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SEPARATING POINTS AND
COLORING PRINCIPLES

BY
W. STEPHEN WATSON

ABSTRACT. In the mid 1970’s, Shelah formulated a weak version
of {). This axiom ® is a prediction principle for colorings of the
binary tree of height ;. Shelah and Devlin showed that ® is
equivalent to 2%o<<2%i,

In this paper, we formulate ®,, a “® for partial colorings”, show
that both {* and Fleissner’s “{) for stationary systems” imply o,
that ¢ does not imply ®, and that ®, does not imply CH.

We show that @, implies that, in a normal first countable space, a
discrete family of points of cardinality X, is separated.

In the mid 1970’s, Shelah [1] formulated a weak version of Q. This axiom ®
is a prediction principle for colorings of the binary tree of height w;. This tree
may be identified with (), the set of functions from a countable ordinal into 2.

(@) VF:Q—23g:0,—2:Vf:iw,
— 2 3 stationary set S:VaeS F(f | a)=g(a)

The axiom states that however we color the nodes of the binary tree of height
w,; with two colors, there is a coloring of w; with two colors which coincides
with the coloring of each branch in the tree on a stationary set. Shelah and
Devlin [1] showed that ® is equivalent to 2% << 2™,

In this paper, we formulate ®,, a “® for partial colorings”, show that both
O* and Fleissner’s “Q for stationary systems” imply @, and that Q does not
imply ®,. Fleissner [2] formulated “{ for stationary systems’ in 1972 in order
to show that, in a normal first countable space, a discrete family of points of
cardinality R, is separated and asked whether this axiom was implied by O*.
Shelah [4] showed in 1976 that Q" does not imply Fleissner’s axiom but that
{0, nevertheless, implies that, in a normal first countable space, a discrete
family of points of cardinality X, is separated. We show that @, implies that, in
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a normal first countable space, a discrete family of points of cardinality X, is
separated.

To formulate ®,, we observe that a good partial coloring F (a coloring to
which &, can apply) must be such that, whenever f:w, — 2, {a: F(f | ) is not
defined} does not contain a closed unbounded set. We require a little more: a
good partial coloring F is a partial coloring which is such that, for any
{foio;—2 (new)}l, U,e, {(a:F(f, | @) is not defined)} does not contain a
closed unbounded set.

((DP):VF:Q—g(E)23 g:w; —>2:Vf:o,

— 2 3 stationary set S:VaeS F(f | o)=g(a).

@, is a strengthening of ® and therefore implies 2% < 2%,

We need an equivalent formulation of {*.

To motivate this formulation, we can say that Q-principles predict subsets A
of w, and that a 0-sequence consists of guessing A Na for each a € w,. { states
that there is a Q-sequence such that, for each A < w,, there is a stationary set S
such that, for each « € S, the O-sequence guesses A Na correctly. ZFC implies
that there is no 0-sequence such that, for each A < w,, there is a closed
unbounded set C such that, for each aeC, the Q-sequence guesses A Na
correctly but O* states that there are countably many {-sequences such that,
for each A < w,, there is a closed unbounded set C such that, for each a € C, at
least one of the Q-sequences guesses A Na correctly.

We need a principle which predicts countable sequences (A, :ne€w) of
subsets of ;. the equivalent formulation of Q* states that there is a -
sequence for each n€w (the nth O-sequence consists of guessing A, Na for
each a € w;) such that, for each sequence {A, : n € w} of subsets of w,, there is
a closed unbounded set C such that, for each a € C, some A, Na is guessed
correctly by its O-sequence. The difference between ¢* and its equivalent
formulation is that, in the former we know which set we’re guessing correctly
but we don’t know which O-sequence is guessing it, whereas in the latter we
don’t know which set we're guessing correctly but we do know which Q-
sequence is guessing it.

Lemma 1. O* if and only if 3{S":ncw, acw}:V{S":ncw, S"<w,} 3
closed unbounded set C:YV acCanew:S"Na=S,.

Proof of Lemma 1. ()* states that 3{S}:new, acw}:Y Scw, I closed
unbounded set C:VaeC3Inew:SNa=S". By a standard coding argument
(w? may be coded by w,), O* implies that {ST™:m, new, a cw,}:V{S":ne
w} 3 closed unbounded set C:VacCIAmew:YVnew Sy™=S"Na. Letting
Sm=8m™" for each mew, we get that O* implies that 3{Si:ncw,aec
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0}:V{S":ne€w}3 closed unbounded set C:VaeCIAmew:Sy=S"Na as
required. The other direction is obtained by letting S" =S for each ncw.

