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SEPARATING POINTS AND 
COLORING PRINCIPLES 

BY 

W. STEPHEN WATSON 

ABSTRACT. In the mid 1970's, Shelah formulated a weak version 
of {>. This axiom <ï> is a prediction principle for colorings of the 
binary tree of height (ox. Shelah and Devlin showed that O is 
equivalent to 2xo<2xi . 

In this paper, we formulate Op, a "O for partial colorings", show 
that both <C>* and Fleissner's " 0 for stationary systems" imply Op, 
that 0 does not imply Op and that <E>p does not imply CH. 

We show that <£p implies that, in a normal first countable space, a 
discrete family of points of cardinality Ka is separated. 

In the mid 1970's, Shelah [1] formulated a weak version of 0. This axiom O 
is a prediction principle for colorings of the binary tree of height o)1. This tree 
may be identified with fl, the set of functions from a countable ordinal into 2. 

( 0 ) : V F : i l - ^ 2 3g : co 1 ->2 :V/ : co 1 

- ^ 2 3 stationary set S : V a e S F(f \ a) = g(a) 

The axiom states that however we color the nodes of the binary tree of height 
co1 with two colors, there is a coloring of <D1 with two colors which coincides 
with the coloring of each branch in the tree on a stationary set. Shelah and 
Devlin [1] showed that <ï> is equivalent to 2K°<2*\ 

In this paper, we formulate Op, a "<ï> for partial colorings", show that both 
0* and Fleissner's " 0 for stationary systems" imply <ï>p and that 0 does not 
imply <ï>p. Fleissner [2] formulated " 0 for stationary systems" in 1972 in order 
to show that, in a normal first countable space, a discrete family of points of 
cardinality ^ is separated and asked whether this axiom was implied by 0 + . 
Shelah [4] showed in 1976 that 0 + does not imply Fleissner's axiom but that 
0 + , nevertheless, implies that, in a normal first countable space, a discrete 
family of points of cardinality Kx is separated. We show that <I>P implies that, in 
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SEPARATING POINTS 399 

a normal first countable space, a discrete family of points of cardinality Hx is 
separated. 

To formulate <J>P, we observe that a good partial coloring F (a coloring to 
which <&p can apply) must be such that, whenever / : cox —» 2, {a : F ( / Ï a) is not 
defined} does not contain a closed unbounded set. We require a little more: a 
good partial coloring F is a partial coloring which is such that, for any 
{fn:o}1-^2 (neco)}, \Jneœ {(OL : F(fn \ a) is not defined)} does not contain a 
closed unbounded set. 

( $ p ) : V F : a ^ ^ > 2 3 g : c o 1 - ^ 2 : V / : c o 1 

-̂ > 2 3 stationary set S : V a e S F(f \ a) = g(a). 

Op is a strengthening of O and therefore implies 2*°<2Kl. 
We need an equivalent formulation of 0*. 
To motivate this formulation, we can say that 0-principles predict subsets A 

of cox and that a 0-sequence consists of guessing A Pl a for each a eÙJ1. 0 states 
that there is a 0-sequence such that, for each A <= <ol5 there is a stationary set S 
such that, for each a e S, the 0-sequence guesses A Pl a correctly. ZFC implies 
that there is no 0-sequence such that, for each A <= colr there is a closed 
unbounded set C such that, for each a e C, the 0-sequence guesses A H a 
correctly but 0* states that there are countably many 0-sequences such that, 
for each A c col5 there is a closed unbounded set C such that, for each a e C, at 
least one of the 0-sequences guesses A Pl a correctly. 

We need a principle which predicts countable sequences (An : n e co) of 
subsets of coi. the equivalent formulation of 0* states that there is a 0-
sequence for each new (the nth 0-sequence consists of guessing An Pl a for 
each a e cox) such that, for each sequence {An : n e co} of subsets of col5 there is 
a closed unbounded set C such that, for each a e C, some An H a is guessed 
correctly by its 0-sequence. The difference between 0* and its equivalent 
formulation is that, in the former we know which set we're guessing correctly 
but we don't know which 0-sequence is guessing it, whereas in the latter we 
don't know which set we're guessing correctly but we do know which 0-
sequence is guessing it. 

LEMMA 1. 0* if and only if 3{S^:ne(o,aeco1}:y/{Sn:neo),Sn^co1} 3 
closed unbounded set C : V a e C3 n e co : Sn C\ a = S£. 

Proof of Lemma 1. 0* states that 3 {S£ : n e co, a e coj : V S <= oy1 3 closed 
unbounded set C : V a e C 3 n e œ : S D a = Sn. By a standard coding argument 
(coi may be coded by co^, 0* implies that 3 {S£m : m, n e co, a E CO^ : V {Sn : n e 
co} 3 closed unbounded set C : V a e C 3 m e c o : V n e c o S£m = Sn Pl a. Letting 
S™ = S™'m for each m Geo, we get that 0* implies that 3{S£:neco, ae 
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co1}:V{Sn:neo)}3 closed unbounded set C:Va e C 3 m ew :S™ = Sm H a as 
required. The other direction is obtained by letting Sn = S for each neœ. 

