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A special case of the theorem of Marcinkiewicz states that if T is a linear 
operator which satisfies the weak-type conditions (p, p) and (<?,#), then T 
maps Lr continuously into itself for any r with p < r < q. I n a recent paper (5), 
as part of a more general theorem, Calderôn has characterized the spaces X 
which can replace Lr in the conclusion of this theorem, independent of the 
operator T. The conditions which X must satisfy are phrased in terms of an 
operator S (a) which acts on the rearrangements of the functions in X. 

One of Calderon's results implies that if X is a function space in the sense of 
Luxemburg (9), then X must be a rearrangement-invariant space. In this 
paper, starting with the assumption that X is rearrangement invariant, we 
reduce the conditions which X must satisfy to conditions on a pair of numbers 
(a, j3) called the indices of X. The result is that X may replace LT in the 
theorem of Marcinkiewicz if and only if p < or1 and /3 - 1 < q, 

A rearrangement-invariant space is given completely by a function norm p 
and a measure space 12. In case p is the Lr norm, it is immediate that 
a = j8 = r~l. In general, though, a and ft depend both on p and on 12. This 
may be illustrated by calculating a and ($ when p is an Orlicz norm. To avoid 
unduly lengthening this paper we shall report on this elsewhere; see (4). 

1. Function spaces. Let (12, ̂ ~", /z) be a totally cr-finite measure space 
which satisfies one of the following restrictions: 

(1) 12 is non-atomic with infinite measure; 
(2) 12 is non-atomic with finite measure; 
(3) 12 is purely atomic with atoms having equal measure 1. 

Let c^(12) and ^(12) denote the class of measurable and non-negative 
measurable functions on 12, respectively. According to Luxemburg (9, p. 3) 
a function norm p: < (̂12) —> [0, oo ] is a mapping which satisfies the following 
conditions for all / , g, {fn} in ^(12), for all E 6 F with fx(E) < oo and 
characteristic function XE, and for all constants a ^ 0: 

(4) P(f ) = 0 <=»/ = 0 a.e., f£g a.e. => p(f) S p(g), 
p(f+g) Sp(f) + P(g),p{af) =ap(f); 

(5) P(XE) < oo ; 
(6) there exists AE < oo such that f Efdn ^ AEp(f); 

(7) fn 17 a.e. => p(fn) Î p{f) (Fatou property). 
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The space 1/(12) consists of all / Ç ̂ ( f î ) such that p(|/|) < oo, with 
norm ||/|| = p(|/ |). Lp(12) is a Banach space when functions which differ at 
most on a null set are identified. 

Two functions/, g Ç *J£{Q) are said to be equimeasurable if, for all y > 0, 

M{X: | / ( X ) | > 3/} = ix{x\ \g(x)\ > y}. 

In this case we write f ~ g. 
We say that Lp is rearrangement-invariant if / ^ g and / £ 1 / implies 

g G £p, and that p is a rearrangement-invariant norm if / ^ g implies 
P ( I / I )

 = p(|g|)« B y a n equivalent renorming we may assume that a rearrange
ment-invariant space has such a norm; see (10). 

The non-increasing rearrangement of / 6 ^#(12) onto R + = [0, 00 ) is the 
non-increasing, left-continuous function/* £ ^ ( R + ) for which, if m denotes 
Lebesgue measure, 

m\t Ç R+: /* (0 > y) = »{x £ 12: | /(x)| > y}, al ly > 0. 

For the existence of/* and more details, see (5). 
One way of generating rearrangement-invariant norms for ^(12) is the 

following: let p be a rearrangement-invariant norm f o r ^ ( R + ) and deline 

(8) f*(f) = p(f*) for a l l / 6 ^ ( 1 2 ) . 

In (1) this was used as a definition. In (10) it is shown that for 12 satisfying 
(1), (2) or (3), all rearrangement-invariant norms arise in this way. We shall 
write Lp(12) for the space determined in =^#(12) by pa. 

If 12 satisfies (2) with p(12) = a, then supp/* C [0, a], hence we sometimes 
regard/* as being defined only on [0, a] and will write 12* = [0, a}. If 12 satisfies 
(3), then/* is a step function constant on (n — 1, n],lorn £ Z+ = {1, 2, 3 , . . .} 
thus we shall sometimes regard/* as the sequence {/*(w)}, and write 12* = Z+ . 
There will never be any confusion about using the notation /* both for the 
function on R + and for its restriction to 12*. If 12 satisfies (1), we define 12* = R+ . 