Tueorem 1. O* implies @,

We need a preliminary lemma.

Lemma 2. O* implies VF:Q—23{g,:ncwtc2:V{f,:nco}c23
closed unbounded set C:VacC3Inecw:g,(a)=F({, | a).

Proof of Lemma 2. We can state the equivalent formulation of O* in terms of
functions in “12 by identifying subsets of w; with their characteristic functions.
O implies 3{ft:ncw, acw}:V{f,:ncw}c*23 closed unbounded set
C:VaeC3new:f* | a=fs Letting g, €2 be defined, for each n € w, by
g.(a)=F(fi) and applying F to the equation f, | a=f: we get that
V{f"*:new}c“23 closed unbounded set C:VaecC3Inecw:F(f" | a)=
g.(a) as required.

Proof of Theorem 1. Let F :Q—goid—>2. Extend f to F':Q— 2 arbitrarily.
By Lemma 2, {* implies that 3{g,:ncwjc*2:V{f,:ncwc*23 closed
unbounded set C:VaeCInew:g,(a)=F'(f, | @). If ®, fails, then, for each
new, there is f,€“2 and a closed unbounded set C, such that VaeC,
g.(@)#F(f, | @) or F(f, } a) is not defined. F is good implies that D=
U {a:F(f, | «)is not defined}: n € w} does not contain a closed unbounded set
and so E=(w;—D)NCNN{C,:necw}is nonempty. Let « € E. « € C implies
that, for some new, g,(a)=F'(f, | «), a € w,—D implies that F(f, | «) is
defined and a € C, implies g, (a)# F(f, | «)=F'(f, | a).

THEOREM 2. € for stationary systems implies ®p.

Proof. { for stationary systems states that, whenever {S;:fe*“ 2} is a statio-
nary system (that is, whenever {S; : f € “:2} is such that each S; is a stationary set
and such that, whenever acw,, f | a=g | « implies S;N(a+1)=
S.N(a+1)), 3{f,:acw}:Vfro,— 23 stationary set S S$;:VaeSf | a=
fo- Let F:Q— 2. For each fe*2, let S;={a:F(f | @) is defined}. F is good
implies that {S;:fe“2} is a stationary system. { for stationary systems implies
that 3{f,:acw}:Vf:w;,—23 stationary set S:YVaecS f | a=f, and
F(f | a) is defined. Define g:w,;— 2 so that g(a)=F(f,) whenever F(f,) is
defined. Whenever f:w;— 2, there is a stationary set S such that, for each
acS, gla)=F({f | a).

THeOREM 3. @, implies that, in a normal first countable space, discrete families
of points of cardinality X, are separated.

To prove Theorem 3, we need an equivalent formulation of ®,.
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Lemma 3. @, if and only if VF:“c—>23g:0;,—2:V f:w;— ¢ 3 statio-
nary set S:VacSF(f | a)=g(a).

Proof. A standard device is to code each function f:w, — 2* by a function
f¥:0;—2 by letting f(a)(n)=f*(a: w+n) for each a €cw;. Let F:*:¢c — 2.
Let F*:“12—2 be defined so that F*(f* | a)=F(f | «) when « is a limit
ordinal (F* is well-defined since, if « is a limit ordinal f* |} a«=g* | « implies
fl a=g | aand F* is good since {a: F*(f* | «) is defined}={a:F(f | a)
is defined and « is a limit ordinal}). By ®,, there is a g:w; — 2 such that, for
each f*:w;—2, 3 stationary set S:VaeSF*(f* | a)=g(a). For each
f:w;—> ¢, there is a stationary set S of limit ordinals :VaeSF(f | a)=
F*(f* I a)=g(a).

Proof of Theorem 3. Let X be a first countable normal space (X need only
have character C) with a discrete unseparated family D of points of cardinality
R;. We use a result of Taylor [6]:

Claim: There is a discrete family of points {X, : @ € w,} such that there does
not exist a closed unbounded set C such that {X, : a € C} is separated.

