10) it is shown that for Ω satisfying (1), (2) or (3), all rearrangement-invariant norms arise in this way. We shall write $L^{\rho}(\Omega)$ for the space determined in $\mathscr{M}(\Omega)$ by ρ_{Ω} .

If Ω satisfies (2) with $\mu(\Omega) = a$, then $\operatorname{supp} f^* \subset [0, a]$, hence we sometimes regard f^* as being defined only on [0, a] and will write $\Omega^* = [0, a]$. If Ω satisfies (3), then f^* is a step function constant on (n - 1, n], for $n \in \mathbb{Z}^+ = \{1, 2, 3, \ldots\}$ thus we shall sometimes regard f^* as the sequence $\{f^*(n)\}$, and write $\Omega^* = \mathbb{Z}^+$. There will never be any confusion about using the notation f^* both for the function on \mathbb{R}^+ and for its restriction to Ω^* . If Ω satisfies (1), we define $\Omega^* = \mathbb{R}^+$.

The associate space of a function space $L^{\rho}(\Omega)$ plays an important rôle in the following discussion. Given a function norm ρ , the *associate norm* ρ' is defined on $\mathscr{P}(\Omega)$ by

(9)
$$\rho'(g) = \sup\left\{\int_{\Omega} fg \, d\mu \colon \rho(f) \leq 1\right\}.$$

The space $L^{\rho'}$ is called the *associate space* of L^{ρ} . If ρ_{Ω} is a rearrangementinvariant norm on $\mathscr{M}(\Omega)$ defined as in (8), then $(\rho_{\Omega})' = (\rho')_{\Omega}$; see (1).

Furthermore, we have

(10)
$$(\rho_{\Omega})'(g) = \rho'(g^*) = \sup \left\{ \int_{\Omega^*} f^*g^* : f \in \mathscr{M}(\Omega), \, \rho(f^*) \leq 1 \right\}.$$

Having defined ρ' , we can define $\rho'' = (\rho')'$. A result due independently to Lorentz (unpublished) and Luxemburg (9, p. 9) states that $\rho'' = \rho$ for norms having the Fatou property (7).

We shall often use the notation $\langle f, g \rangle = \int_{\Omega} fg \, d\mu$, depending on context to indicate which Ω is meant.

2. Operators satisfying weak-type conditions. The notion of an operator of weak type (p, q) was introduced by Marcinkiewicz (see, e.g., 12, p. 111, Chapter 12, § 4), and modified by Stein and Weiss (11). Calderón showed that the Stein and Weiss definition was equivalent to the operator being a continuous mapping between a pair of Lorentz spaces, except in one extreme case. In our situation, only the original Lorentz spaces, Λ_p and M_p , introduced in (8) are involved. These are rearrangement-invariant spaces defined by the norms

(11)
$$\lambda_p(f) = \gamma \int_0^\infty t^{\gamma-1} f^*(t) dt, \qquad \gamma = p^{-1}, \quad 1 \leq p < \infty,$$

(12)
$$\mu_p(f) = \sup_{t>0} t^{\gamma-1} \int_0^t f^*(s) \, ds, \qquad \gamma = p^{-1}, \quad 1 \leq p < \infty,$$

respectively. The space Λ_{∞} is by definition the closure in L^{∞} of the space of bounded functions with support in a set of finite measure, and M_{∞} is defined to be L^{∞} . Λ_p is equivalent to the space $L_{p,1}$ and M_p is equivalent to $L_{p,\infty}$, as defined in (5, Theorem 6).

On the space of measurable functions $\mathscr{M}(\Omega)$ we introduce the topology of convergence in measure on sets of finite measure. A continuous mapping of $\Lambda_p(\Omega)$ into $\mathscr{M}(\Omega)$ is said to be *quasilinear* if there is a constant A such that, for all $f, g \in \Lambda_p(\Omega)$, and $\lambda \in C$,

(13)
$$|T(f+g)| \le A(|Tf|+|Tg|)$$
 a.e. and $|T(\lambda f)| = |\lambda| |Tf|$ a.e.