The associate space of a function space Z>(12) plays an important rôle in the 
following discussion. Given a function norm p, the associate norm p is defined 
on ^(12) by 

(9) p'fc) =sup{ Jjgd»:p(f) £ l } . 

The space Lpf is called the associate space of Lp. If pa is a rearrangement-
invariant norm on ^ (12 ) defined as in (8), then (pa)' = (p')oî see (1). 

Furthermore, we have 

= sup\ I (10) (Pa)'(g) = P'(g*) = supj JQtfg*:f € Je (0), p ( f ) =S 1 j - . 

Having defined p', we can define p" = (p')'- A result due independently to 
Lorentz (unpublished) and Luxemburg (9, p. 9) states that p" — p for norms 
having the Fatou property (7). 
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We shall often use the notation (J, g) = Jvfgdfji, depending on context to 
indicate which 12 is meant. 

2. Operators satisfying weak-type conditions. The notion of an 
operator of weak type (p, q) was introduced by Marcinkiewicz (see, e.g., 
12, p. I l l , Chapter 12, § 4), and modified by Stein and Weiss (11). Calderôn 
showed that the Stein and Weiss definition was equivalent to the operator 
being a continuous mapping between a pair of Lorentz spaces, except in one 
extreme case. In our situation, only the original Lorentz spaces, Ap and Mv, 
introduced in (8) are involved. These are rearrangement-invariant spaces 
defined by the norms 

(11) \P(f) = T r ty-Y(t) it, y = p~\ l^p<œ, 
Jo 

(12) M,(/) = sup r 1 f f(s) ds, y = p-\ l^p<œ, 

respectively. The space Aœ is by definition the closure in L°° of the space of 
bounded functions with support in a set of finite measure, and Mœ is defined 
to be L°°. Ap is equivalent to the space LPtl and Mp is equivalent to LPtœ, as 
defined in (5, Theorem 6). 

On the space of measurable functions ^#(12) we introduce the topology of 
convergence in measure on sets of finite measure. A continuous mapping of 
Ap(12) into ^#(12) is said to be quasilinear if there is a constant A such that, 
for a l l / , g e Ap(Q), and X G C, 

(13) \T(f+g)\^A(\Tf\ + \Tg\)a.e. and | r (X/) | = |X| \Tf\ a.e. 

The mapping T is said to be of weak type {pi, p2) if T maps Â  continuously 
into e-^(Q) and there is a constant c such that, for all / £ APi and almost 
all / > 0, 

(14) WW^Xff). 
In case p2 > 1, this is equivalent to requiring that, for some constant Ci, 

possibly different from c, 

(15) ^(Tf) ûd\Pl(f). 

We shall be concerned entirely with the case pi = p2. 
The space Â  + Aq is defined to be the function space consisting of all 

functions of the form / + g, with / G Ap, g £ Aff, and the norm 

(16) | | / + g|| = inf{X,(/i) + X<tei): / i G Ap, gl £ A„ a n d / i + gi = / + g}. 

If 1 ^ p, q < oo, it can be shown that / £ Ap + Aff if and only if 

(17) f °°min(/1/p, t^fit^dt < oo. 
t / 0 
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We define the class of operators W(p, g;12) to consist of those linear 
operators T mapping Ap + Aa continuously into *Jt'(12) which are of weak 
types (p, p) and (g, q) simultaneously. 

If X and Y are Banach spaces, [X, Y] will denote the space of bounded 
linear operators from X into F, and [X] will denote [X, X]. With this notation, 
our problem is to characterize those function norms p for which 

[£'(«)] DW(p,q;Q). 

We first reduce the problem to the rearrangement-invariant case. 

LEMMA 1. Iflt£p<q^*<x>, and if p is a function norm on ^ ( 1 2 ) , such 
that [1/(12)] Z) W(p, q\ 12), then 1/(12) is rearrangement-invariant. 

Proof. The class W(p, q; 12) contains all operators in [Lx(12), L°°(12)], so that 
[£'(0)] D W(p,q;Sl) D [&($), Lœ(Q)]. 

However, according to (5, Theorem 3(i)), this implies that Lp must satisfy 
the following condition: 

(18) / € L", and for all t > 0, f g*(s) ds g \ f*(s) ds => g € V. 
«/o «̂  o 

Thus, in particular, / 6 Lp and g ~ f implies g £ Lp so that Lp is rearrange
ment-invariant. 

By earlier remarks and Lemma 1, we may assume without loss of generality 
that p = Pô is a rearrangement-invariant norm and even that it is of the 
form (8). 