THEOREM 1. 0* implies <&p. 

We need a preliminary lemma. 

LEMMA 2 . 0 * implies V F : f l - ^ 2 3 {gn :neco}c=^2:V{/n : n e c o } c : ^ 2 3 
closed unbounded set C : V a G C 3 n e a> : gn(a) = F(/n Ï a ) . 

Proof of Lemma 2. We can state the equivalent formulation of 0* in terms of 
functions in Wi2 by identifying subsets of œ1 with their characteristic functions. 
0* implies 3{/^ :nGco, a Ga)!}:V{fn :ne<w}c:0>i2 3 closed unbounded set 
C:V aeC3new:fn \ a = /£. Letting gn G ̂ 2 be defined, for each n e w, by 
g„(a) = F(/£) and applying F to the equation fn \ a = / £ , we get that 
V{/ n :nGco}c:^23 closed unbounded set C:V a G C 3 new :F( / n f a ) = 
gn(a) as required. 

good 

Proof of Theorem 1. Let F:fi >2. Extend / t o F ' : f î ^ 2 arbitrarily. 
By Lemma 2, 0* implies that 3 {gn: n eû)}cw i2:V{/ n : n Gco}d^2 3 closed 
unbounded set C : V a G C 3 n G < o : gn(a) = F'(fn \ a ) . If <ï>p fails, then, for each 
new, there is fne

oii2 and a closed unbounded set Cn such that V a e Cn 

g n ( a ) ^ F ( / n f a ) or F(/n f a ) is not defined. F is good implies that D = 
U {{a : F(/n Ï a) is not defined} : n e co} does not contain a closed unbounded set 
and so E = (co1 — D)nCn H{Cn : n e <o} is nonempty. Let a e E. aeC implies 
that, for some new, gn(a) = F'(fn \ a), aew1-D implies that F(/n f a ) is 
defined and a G Cn implies gn(a) j= F(fn \ a ) = F'(/n \ a ) . 

THEOREM 2. 0 for stationary systems implies O P . 

Proof. 0 for stationary systems states that, whenever {Sf:fe^2} is a statio
nary system (that is, whenever {Sf ife^l} is such that each Sf is a stationary set 
and such that, whenever a e co1? / \ a = g \ a implies Sf Pi (a + 1) = 
S g n ( a + 1)), 3{/o t:aGco1}:V/:co1 - * 2 3 stationary set S^Sf:VaeSf \ a = 
fa. Let F : I l - > 2 . For each / G ^ 2 , let Sf = {a:F(f \ a) is defined}. F is good 
implies that {Sf:fe

t°i2} is a stationary system. 0 for stationary systems implies 
that 3{/Œ : a Gco^-.y f:co1 —>23 stationary set S:\faeS f \ a=fa and 
F(f Î a ) is defined. Define g : c o 1 ^ 2 so that g(a) = F(fa) whenever F(fa) is 
defined. Whenever f:w1^2, there is a stationary set S such that, for each 
aGS, g(a) = F ( / r <*). 

THEOREM 3. <ï>p implies that, in a normal first countable space, discrete families 
of points of cardinality Xx are separated. 

To prove Theorem 3, we need an equivalent formulation of Op. 

https://doi.org/10.4153/CMB-1984-061-3 Published online by Cambridge University Press

file://S:/faeS
https://doi.org/10.4153/CMB-1984-061-3


1984] SEPARATING POINTS 401 

LEMMA 3. <I>P if and only if VF.^c - ^ 2 3 g :co 1 -^2:V/ :co 1 ^^c 3 statio
nary set S :V a e S F(f \ a) = g(a). 

Proof. A standard device is to code each function f:(o1-^2°i by a function 
/* : o)t -* 2 by letting /(a)(n) = /*(a • co + n) for each a G co^ Let F : ^ c -> 2. 
Let F * : ^ 2 - > 2 be defined so that F*(/* ï a) = F(f \ a) when a is a limit 
ordinal (F* is well-defined since, if a is a limit ordinal /* ï a = g* ï a implies 
/ ï a = g Ï a and F* is good since {a :F*(f* \ a) is defined} = {a : F(f \ a) 
is defined and a is a limit ordinal}). By <E>P, there is a g : o)1 —» 2 such that, for 
each /* : o>! -» 2, 3 stationary set S : V a e S F*(/* \ a) = g(a). For each 
f:<x)1->c, there is a stationary set S of limit ordinals :VaeSF(f \ a) = 
F*(f \ a) = g(a). 