The mapping T is said to be of weak type (p_1, p_2) if T maps Λ_{p_1} continuously into $\mathscr{M}(\Omega)$ and there is a constant c such that, for all $f \in \Lambda_{p_1}$ and almost all t > 0,

(14)
$$(Tf)^*(t) \leq ct^{-1/p_2} \lambda_{p_1}(f).$$

In case $p_2 > 1$, this is equivalent to requiring that, for some constant c_1 , possibly different from c_1 ,

(15)
$$\mu_{p_2}(Tf) \leq c_1 \lambda_{p_1}(f).$$

We shall be concerned entirely with the case $p_1 = p_2$.

The space $\Lambda_p + \Lambda_q$ is defined to be the function space consisting of all functions of the form f + g, with $f \in \Lambda_p$, $g \in \Lambda_q$, and the norm

(16)
$$||f + g|| = \inf\{\lambda_p(f_1) + \lambda_q(g_1): f_1 \in \Lambda_p, g_1 \in \Lambda_q, \text{ and } f_1 + g_1 = f + g\}.$$

If $1 \leq p, q < \infty$, it can be shown that $f \in \Lambda_p + \Lambda_q$ if and only if

(17)
$$\int_0^\infty \min(t^{1/p}, t^{1/q}) f^*(t) t^{-1} dt < \infty.$$

DAVID W. BOYD

We define the class of operators $W(p, q; \Omega)$ to consist of those linear operators T mapping $\Lambda_p + \Lambda_q$ continuously into $\mathscr{M}(\Omega)$ which are of weak types (p, p) and (q, q) simultaneously.

If X and Y are Banach spaces, [X, Y] will denote the space of bounded linear operators from X into Y, and [X] will denote [X, X]. With this notation, our problem is to characterize those function norms ρ for which

$$[L^{\rho}(\Omega)] \supset W(\rho, q; \Omega).$$

We first reduce the problem to the rearrangement-invariant case.

LEMMA 1. If $1 \leq p < q \leq \infty$, and if ρ is a function norm on $\mathscr{M}(\Omega)$, such that $[L^{\rho}(\Omega)] \supset W(\rho, q; \Omega)$, then $L^{\rho}(\Omega)$ is rearrangement-invariant.

Proof. The class $W(p, q; \Omega)$ contains all operators in $[L^1(\Omega), L^{\infty}(\Omega)]$, so that $[L^{\rho}(\Omega)] \supset W(p, q; \Omega) \supset [L^1(\Omega), L^{\infty}(\Omega)]$.

However, according to (5, Theorem 3(i)), this implies that L^{ρ} must satisfy the following condition:

(18)
$$f \in L^{\rho}$$
, and for all $t > 0$, $\int_{0}^{t} g^{*}(s) ds \leq \int_{0}^{t} f^{*}(s) ds \Rightarrow g \in L^{\rho}$.

Thus, in particular, $f \in L^{\rho}$ and $g \sim f$ implies $g \in L^{\rho}$ so that L^{ρ} is rearrangement-invariant.

By earlier remarks and Lemma 1, we may assume without loss of generality that $\rho = \rho_{\Omega}$ is a rearrangement-invariant norm and even that it is of the form (8).

To state our next lemma, we need the following special operators which act on functions in $\mathcal{M}(\mathbf{R}^+)$. Let $\gamma = p^{-1}$, then

(19)
$$P_{p}f(t) = t^{-\gamma} \int_{0}^{t} s^{\gamma-1} f(s) \, ds,$$

(20)
$$Q_{\mathfrak{p}}f(t) = t^{-\gamma} \int_{t}^{\infty} s^{\gamma-1} f(s) ds.$$

The domains of the operators consist of all $f \in \mathcal{M}(\mathbb{R}^+)$ for which the respective integrals are finite a.e. By restriction, P_p and Q_p are defined for $f \in \mathcal{M}(\Omega^*)$. In case $\Omega^* = [0, a]$, formulas (19) and (20) are still valid for $0 \leq t \leq a$. In case $\Omega^* = \mathbb{Z}^+$, the operators take the form

(21)
$$P_{p}f(n) = n^{-\gamma} \sum_{k=1}^{n} c_{pk}f(k),$$

(22)
$$Q_n f(n) = n^{-\gamma} \sum_{k=n+1}^{\infty} c_{pk} f(k),$$

where $c_{pk} = \int_{k-1}^{k} s^{\gamma-1} ds$.