To state our next lemma, we need the following special operators which act 
on functions i n i ^ ( R + ) . Let y = p~1

J then 

(i9) ppf(t) = rft
s->-1f(s)dS, 

(20) Q.m^r^s-'-'mds. 
The domains of the operators consist of all / £ ^ ( R + ) for which the 

respective integrals are finite a.e. By restriction, Pv and Qp are defined for 
/ G ^(12*) . In case 12* = [0, a], formulas (19) and (20) are still valid for 
0 ^ t ^ a. In case 12* = Z+ , the operators take the form 

(21) Pvf(n) =n~yY,cpkf(k), 

(22) Qpf(n) = tT Ë cpkf(k), 

where cpJc = J fc_i s7-1 ds. 

The next lemma shows that we can restrict our study entirely to the 
operators Pv and Qq. In it, if / £ Lp(12), we regard jf* as being a function in 
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Lp(!2*), and Pj/*, ÇJ* a r e t o be interpreted as in the remarks following 
equation (20). 

LEMMA 2. Let p be a rearrangement-invariant norm on ^ ( R + ) , let 
1 è P < a ^ o o , and let SI satisfy (1), (2) or (3). Then [L'(Û)] D W(p, q; 12) 
if and only if there are constants A, B such that for all f 6 Lp(£l), 

(23) Pa*(P,f*) ^ APa*(f) 

and 

(24) » . (&/*) ^ Bpu.(f). 

Proof. By (5, Theorem 8), interpreted in our notation, if T G W(p, q;ti), 
there is a constant c = c(p, q; T) such that, for all / G A P + Aff, 

(25) (Pf)* S c(p-iPp + s" 1 ^) /* . 

If (23) and (24) hold for a l l / G LP(Û), then i>(S2) C K + K follows by 
using (10). Thus (23), (24), and (25) together imply that if / G £P(Û), then 

(26) poCT/) = po*((r/)*) ^ Cpo.(/*) = Cpo(f). 

so that T G [Lp(0)], with | | r | | ^ C = c{p~lA + g- 1^) . 
Conversely, assume that [LP(Q)\ Z) W(p, q; 0) . We observe that 

Pp G W(p, q; Û*) and & 6 W(£, 2, 0*), 

directly from the definitions involved. Certainly then, if 0 is one of the spaces 
[0, a], R+ or Z+ so that 0 = 0*, then 

PP,QQe W(p,q;V*) C[£ ' (0*)L 

which proves (23) and (24). 
If 0 T^ 0*, we use the fact that there is an almost one-to-one measure-

preserving transformation r: $~ —>&~*, where 3T and J^~* are the rings of 
measurable subsets of 0 and 0*, respectively. (See Halmos (6, pp. 173-174) 
for the non-atomic case; the atomic case is trivial.) This isomorphism is used 
to construct operators Pp, QQ G W(p, q; 0) such that PP) Qq G [LP(Q)] if and 
only if P„ Qq G [L'(Û*)]. 

For example, let Œ* = R+ , and define 

(27) S« = T ^ ( [ < U ] ) , &t = r-i{t}, 0^t<co. 

Then define 

(28) e(x)-ir1' ilx^A" 
( 2 8 ) g{pc)-\o, if x € A, for any t. 
Then g ê J ' ( f l ) and g*(t) = V1. Now define 
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One readily shows that if / G £p(12), then there is an / £ Z>(12) with f ~f 
and such that (Ppf)* = Ppf*. Then, we have Pp € TO, ff;0) C [£'(»)], 
thus Pp e [L"(Q*)] and (16) holds. 

The other cases are treated similarly. 

3. Indices of rearrangement-invariant spaces. In this section we 
reduce the question of whether (23) and (24) hold for a given function norm p 
to a consideration of the indices of 1/(12). 

We begin by introducing certain semigroups of operators acting on functions 
in the classes <Jé(12*). If 12* = [0, a] or R+, we define 

(30) (Esf) (t) = f(st) for 0 < 5 < oo, l£ 12*, 

where, for 12* = [0, a] and t > a, we se t / ( / ) = 0. 
If 12* = Z+, we define 

(31) (Emf)(n) = f(mn), m,ne Z+. 

To keep the notation uniform, let 5(12) = (0, oo ) if 12* = [0, a] or R+, and 
5(12) = Z+ if 12* = Z+. 

If p is a rearrangement-invariant norm, then 

(32) h(s,L>(Q)) = sup{p(E5 /*):/ G Z>(12*), P(f) ^ 1}, for 5 6 5(12). 