Proof of Theorem 3. Let X be a first countable normal space (X need only 
have character C) with a discrete unseparated family D of points of cardinality 
Kx. We use a result of Taylor [6]: 

Claim: There is a discrete family of points {Xa : a e co^ such that there does 
not exist a closed unbounded set C such that {Xtt : a e C} is separated. 

Proof of Claim. Suppose otherwise. Whenever cp : D —* cox is such that each 
cp_1(o:) is countable, there is a closed unbounded set C such that cp_1(C) is 
separated (otherwise, enumerating each ç~x{a) by {d^\neco}, there are closed 
unbounded sets {Cn:nGco} such that each {d^:(p(a)eCn} is separated and a 
closed unbounded set C = H {Cn : n G co} such that, applying X0-collectionwise 
normality, cp_1(C) is separated). Define <pn:D ̂  a)1 such that each cp~1(a) is 
countable and closed unbounded sets Cn by induction on n e co : define 
cp0 : D —» o)1 to be a bijection and when <pn : D —> o^ is defined, define Cn to be 
a closed unbounded set such that cp^1(Cn) is separated and cpn+1:D-^co1 by 
<Pn+i(p) = max{aeC n :a<cp n (p)} . Each <p^(Q) is separated; by X0-
collectionwise normality, (J {cp~1(Cn) : neco} is separated and thus there is a 
p G D such that, for each n G co, cpn(p) ̂  Cn. {<pn(p) : ft G co} is an infinite descend
ing sequence of ordinals and the claim is established. 

We use Fleissner's proof in [2]: We shall define a partial function F mapping 
functions from a countable ordinal into co x 2 to 2. For each a e col5 let 
{Un(a):neco} be a neighborhood base for xa. Whenever f : a ^ ( c o x 2 ) , / 
assigns a color and a neighborhood to each x3 (If /(0) = (n, 1), x3 is assigned 
the ith color and the nth neighborhood) and we can define Vt(f) to be 
U {Un(p) : f(fi) = <n, i». For each / : a -> (œ x 2), let 

F(/) = 

f undefined if x a£ V0(/)U V ^ 
1 if X.GVÔÔÔ 

0 . otherwise 

We shall obtain a contradiction. 
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Suppose F is good. An application of Lemma 3 yields g : (o1 —> 2 such that, 
for each f:<o1^> (OJ x2) , there is an a (we do not need a stationary set of a) 
such that F(f \ a) = g(a). The normality of X implies that there is n : <ol —» co 
such that, whenever a, a ' e to l 5 g ( a ) ^ g ( a ' ) implies [ / n ( a ) ( a ) n [ / n M ( a ' ) = 0 . 
Let /icoi—>(coX2) be defined by f(a) = (n(a), g(a)). Let a e o ^ be such that 
Ftf r a) = g(a). g(a) = l implies that x^eVÔtf), that l /n ( a )(a) H V0(/) + 0 
and so that, for some a'eœ^ [ / n ( a ) ( a ) n [ / n ( a 0 ( a ' ) ^ 0 while g(a) = l and 
g(a') = 0. g(a) = 0 implies that x^e Vi(/) and a similar contradiction. 

Suppose / is not good. There are functions fn : a)1 —» (co x 2)(n e œ) and a 
closed unbounded set C such that V a e C 3 n e < o : F ( / n Ï a) is undefined. 
{ x a : a e C} is not separated by hypothesis. In a normal space, countable 
discrete families of closed sets are separated. This implies that there is A cz o)l 

and n G co such that {xŒ : a e A} is not separated and such that, for each a e A, 
F(fn Ï a) is undefined. For each a G A, let m e w be such that 
Um(a)nUn((3) = 0 whenever | 3 e A and | 3 < a . { [ / m ( a ) n [ / n ( a ) : a e A } is a 
separation of { x a : a e A}. 

COROLLARY. 0 does not imply <J>p. 

Proof. Shelah [5] has shown that the existence of a normal first countable 
space with a discrete unseparated family of points of cardinality Kx is consistent 
with 0. 

The referee has stated the surprising result 

THEOREM 4. If CH holds and K < À are regular uncountable cardinals and K 

Cohen reals and À Cohen subsets of (o1 are added by product forcing to the 
universe, then O P holds in the extension. 

COROLLARY. It is consistent with —\CH that normal first countable spaces are 
Ki-collectionwise Hausdorff. 