The next lemma shows that we can restrict our study entirely to the operators P_p and Q_q . In it, if $f \in L^{\rho}(\Omega)$, we regard f^* as being a function in

 $L^{\rho}(\Omega^*)$, and $P_{\mathfrak{A}}f^*$, $Q_{\mathfrak{A}}f^*$ are to be interpreted as in the remarks following equation (20).

LEMMA 2. Let ρ be a rearrangement-invariant norm on $\mathcal{M}(\mathbf{R}^+)$, let $1 \leq \rho < q \leq \infty$, and let Ω satisfy (1), (2) or (3). Then $[L^{\rho}(\Omega)] \supset W(\rho, q; \Omega)$ if and only if there are constants A, B such that for all $f \in L^{\rho}(\Omega)$,

(23)
$$\rho_{\Omega^*}(P_p f^*) \leq A \rho_{\Omega^*}(f^*)$$

and

(24)
$$\rho_{\Omega^*}(Q_q f^*) \leq B \rho_{\Omega^*}(f^*).$$

Proof. By (5, Theorem 8), interpreted in our notation, if $T \in W(p, q; \Omega)$, there is a constant c = c(p, q; T) such that, for all $f \in \Lambda_p + \Lambda_q$,

(25)
$$(Tf)^* \leq c(p^{-1}P_p + q^{-1}Q_q)f^*.$$

If (23) and (24) hold for all $f \in L^{p}(\Omega)$, then $L^{p}(\Omega) \subset \Lambda_{p} + \Lambda_{q}$ follows by using (10). Thus (23), (24), and (25) together imply that if $f \in L^{p}(\Omega)$, then

(26)
$$\rho_{\Omega}(Tf) = \rho_{\Omega^*}((Tf)^*) \leq C\rho_{\Omega^*}(f^*) = C\rho_{\Omega}(f),$$

so that $T \in [L^{p}(\Omega)]$, with $||T|| \leq C = c(p^{-1}A + q^{-1}B)$.

Conversely, assume that $[L^{\rho}(\Omega)] \supset W(p,q;\Omega)$. We observe that

$$P_p \in W(p,q;\Omega^*)$$
 and $Q_q \in W(p,q,\Omega^*)$,

directly from the definitions involved. Certainly then, if Ω is one of the spaces [0, a], \mathbf{R}^+ or \mathbf{Z}^+ so that $\Omega = \Omega^*$, then

$$P_p, Q_q \in W(p, q; \Omega^*) \subset [L^p(\Omega^*)],$$

which proves (23) and (24).

If $\Omega \neq \Omega^*$, we use the fact that there is an almost one-to-one measurepreserving transformation $\tau: \mathcal{T} \to \mathcal{T}^*$, where \mathcal{T} and \mathcal{T}^* are the rings of measurable subsets of Ω and Ω^* , respectively. (See Halmos (6, pp. 173-174) for the non-atomic case; the atomic case is trivial.) This isomorphism is used to construct operators \tilde{P}_p , $\tilde{Q}_q \in W(p, q; \Omega)$ such that \tilde{P}_p , $\tilde{Q}_q \in [L^{\rho}(\Omega)]$ if and only if P_p , $Q_q \in [L^{\rho}(\Omega^*)]$.

For example, let $\Omega^* = \mathbf{R}^+$, and define

(27)
$$S_t = \tau^{-1}([0, t]), \quad \Delta_t = \tau^{-1}\{t\}, \quad 0 \le t < \infty.$$

Then define

(28)
$$g(x) = \begin{cases} t^{\gamma-1}, & \text{if } x \in \Delta_t, \\ 0, & \text{if } x \notin \Delta_t \text{ for any } t. \end{cases}$$

Then $g \in \mathcal{M}(\Omega)$ and $g^*(t) = t^{\gamma-1}$. Now define

(29)
$$P_{\mathfrak{g}}f(x) = \begin{cases} t^{-\gamma} \int_{\mathcal{S}_t} fg \, d\mu, & \text{if } x \in \Delta_t, \\ 0, & \text{if } x \notin \Delta_t \text{ for any } t. \end{cases}$$

One readily shows that if $f \in L^{\rho}(\Omega)$, then there is an $\tilde{f} \in L^{\rho}(\Omega)$ with $\tilde{f} \sim f$ and such that $(\tilde{P}_{p}\tilde{f})^{*} = P_{p}f^{*}$. Then, we have $\tilde{P}_{p} \in W(p, q; \Omega) \subset [L^{\rho}(\Omega)]$, thus $P_{p} \in [L^{\rho}(\Omega^{*})]$ and (16) holds.