In case 12 is non-atomic, it can be seen that h(s; LP(Q)) is the norm of Es as 
a member of [Lp(12*)]. However, in case 12* = Z+, the norm of En in [Z>(Z+)] 
is 1 for all m, since if f (n) = 0 for all n ^ 0 (mod w), then (Emf)* = /*. By 
restricting consideration to non-increasing functions in (32), we shall have 
h(rn; LP(Z+)) < 1 for some norms p. 

LEMMA 3. Let h{s) = Â(S; 1/(12)). Then 
(a) h is non-increasing; 
(b) For s, t e 5(12), h(st) ^ h(s)h(t); 
(c) 7/ 6(s) = —log &(s)/log s, and if 5(12) = (0, oo ) then the following 

limits exist, 

(33) a = lim 6(s) = inf 6(s), 
s_>04- 0 < s < l 

(34) 0 = lim d(s) = sup 0(s). 

(d) 7/5(12) = Z+ , and 0 û as above, /&ew 

(35) j8 = lim 0(w) = sup 6(n). 

Proof, (a) is obvious, since f*(sit) S f*(s2t) for si > s2, for a l l /* G Z>(12*). 
(b) In case 12* = R+ or Z+, we have EsEt = £ „ for all s, t G 5(12), thus 

h(st) S h(s)h(t) is clear. 

https://doi.org/10.4153/CJM-1969-137-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-137-x


FUNCTION SPACES 1251 

For 12* = [0, a], we have EsEt = Est unless 5 > 1 and / < 1, in which case 
we have EsEtf = X[o,5-i] Estf. This is enough to show that (b) holds. 

(c) This is a consequence of (b) which is easily derived from (7, p. 244) 
by wri t ing/(x) = logh(ex). 

(d) The proof depends on both (a) and (b) and can be found in 
(3, Lemma 2). 

Definition. Let p be a rearrangement-invariant norm, and 12 a measure space 
satisfying (1), (2) or (3). The number 0 = 0(p, 12) defined by (34) and (35) 
above is called the lower index of I>(12). If 12 is non-atomic, the number a (p, 12) 
defined by (33) is called the upper index of I>(12). For 12 atomic, we define 
a(p,12) = 1 - /?(pM2). 

The next lemma gives an alternative definition of a in case 12 is atomic. 
We introduce two new operators on sequences: 

(36) Fmf(n) = / ( [ ( » - l ) / m ] + l ) 

and 

(37) Gmf(n) = FmEmf(n) = f(m[(n - l ) /m] + m). 

Here [x] denotes the integer part of x. 

LEMMA 4. Let p be a rearrangement-invariant function norm, and let Fm be 
as in (36). Define 

(38) k(m,L>(Z+)) = s u p { p ( / y * ) : / € L'(Z+), P(f) g 1}. 

(39) mh(m; L»'(Z+)) = k(m; L"(Z+)) 

and 

(40) a(p,0) = l i m l o g * ( 7 : Z / ( Z + ) ) . 
log m 

Pnw/. L e t / 6 I / (Z+) , g € Z/(Z+) . Then it is easy to see that 

(41) (FJ*, Gmg*) = m(f, EmGmg*) 

èP{f)mh{m;Lo'{Z+))P'(Gmg*). 

Now Gm(Lp/(Z+)), consists of all sequences which are constant in blocks of 
length m. Furthermore, Fmf* is such a sequence, thus by the levelling property 
of rearrangement-invariant norms (see 10, p. 99), we have 

(42) ^ sup^£^p = p(iy*). 
g***) P \SJmg ) 

Thus, by (41) and (42) we have 

(43) P(Fmf*) g p(f*)mh(m; L»'(Z+)) for a l l / G L>(Z+), 
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which shows that 

(44) k(m; Z>(Z+)) ^ mh(m; 1 / (Z+)) . 

To prove the reverse inequality is even easier since 

(45) m(f , Emg*) S (Fnf*, g*>, for / 6 M g G 2>'. 

Finally, (40) is an immediate consequence of (39). 

LEMMA 5. Let a, /3 denote the indices of Z>(12) and a', &' the indices of Z/(12). 
Then a = 1 - /3', p = 1 - a! and 0 ^ j8 ^ a ^ 1. 

