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FINITE ARITHMETIC SUBGROUPS OF GL,, 11
YOSHIYUKI KITAOKA

In [1] ~ [6] the following question was treated: Let k be a totally real
Galois extension of the rational number field @, O the maximal order of
k and G a finite subgroup of GL(n, O) which is stable under the operation
of G(k/Q). Then does G C GL(n, Z) hold ?

An aim of this paper is to generalize this. First we introduce a
notion of A-type for finite subgroups of GL(n, O). Let k be an algebraic
number field, O the maximal order of £ and G a finite subgroup of GL(n, O).
Put L = Z" (row vectors) and operate G on OL = O" as product of matrices.
Then we call G of A-type if there is a direct decomposition L = @7, L,
such that for each ge G, there exist a root of unity ¢,(g) € O and a permu-
tation s(g) € S,, satisfying e,(g)gL; = Ly, for i=1,2, ..., m.

If 41 are all roots of unity in %, then we have G C GL(n,Z) if G
is of A-type. Now our question is following:

Let & be a Galois extension of @, O the maximal order of £ and G a
finite subgroup of GL(n, O) which is stable under operation of G(k/Q), that
is, g°€ G for every ge G, g G(k/Q). Then is G of A-type?

It is shown that this is affirmative for abelian fields.

We denote by O, the maximal order of an algebraic number field %
and mean by a positive Z-lattice a lattice on a positive definite quadratic
space over the rational number field Q.

Let % be a Galois extension of @ and assume that the complex con-
jugate induces an element of the center of G(%/Q). Then O, becomes a
positive Z-lattice with quadratic form tr,,|xf, (x€ O,). In §1 we prove
that this positive Z-lattice is of E-type in the sense of [5] if % is abelian.
For positive Z-lattices L, M, O,L, O.M become cannonically positive definite
Hermitian forms. In §2 we show that if ¢ is an isometry from O,L on
O,M and k is abelian, then there exist orthogonal decompositions L =
1t.L, M= |%,M, and roots of unity ¢, in k such that ¢,0(L;) = M,. As
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a corollary we can answer positively our question for abelian fields.

§1. Let & be a finite Galois extension of @ and assume that the com-
plex conjugate induces an element of the center of G(k/Q). Then O, be-
comes a positive Z-lattice with quadratic form try,|xP, (xe O,). This
positive lattice is denoted by 0,. If Ok is of E-type in the sense of [5],
then we say that k& is of E-type.

LemMa 1. Let k, O, be as above. Then we have minzeos tryq |xf = [k: Q]
and {x € O;|tryq|x] = [k: Q} = {all roots of unity in k}.

Proof. Take any non-zero element @ in O,. Then
triqlaf = >3 |8 = [k: QUII |g(a)f) ™ @
gEG(k/Q)
= [k: QI(Nijq|af) ™9 > [k: Q] .

Suppose tr,,|al = [k: Q], then N,qlaf =1 and |g(e)f = |al for every
g€ G(k/Q). This implies |g(a)| = 1 for every ge G(k/Q). Hence a is a root
of unity. Conversely a root of unity a in k satisfies tr,, |af = [k: Q].

LemMmA 2. Let k,, k, be Galois extensions of Q and assume that the com-
plex conjugate induces an element of the center of G(k,/Q), i = 1,2). Then
we have

(i) if ki, Dk, and k, is of E-type, then k, is also of E-type,

(i1) if the discriminants of k,, k, are relatively prime and k., k, are of
E-type, then the composite field kk, is also of E-type.

Proof. Suppose k, Dk, If 5k1 is of E-type, then a submodule O,,
of 6,“ is also of E-type by virtue of Prop. 2 in [5] since 1€ O,, is a minimal
vector of 6,“. For xe O,, we have tr, o |x = [k,: k] try, 0 |x[. Hence a
submodule O,, of Okl is similar to O,,, and so Okz is also of E-type. Suppose
the assumption of (i), then O,,;, = O,, ® O,, and for a,, b,€ O,,, a,, b,€ O,,
we have tr,,., o @:0,0,0, = tr, q @b, tr,, o a,b, where the bar denotes the
complex conjugate. Hence éhk, is isometric to (3,“ ® 6,%. Prop. 1 in [5]
completes the proof.

LemmA 3. Let p be a prime and L = Z[u,, - -, u,_,] a quadratic lattice
defined by (u,, u) = —1 if i +j and (u;, u,) = p — 1 for everyi. Then L is
a positive Z-lattice and of E-type.

Proof. Let N be a positive Z-lattice. We use the same notations
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Q(x), (x,y) for the quadratic forms and bilinear forms associated to L, N
and L®N. For a non-zero element x = > 2-'y,Qw,, (w;e N) in LN
we have

Qx) = 121 (ws, us)(w;, wy)
=51 Q) + 3 Qi — w).