The other cases are treated similarly.

3. Indices of rearrangement-invariant spaces. In this section we reduce the question of whether (23) and (24) hold for a given function norm ρ to a consideration of the indices of $L^{\rho}(\Omega)$.

We begin by introducing certain semigroups of operators acting on functions in the classes $\mathcal{M}(\Omega^*)$. If $\Omega^* = [0, a]$ or \mathbb{R}^+ , we define

(30)
$$(E_s f)(t) = f(st) \quad \text{for } 0 < s < \infty, \quad t \in \Omega^*,$$

where, for $\Omega^* = [0, a]$ and t > a, we set f(t) = 0.

If $\Omega^* = \mathbb{Z}^+$, we define

$$(31) (E_m f)(n) = f(mn), m, n \in \mathbb{Z}^+.$$

To keep the notation uniform, let $S(\Omega) = (0, \infty)$ if $\Omega^* = [0, a]$ or \mathbb{R}^+ , and $S(\Omega) = \mathbb{Z}^+$ if $\Omega^* = \mathbb{Z}^+$.

If ρ is a rearrangement-invariant norm, then

(32)
$$h(s, L^{\rho}(\Omega)) = \sup\{\rho(E_s f^*): f \in L^{\rho}(\Omega^*), \rho(f) \leq 1\}, \text{ for } s \in S(\Omega).$$

In case Ω is non-atomic, it can be seen that $h(s; L^{\rho}(\Omega))$ is the norm of E_s as a member of $[L^{\rho}(\Omega^*)]$. However, in case $\Omega^* = \mathbb{Z}^+$, the norm of E_n in $[L^{\rho}(\mathbb{Z}^+)]$ is 1 for all m, since if f(n) = 0 for all $n \neq 0 \pmod{m}$, then $(E_m f)^* = f^*$. By restricting consideration to non-increasing functions in (32), we shall have $h(m; L^{\rho}(\mathbb{Z}^+)) < 1$ for some norms ρ .

LEMMA 3. Let $h(s) = h(s; L^{\rho}(\Omega))$. Then

(a) h is non-increasing;

(b) For $s, t \in S(\Omega)$, $h(st) \leq h(s)h(t)$;

(c) If $\theta(s) = -\log h(s)/\log s$, and if $S(\Omega) = (0, \infty)$ then the following limits exist,

(33)
$$\alpha = \lim_{s \to 0+} \theta(s) = \inf_{0 \le s \le 1} \theta(s),$$

(34)
$$\beta = \lim_{s \to \infty} \theta(s) = \sup_{s > 1} \theta(s).$$

(d) If $S(\Omega) = \mathbb{Z}^+$, and θ is as above, then

(35)
$$\beta = \lim_{n \to \infty} \theta(n) = \sup_{n \in \mathbb{Z}^+} \theta(n).$$

Proof. (a) is obvious, since $f^*(s_1t) \leq f^*(s_2t)$ for $s_1 > s_2$, for all $f^* \in L^{\rho}(\Omega^*)$. (b) In case $\Omega^* = \mathbb{R}^+$ or \mathbb{Z}^+ , we have $E_s E_t = E_{st}$ for all $s, t \in S(\Omega)$, thus $h(st) \leq h(s)h(t)$ is clear.

https://doi.org/10.4153/CJM-1969-137-x Published online by Cambridge University Press

For $\Omega^* = [0, a]$, we have $E_s E_t = E_{st}$ unless s > 1 and t < 1, in which case we have $E_s E_t f = \chi_{[0, s^{-1}]} E_{st} f$. This is enough to show that (b) holds.

(c) This is a consequence of (b) which is easily derived from (7, p. 244) by writing $f(x) = \log h(e^x)$.

(d) The proof depends on both (a) and (b) and can be found in (3, Lemma 2).