Proof (due in part to Juris Steprâns). Let V be a model of CH. Let K < À be 
regular uncountable cardinals. Let P = Fn(K, 2, <o) be the partial order which 
adds K Cohen reals. Let Q = Fn(\ x cot, 2, o^) be the partial order which adds 
À Cohen subsets of o^. Let VPxQt=iiF:c°ï2-*2 is good". Assume, without loss 
of generality, that l l h " F : f ° l 2 ^ 2 is good". By the X2-chain condition, KX<À 
and K<\ there is ye\ such that Fe V P x Q r ^ X a \ Let G be the generic 
function from À X ^ into 2. Let g:w1-^>2 be defined in y P x Q by g(a) = 
G(y,a). We must show (1) V P x Q l h "V/ : cox -> 2 3 stationary S:\faeS 
F(f \ a) = g(a)". We work in M= V° r <x-^»*«\ 

Let R = Q Ï {7}xûh. Note that F e M p and V P x Q = M P x R . If (1) is not true, 
then there is peP and qeR such that (2) (p, q)lh"/"cox —>2 and C is a closed 
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unbounded set of o)1 and (V aeC) F(f \ a) f g (a)". Without loss of general
ity, since P has the countable chain condition, C G MR. Construct a descending 
continuous sequence {qa:aeo)1}c:R such that q0

 = 4; 
qa decides whether aeC; there is |3>a such that (<£,qa)lh|3eC and 

(Vaeaja antichain Aacf:VpeAa(p,qa) decides /(a), Let D = 
{aea)1:(09qOL)\\- " a e C " } . D is a closed unbounded set and DeM. Let 
E c D be a closed unbounded set of limit ordinals such that (3) a eE and 
0 < a implies dom q3 <z {7} x a. Let h be a P-name such that 

lll-h :*>!-> 2 and ( 4 ) ( 0 , q j l h h f a = / f a . 

1 Ih " E is a closed unbounded set and F : il —» 2 is good" and h : co! —» 2 implies 
that 111-"(3a eE) F(h \ a) is defined". Choose p^p and aeE and i G2 such 
that (p, 0 ) lh"F(h Ï a) = i". This is possible since h Ï aeMp, EeM and 
FeMp. By (4), (p, qa)lh"F(f Ï a) = i". Let q = qa U{<a, î>}- q is defined since 
a is a limit ordinal, {qa : a e Wi} is continuous and (3) (p, q)\\-F{f \ a) = g(a) 
by the definition of g and since q\\-"q^G \ { Y J X G V . (p, q ) l h " a e C " since 
a e D and ( 0 , q a )>(p, q) by the definition of D. This contradicts (2). 

Note: In this model, K > K X implies Ostaszewski's axiom <§> is false. 
Moreover, whenever X2-many Cohen reals are added to a model M ( V P x ° 
may be obtained by adding N2-many Cohen reals to Vp [ (K_<°2)XQ)? the principle 
3{Sa :a GO) 1 }C:^ > ( (O 1 ) :VSCCO 1 3 a ea)1:S^S(X is false. Otherwise, by the 
countable chain condition, we may assume, without loss of generality, {Sa : a e 
COJGM. Letting S be coded by the first Xi-many Cohen reals provides a 
contradiction. 

A discussion is facilitated by some definitions. 
A weak 0-sequence is a sequence {Sa l a e ^ } such that each Sa a3P(a) and 

such that, whenever A c= col5 { a : A D a G Sa} is stationary. 
A sequence {Att : a G CL̂ } refines a sequence {Ba : a e o^} iff A a c f i a ( a e w j . 
A weak 0-sequence {Sa : a G a^} is wide iff whenever {An :neœ} are subsets 

of coi, {a G co! : n G O> implies An Pi a G Sa} is stationary. 
Mathias [3] has formulated 0 for stationary systems as: each weak 0-

sequence can be refined by a 0-sequence. Mathias showed that, under 0*, each 
weak 0-sequence can be refined by a weak 0-sequence of countable sets. 

Shelah [4] has shown that it is consistent with 0 + that there is a weak 
0-sequence of sets of size 2 which cannot be refined by a 0-sequence. We have 
shown that, under 0*, each wide weak 0-sequence can be refined by a wide 
weak 0-sequence of countable sets. The difference is that, under ZFC, any 
wide weak 0-sequence of countable sets can be refined by a 0-sequence. Let 
<Ï>P be formulated by applying <Ï>P to partial colorings / which are not neces
sarily good but are such that, whenever / : Ù)X -» 2, {a : F(f \ a) is not defined} 
does not contain a closed unbounded set. <Ï>P is not used in this paper, despite 
its comparative simplicity, because it is not implied by 0* (or even 0+) . This is 
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true because any weak 0-sequence {{S°, S]} : a e o^} codes a partial coloring F 

defined, whenever A is a subset of o)1 (letting XA be the characteristic function 

of A), by F(XA f a) = i i& A Ha = Sl
a (i e a) and because g : o)1 —» 2 as in $p 

provides the 0-sequence refinement {S| ( a ) : a e to J . 

We are grateful to the referee for the preceding discussion. 
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