Hence L is positive definite. For each permutation s€ S,_,, u; — u,, gives
an isometry of L. Hence we may assume that w,, ---,w,#0, wy,;, = ---
= w,_, = 0 without changing the value of Q(x). Since w,, ---,w,, w, —
Wiy ** Wy — W,_, are not zero, we get Q(x) > (p — 1)m(N) where m(N)
denotes the minimum of Q(y), (ye N,y # 0). If we take a special lattice
(1> as N, then Q(x) >p — 1 for any non-zero x in L. Hence we have
m(L) = p — 1 and m(L ® N) > m(L)m(N). Suppose that Q(x) = (p — D)m(N).
Then w, — w;, (i <}j), should be zero if (I, j)+ @, k+ 1), ---,(1,p — 1),
since (p — Dm(N) = Q(x) > i1 QW) + 23%-i. Qw, — wy) > (p — Dm(N).

Hence we have w,=--- =w,_,. If w,=0, then x=u, Q@ w,. If w, = 0, then
k> 2 implies w, = w, and x = (3] u,) ® w,. Therefore by definition L is
of E-type.

LEMMA 4. Let { be a primitive p™th root of unity where p is prime
and n>2. Then Q@) is of E-type.

Proof. It is well known that

p"(p—1 ifp"im,
trol™ = {—p""' if p*tm ,
0 if p*'ym .

As an integral basis of Z[{] we can take v, =¢"', A <i<p"'(p — 1))
Then trgq e UiU; = trop,eti™. Let L = Zu, ---, u,_,] be a quadratic lat-
tice defined by (uw;, u;) =p — 1, (u;, u;) = —1 for i #j. By Lemma 3, L
is positive definte and of E-type. We define another positive Z-lattice
M = Zw, - - -, Wyn-1] by (w;, w;) = p*~'8;;. Then M = | (p"*) is also of
E-type by Prop. 1 in [5]. We determine a basis {z} of LM by z, =
Uy, Qw,, G=a+bp"", 1<a<p*"). Put i=a+bp"", j=d +
bp !, 1< a, o <p*?), then (2, 2;) = Wpi1, Up.1) X (W,, w,). Hence we
have (z;, 2;) = p"'(p — 1). Suppose i #j. If i=jmodp"!, then (z, 2;) =
—p"'. iz jmodp" ! implies (2, 2;) = 0. Therefore we have tryq UiV,
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=(2,2), 1<i,j<p"'(p—1). Since L M is of E-type, éq(c, is also
of E-type.

TueEOREM. Abelian extensions of Q are of E-type.

Proof. Any abelian extension of @ is contained in Q({) for some root
of unity {. Hence Lemma 2 and 4 complete the proof.

§2. Through this section we denote by & a Galois extension of @ and
assume that the complex conjugate induces an element of the center of
G(k/Q). For a positive Z-lattice L the associated bilinear form (,) can
be generalized to O.L as follows:

For a,be O, and x,ye L, (ax, by) = ab(x,y), where b is the complex
conjugate of b. Hereafter O,L means this positive definite Hermitian
form.

LeEmMMA. Let M, N be positive Z-lattices and ¢ an isometry from O, M
on O,N. Assume that there exist submodules |7, M, of M and | 7™,N,
of N such that [M: | ™, M), [N: |, N,]< o and e;o(M,) = N,, 1 < i< m),
for some root of unity ¢, in k. Then there exist orthogonal decompositions
M= |?, M, N= |7,N; such that ¢o(M;) = N;, (1 <i<n) for some
root of unity ¢ in k.