Definition. Let ρ be a rearrangement-invariant norm, and Ω a measure space satisfying (1), (2) or (3). The number $\beta = \beta(\rho, \Omega)$ defined by (34) and (35) above is called the *lower index* of $L^{\rho}(\Omega)$. If Ω is non-atomic, the number $\alpha(\rho, \Omega)$ defined by (33) is called the *upper index* of $L^{\rho}(\Omega)$. For Ω atomic, we define $\alpha(\rho, \Omega) = 1 - \beta(\rho', \Omega)$.

The next lemma gives an alternative definition of α in case Ω is atomic. We introduce two new operators on sequences:

(36)
$$F_m f(n) = f([(n-1)/m] + 1)$$

and

(37)
$$G_m f(n) = F_m E_m f(n) = f(m[(n-1)/m] + m).$$

Here [x] denotes the integer part of x.

LEMMA 4. Let ρ be a rearrangement-invariant function norm, and let F_m be as in (36). Define

(38)
$$k(m, L^{\rho}(\mathbf{Z}^{+})) = \sup\{\rho(F_{m}f^{*}): f \in L^{\rho}(\mathbf{Z}^{+}), \rho(f) \leq 1\}.$$

Then

(39)
$$mh(m; L^{p'}(\mathbf{Z}^+)) = k(m; L^{p}(\mathbf{Z}^+))$$

and

(40)
$$\alpha(\rho, \Omega) = \lim_{m \to \infty} \frac{\log k(m; L^{\rho}(\mathbb{Z}^{+}))}{\log m}$$

Proof. Let $f \in L^{\rho}(\mathbb{Z}^{+})$, $g \in L^{\rho'}(\mathbb{Z}^{+})$. Then it is easy to see that

(41)
$$\langle F_m f^*, G_m g^* \rangle = m \langle f^*, E_m G_m g^* \rangle$$

 $\leq \rho(f^*) mh(m; L^{\rho'}(\mathbb{Z}^+)) \rho'(G_m g^*).$

Now $G_m(L^{\rho'}(\mathbb{Z}^+))$, consists of all sequences which are constant in blocks of length *m*. Furthermore, $F_m f^*$ is such a sequence, thus by the levelling property of rearrangement-invariant norms (see 10, p. 99), we have

(42)
$$\sup_{g^*\neq 0} \frac{\langle F_m f^*, G_m g^* \rangle}{\rho'(G_m g^*)} = \rho(F_m f^*).$$

Thus, by (41) and (42) we have

(43)
$$\rho(F_m f^*) \leq \rho(f^*) mh(m; L^{\rho'}(\mathbf{Z}^+)) \quad \text{for all } f \in L^{\rho}(\mathbf{Z}^+),$$

which shows that

(44) $k(m; L^{\rho}(\mathbf{Z}^+)) \leq mh(m; L^{\rho'}(\mathbf{Z}^+)).$

To prove the reverse inequality is even easier since

(45)
$$m\langle f^*, E_m g^* \rangle \leq \langle F_m f^*, g^* \rangle, \text{ for } f \in L^{\rho}, g \in L^{\rho'}.$$

Finally, (40) is an immediate consequence of (39).

LEMMA 5. Let α , β denote the indices of $L^{\rho}(\Omega)$ and α' , β' the indices of $L^{\rho'}(\Omega)$. Then $\alpha = 1 - \beta'$, $\beta = 1 - \alpha'$ and $0 \leq \beta \leq \alpha \leq 1$.

Proof. For $\Omega^* = \mathbb{Z}^+$, $\alpha = 1 - \beta'$ and $\alpha' = 1 - \beta$ by definition. If $\Omega^* = [0, a]$ and if $f \in L^{\rho}$, $g \in L^{\rho'}$, and s < 1, one has

(46)
$$\langle E_s f^*, g^* \rangle = \int_0^a f^*(st) g^*(t) dt$$

= $s^{-1} \int_0^{as} f^*(t) g^*(t/s) dt = s^{-1} \langle f^*, E_{s^{-1}} g^* \rangle.$

Thus, taking supremums over f and g with $\rho(f) \leq 1$, $\rho(g) \leq 1$, we have

(47)
$$h(s, L^{\rho}) = s^{-1}h(s^{-1}, L^{\rho'}),$$

which clearly shows that $\alpha = 1 - \beta'$ and dually $\beta = 1 - \alpha'$. A similar calculation works in case $\Omega^* = \mathbf{R}^+$.