Proo/. For 12* = Z+, a = 1 - 0' and a' = 1 - 0 by definition. 
If 12* = [0, a] and if / G £p, g G Z / , and s < 1, one has 

(46) (Esf*,g*)= (af(st)g*(t)dt 
•Jo 

Thus, taking supremums over / and g with p(/) ^ 1, p(g) ^ 1, we have 

(47) Hs,L-) = ^ ( r 1 , ! ' ' ) , 

which clearly shows that a = 1 — /3' and dually ft = 1 — a'. 
A similar calculation works in case 12* = R+ . 
The fact that /3 ^ 0 follows immediately from the fact that h is non-

increasing. Then a S 1 follows from a = 1 — ($'. 
To prove that /3 ^ a, we deal first with 12 non-atomic. Then Lemma 3(b) 

applies to show that hisMsr1) ^ h(l) = 1. Thus, for s < 1, 0(s) ^ 0(r" l) f 

which proves that a ^ f$. 
For the case 12* = Z+ , we use Lemma 4. Note that if Pm is defined by (36), 

then EmFmf = / for all / G £p(Z+). Thus, if we write k(m) = k(m; 2>(Z+))f 

as defined by (38), then 

(48) p{EmFr4*) S h(rn)k(m)f>(f*), fo r / G 2>, 

so that h(m)k(m) è 1. 
But then log£(ra)/logm à 0(m), proving that a ^ jS upon using (40). 

Our main theorem may now be proved. I t will be convenient in the proof 
to use the notation Pv G [<^PL Qq G \2iïp\ to mean that there are constants 
A and B so that (23) and (24) hold, respectively. (The 2 refers to the fact 
that only non-increasing functions are considered in equations (23) and (24).) 

THEOREM 1. Let p be a rearrangement-invariant function norm and let 12 be a 
measure space satisfying (1), (2) or (3). Then [Z/(12)] D W(p, q;U) if and 
only if 

(49) a(P, 0) < p~l and j8(p, Q) > q-\ 
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Proof. By Lemma 2, we need only show that 

(50) ap < i^pp e [9p] 

and 

(51) Pq>l<*Qç£ [®>l 

In fact, only one of the implications (50) or (51) need be proved, since if 
/ G L>, g € !>', then 

(52) (PJ*,f)=<f*,Qp'<f), 

where pf = p(p — 1)_1. From this, it follows immediately that 

(53) Pp € \Qp\ ^ Qp, e \9*\. 

However, by Lemma 4, we have 

(54) ap < l^P'p' > 1. 

Combining (53) with (54) proves our assertion. 
In case £2 is non-atomic, we choose to prove (50). In fact, 

Ppe [@>]^Ppe [L'(12*)] 

in this case. This is a consequence of (PPf)* S Ppf* which is a special case of 
the following well-known inequality of Hardy, Littlewood, and Pôlya (see, 
e.g., 1» p. 601, formula (1)): 

(55) f \fg\dv£ f fg*d»*. 

By (2, Theorem 1), Pp G [ i p (R+ ) ] if and only if 

s^his, Lp(R+)) ds < o o , 
0 

which is the case if and only if ap < 1. 
For Q* = [0, a], the proof that Pp 6 [2>(Q*)] is not substantially different 

from that for 12* = R + just referred to. 
In the remaining case, 12* = Z+ , we shall prove (51). We begin by intro

ducing an operator Tq which is easier to handle than Qq. 
Uf £ 1/(12), then 

(57) TJ*(n) = É cn+fimn), 

where cQfJc is defined by jl-i u^~l du, y = q~l. Now, note that 

&S) Qçf(n) = n~y £ / * ( * ) f vTxdu 

oo n nmn+j œ n nmn+j 
= W " 7 Z Z f ( M + i ) J uy~* du ^ ^ f*(rnn)tTy^ I u*'1 du 

œ / nm+1 \ 

= E ( ^ ' f ^ » ) = r«f»(»). 
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Similarly, using the estimatef*(mn + j) ^f*((m + l)w), and the fact that 
{cqn) is a non-increasing sequence, we obtain 

(59) Qqf(n) ^ Tqf*(n)-cq,2f*(l). 

Thus, Qq € [@p] if and only if Tq £ \9*\. 
The operator 7\ is of the type discussed in (3), and it is shown there that 

Tq Ç [&p] if and only if (3 > o-0, where <70 is the abscissa of convergence of 
the Dirichlet series 

oo 

(60) f (s, Tq) = X Q,m+iw"s, 

which in this case is <r0 = q~l. Thus, Tq £ [i^p] if and only if (iq > 1, proving 
(51) and hence (50). 

4. Indices for special spaces. In (1), we showed how to compute 
h(s; Z>(R+)) in case Lp is an Orlicz space L$ or a Lorentz space A (<£,£). 
From the expressions given there, the indices a and 0 can be computed using 
(33) and (34). The situation 0* = R+ is somewhat simpler than either of the 
cases 12* = [0, a] or 12* = Z+ . This is apparently due to the fact that (0, oo ) 
is a group under mult ipl icat ion. 

In (4), we compute the indices a and 13 for L*([0, a]) and L*(Z+) = P. 
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