Proof. We use induction on rank M. Lemma is obvious in case of
rank M = 1. Suppose rank M > 1. Since ¢o¢ is also an isometry from
O.M on O,N, we may assume ¢, = 1 without loss of generality. Take any
non-zero element u in M,, then ¢(u) = ve N, and ¢(O,ut) = O,vt. Apply-
ing induction to ¢(O,ut) = O,v+, we may assume that M, = Z[u], N, = Z[v],
=1, Mt=M,| --- | M,, Nt =N, | --- | N,, and that M,, N, are direct
summands of M, N respectively. Hence M/ | ™, M, N||™,N, are finite
cyclic groups and [M: | 7, M,] =[OM: | ™, OM,)"* @ =[ON: | ™, ON,]"* @
=[N: |72 N]=r (say). Let x=r"(au+ > 7..m,) y =r(a'v + 2. n)
be generators of M/ | ™, M,, N/ | ™, N, respectively where a,a’ € Z, m, e M,
and n,e N,. If p*|r, p*la, (s=1), then p~rx — p~fau =p~°* > 7, m, is in
M. Hence we have p~—°m,e M, since | 7,M, is a direct summand of M.
This implies p~*rxe | ™, M, and it contradicts the definition of x. Thus
pllr, (s > 1) yields p*fa and similarly p*fa’. Suppose that m, =0 (rM,) for
some j > 2; then any element m in M can be written as m = cx + > 7., m;,
(ceZ,mie M) and m = (c(x — r'm;) + X .x; mi) + (M + cr'm;). Hence
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we have M = M, | M}. From o(O,M;) = O,N, follows ¢(O,M}) = O,N}.
Applying induction to (O M}) = O.N;-, we complete the proof in this case.
Now we suppose m; = 0(rM,) for every j > 2. There is an element be O,
such that ¢(x) = bymod O,(| ; N;). This is equivalent to a = ¢’b mod rO,
and o(m;) = bn, mod rO,N,. Since there is b e O, such that o(b'x) =
ymod O, (] ™, N,), b is a unit modulo rO,. Hence we have (a,r) = (a/, 1)
=a” and r/a” =0(p) if r = 0(p). From this follows that b is congruent
to a rational integer modulo pO, for each prime p|r. Fix j > 2 and any
prime p such that p’||r, m;, ¢ p°M;. Take a basis w,, w,, --- of N, so that
n; = cw;, g;o(m;) = dw, + ew,, (¢, d, ec Z). Then o(m;) = bn,; mod rO.N, im-
plies d=¢,bcmodrO, and e=0(r). m,&p°’M, yields e,0(m;) = dw, +
ew, & p°’N; since &;0(M;) = N,. Therefore we have d = 0(p°) and ¢'=
fmodp for some fe Z. Then f*=¢;%;"=1modp implies f= +1modp
and +e¢; = 1 mod pO,, and from this follows easily ¢, = +1 and (M) =
N, for each j>1. Hence we have ¢(QM) and QN and ¢(O,M) = O,N
imply ¢(M) = N. This completes the proof.

TaEOREM. Let M, N be positive Z-lattices and ¢ an isometry from O.M
on O.N. Assume that k is of E-type or rank M < 42. Then there exist
orthogonal decompositions M = | .M, N = |! N, and roots of unity e,
in k such that ¢,0(M,) = N,. Especially M, N are isometric.

Proof. Denote by Or,,\JlJl O.M as a Z-module with bilinear form tr;,( , ).
Then Ofk\JJW is isometric to O, ® M. Since O, or M is of E-type, any
minimal vector of O, ® M is of form ¢®m by Lemma 1 in §1 where ¢ is
a root of unity in £ and m is a minimal vector m of M. Hence for a
minimal vector m of M we have o(m) = en where ¢ is a root of unity in
k and n is a minimal vector of N, compairing minimal vectors in ék ® M,
0,® N. Putting ¢ = ¢ ls, we get an isometry ¢’ from O,M on O,N such
that ¢’(m) = n and ¢’(O,mt) = O,nt. Applying induction on rank M to
a(0O,m*) = Oynt, we complete the proof by virtue of Lemma.

§3. Let k be an algebraic number field and G a finite subgroup in
GL(n,O,). Denote by L Z" (row vectors); then G operates on O,L = O;
from the left as product of matrices. Then we call G A-type if there is a
direct decomposition L = @2, L, such that for each ge G, there exist roots
of unity ¢,(g) in & and a permutation s(g) € S, satisfying e(g)gL; = L.
fori=12---,m.
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LeMmA. Let k be a Galois extension of Q and assume that the complex
conjugate induces an element of the center of G(k/Q). For an indecompo-
sable positive Z-lattice L, O,L is also indecomposable.

Proof. For a positive Z-lattice M O, M is a positive definite (at every
infinite prime) Hermitian lattice and for such lattices the uniqueness of
decompositions to indecomposable ones holds as 105:1 in [7]. Hence this
lemma is proved quite similarly to Theorem 4 in [4].

THEOREM. Let k be a Galois extension and assume that the complex
conjugate induces an element of the center of G(k/Q). Then every G(k/Q)-
stable finite subgroup G in GL(n, O,) is of A-type if k is of E-type or
n < 42.

Proof. Put A =3} ,.;'g8 where the bar denotes the complex con-
jugate; then A is a positive definite symmetric matrix with rational entries.
Put L = Z™ (row vectors) and (x, y) = ‘xAy for x,y € O,L. For ge G we have
(gx, gy) = (x,y) and gO,L = O,L. Hence ge G induces an isometry of O,L.
Since L is a positive Z-lattice by (,), there is the orthogonal decompo-
sition L = | ™, L, where L, is indecomposable. By Lemma O,L = | ™, O.L,
is the decomposition to indecomposable lattices. Hence for ge G there
is a permutation se€ S, such that g(O,L,) = O,L,,, (=1, --,m). Apply-
ing Theorem in § 2, there is a root of unity ¢; € O, such that ¢,gL;, = L,,.
This completes the proof.

Remark. By using this theorem, we can show a lemma corresponding
to Lemma 2 in [3] without the assumption that the complex conjugate in-
duces an element of the center of G(k/Q).
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