The fact that $\beta \ge 0$ follows immediately from the fact that h is non-increasing. Then $\alpha \le 1$ follows from $\alpha = 1 - \beta'$.

To prove that $\beta \leq \alpha$, we deal first with Ω non-atomic. Then Lemma 3(b) applies to show that $h(s)h(s^{-1}) \geq h(1) = 1$. Thus, for s < 1, $\theta(s) \geq \theta(s^{-1})$, which proves that $\alpha \geq \beta$.

For the case $\Omega^* = \mathbb{Z}^+$, we use Lemma 4. Note that if F_m is defined by (36), then $E_m F_m f = f$ for all $f \in L^{\rho}(\mathbb{Z}^+)$. Thus, if we write $k(m) = k(m; L^{\rho}(\mathbb{Z}^+))$, as defined by (38), then

(48)
$$\rho(E_m F_m f^*) \leq h(m) k(m) \rho(f^*), \text{ for } f \in L^{\rho},$$

so that $h(m)k(m) \ge 1$.

But then $\log k(m)/\log m \ge \theta(m)$, proving that $\alpha \ge \beta$ upon using (40).

Our main theorem may now be proved. It will be convenient in the proof to use the notation $P_p \in [\mathcal{D}^p]$, $Q_q \in [\mathcal{D}^p]$ to mean that there are constants A and B so that (23) and (24) hold, respectively. (The \mathcal{D} refers to the fact that only non-increasing functions are considered in equations (23) and (24).)

THEOREM 1. Let ρ be a rearrangement-invariant function norm and let Ω be a measure space satisfying (1), (2) or (3). Then $[L^{\rho}(\Omega)] \supset W(p, q; \Omega)$ if and only if

(49)
$$\alpha(\rho, \Omega) < p^{-1} \quad and \quad \beta(\rho, \Omega) > q^{-1}.$$

Proof. By Lemma 2, we need only show that

 $(50) \qquad \qquad \alpha p < 1 \Leftrightarrow P_p \in [\mathscr{D}^p]$

and

(51)
$$\beta q > 1 \Leftrightarrow Q_q \in [\mathscr{D}^p].$$

In fact, only one of the implications (50) or (51) need be proved, since if $f \in L^{\rho}$, $g \in L^{\rho'}$, then

(52)
$$\langle P_p f^*, g^* \rangle = \langle f^*, Q_{p'} q^* \rangle,$$

where $p' = p(p-1)^{-1}$. From this, it follows immediately that

$$(53) P_p \in [\mathscr{D}^p] \Leftrightarrow Q_{p'} \in [\mathscr{D}^{p'}].$$

However, by Lemma 4, we have

(54)
$$\alpha p < 1 \Leftrightarrow \beta' p' > 1.$$

Combining (53) with (54) proves our assertion.

In case Ω is non-atomic, we choose to prove (50). In fact,

$$P_{p} \in [\mathscr{D}^{p}] \Leftrightarrow P_{p} \in [L^{p}(\Omega^{*})]$$

in this case. This is a consequence of $(P_p f)^* \leq P_p f^*$ which is a special case of the following well-known inequality of Hardy, Littlewood, and Pólya (see, e.g., 1, p. 601, formula (1)):

(55)
$$\int_{\Omega} |fg| \ d\mu \leq \int_{\Omega^*} f^*g^* \ d\mu^*.$$

By (2, Theorem 1), $P_p \in [L^{\rho}(\mathbf{R}^+)]$ if and only if

(56)
$$\int_0^1 s^{1/p-1} h(s, L^{\rho}(\mathbf{R}^+)) \, ds < \infty,$$

which is the case if and only if $\alpha p < 1$.

For $\Omega^* = [0, a]$, the proof that $P_p \in [L^p(\Omega^*)]$ is not substantially different from that for $\Omega^* = \mathbb{R}^+$ just referred to.

In the remaining case, $\Omega^* = \mathbb{Z}^+$, we shall prove (51). We begin by introducing an operator T_q which is easier to handle than Q_q .

If $f \in L^{p}(\Omega)$, then

(57)
$$T_{q}f^{*}(n) = \sum_{m=1}^{\infty} c_{q,m+1}f^{*}(mn),$$

where $c_{q,k}$ is defined by $\int_{k-1}^{k} u^{\gamma-1} du$, $\gamma = q^{-1}$. Now, note that

(58)
$$Q_{q}f^{*}(n) = n^{-\gamma} \sum_{k=n+1}^{\infty} f^{*}(k) \int_{k-1}^{k} u^{\gamma-1} du$$
$$= n^{-\gamma} \sum_{m=1}^{\infty} \sum_{j=1}^{n} f^{*}(mn+j) \int_{mn+j-1}^{mn+j} u^{\gamma-1} du \leq \sum_{m=1}^{\infty} f^{*}(mn) n^{-\gamma} \sum_{j=1}^{n} \int_{mn+j-1}^{mn+j} u^{\gamma-1} du$$
$$= \sum_{m=1}^{\infty} \left(\int_{m}^{m+1} u^{\gamma-1} \right) f^{*}(mn) = T_{q}f^{*}(n).$$

Similarly, using the estimate $f^*(mn + j) \ge f^*((m + 1)n)$, and the fact that $\{c_{qn}\}$ is a non-increasing sequence, we obtain

(59)
$$Q_{q}f^{*}(n) \geq T_{q}f^{*}(n) - c_{q,2}f^{*}(1).$$

Thus, $Q_q \in [\mathscr{D}^{\rho}]$ if and only if $T_q \in [\mathscr{D}^{\rho}]$.

The operator T_q is of the type discussed in (3), and it is shown there that $T_q \in [\mathscr{D}^{\rho}]$ if and only if $\beta > \sigma_0$, where σ_0 is the abscissa of convergence of the Dirichlet series

(60)
$$\zeta(s, T_q) = \sum_{m=1}^{\infty} c_{q,m+1} m^{-s},$$

which in this case is $\sigma_0 = q^{-1}$. Thus, $T_q \in [\mathscr{D}^p]$ if and only if $\beta q > 1$, proving (51) and hence (50).

4. Indices for special spaces. In (1), we showed how to compute $h(s; L^{\rho}(\mathbf{R}^{+}))$ in case L^{ρ} is an Orlicz space L^{Φ} or a Lorentz space $\Lambda(\phi, p)$. From the expressions given there, the indices α and β can be computed using (33) and (34). The situation $\Omega^{*} = \mathbf{R}^{+}$ is somewhat simpler than either of the cases $\Omega^{*} = [0, a]$ or $\Omega^{*} = \mathbf{Z}^{+}$. This is apparently due to the fact that $(0, \infty)$ is a group under multiplication.

In (4), we compute the indices α and β for $L^{\Phi}([0, a])$ and $L^{\Phi}(\mathbb{Z}^+) = l^{\Phi}$.

References

- 1. D. W. Boyd, The Hilbert transform on rearrangement-invariant spaces, Can. J. Math. 19 (1967), 599-616.
- 2. The spectral radius of averaging operators, Pacific J. Math. 24 (1968), 19-28.
- 3. Monotone semigroups of operators on cones, Can. Math. Bull. 12 (1969), 299-310.
- 4. —— Indices and exponents for Orlicz spaces (unpublished manuscript).
- **5.** A. P. Calderón, Spaces between L^1 and L^{∞} and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299.
- 6. P. Halmos, Measure theory (Van Nostrand, New York, 1950).
- E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., Vol. 31, rev. ed. (Amer. Math. Soc., Providence, R.I., 1957).
- 8. G. G. Lorentz, Some new functional spaces, Ann. of Math. (2) 51 (1950), 37-55.
- 9. W. A. J. Luxemburg, Banach function spaces, Thesis, Delft Technical University, 1955.
- Rearrangement-invariant Banach function spaces, Queen's papers in Pure and Applied Mathematics 10 (1967), 83-144, Queen's University, Canada.
- 11. E. M. Stein and G. Weiss, An extension of a theorem of Marcinkiewicz and some of its applications, J. Math. Mech. 8 (1959), 263-284.
- 12. A. Zygmund, Trigonometric series, Vol. II (Cambridge, at the University Press, 1959).

California Institute of Technology, Pasadena, California