Proof of Claim. Suppose otherwise. Whenever ¢ : D — w; is such that each
¢ !(a) is countable, there is a closed unbounded set C such that ¢ !(C) is
separated (otherwise, enumerating each ¢ ‘(a) by {d%: n € }, there are closed
unbounded sets {C, :n € w} such that each {d®:¢(a)e C,} is separated and a
closed unbounded set C= N {C, : n € w} such that, applying X,-collectionwise
normality, ¢~ *(C) is separated). Define ¢, : D — w; such that each ¢} '(a) is
countable and closed unbounded sets C, by induction on new: define
®o: D — w, to be a bijection and when ¢, : D — w, is defined, define C, to be
a closed unbounded set such that ¢}, '(C,) is separated and ¢, .;: D — w,; by
enii(p)=max{aeC,:a=¢,(p)}. Each ¢,'(C,) is separated; by R,-
collectionwise normality, |J {¢;'(C,):ne€w} is separated and thus there is a
p € D such that, for each n € w, ¢, (p) ¢ C,. {¢,.(p) : n € w} is an infinite descend-
ing sequence of ordinals and the claim is established.

We use Fleissner’s proof in [2]: We shall define a partial function F mapping
functions from a countable ordinal into w X2 to 2. For each acw,, let
{UJa):new} be a neighborhood base for x,. Whenever f:a — (wX2), f
assigns a color and a neighborhood to each x; (If f(B) =(n, 1), x is assigned
the ith color and the nth neighborhood) and we can define Vi(f) to be
U{UB): f(B)=(n, i)}. For each f:a — (w x2), let

undefined if x,¢ Vy(f)U Vi(f)
F(f)={ 1 it x,eVyf) }
0 . otherwise

We shall obtain a contradiction.
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Suppose F is good. An application of Lemma 3 yields g:w; — 2 such that,
for each f:w; — (wX?2), there is an o (we do not need a stationary set of a)
such that F(f | «)= g(a). The normality of X implies that there is n:w; = o
such that, whenever «, a'€ wy, gla)# g(a') implies U, (@) N U, ((a')= .
Let f:w; — (0w X2) be defined by f(a)={(n(a), g(a)). Let a € w; be such that
F(f | a)=g(a). gla)=1 implies that x, € V(f), that U, (a)N V() # D
and so that, for some a'€w;, U, a)NU,(a)# D while gla)=1 and
g(a")=0. g(a)=0 implies that x, € V,(f) and a similar contradiction.

Suppose f is not good. There are functions f,:w; — (0w X2)(n€w) and a
closed unbounded set C such that VaeC Incw:F(f, | «) is undefined.
{x,:a€C} is not separated by hypothesis. In a normal space, countable
discrete families of closed sets are separated. This implies that there is A € w,
and n € w such that {x, :« € A} is not separated and such that, for each a € A,
F(f, | «) is undefined. For each ac€A, let mew be such that
U, (a)NU,(B)= whenever Be A and B<a. {U,(a)NU,(a):axeA} is a
separation of {x,:a € A}.

CoROLLARY. { does not imply @,

Proof. Shelah [5] has shown that the existence of a normal first countable
space with a discrete unseparated family of points of cardinality X, is consistent
with .

The referee has stated the surprising result

THEOREM 4. If CH holds and k <\ are regular uncountable cardinals and «
Cohen reals and A Cohen subsets of w, are added by product forcing to the
universe, then ®p holds in the extension.

CoroOLLARY. It is consistent with —\CH that normal first countable spaces are
R,-collectionwise Hausdorff.

Proof (due in part to Juris Steprans). Let V be a model of CH. Let k <A be
regular uncountable cardinals. Let P = Fn(k, 2, w) be the partial order which
adds k Cohen reals. Let Q = Fn(A X w,, 2, w,) be the partial order which adds
A Cohen subsets of w;. Let VF*CE“F:“12 -2 is good”. Assume, without loss
of generality, that 1lIF“F:“12—2 is good”. By the X,-chain condition, X; <A
and k<A there is yeA such that Fe VP*?"Y*“: Jet G be the generic
function from A Xw, into 2. Let g:w,—2 be defined in VF*? by g(a)=
G(y,«). We must show (1) VPOV f:w,—23 stationary S:VaeS
F(f | a)=g(a)”’. We work in M = VO I A -lvhxe,

Let R=Q | {y}Xw,. Note that Fe M* and VF*?= MP*R If (1) is not true,
then there is p € P and q € R such that (2) (p, q¢)IF“f:w; —2 and C is a closed
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unbounded set of w; and (Ve € C) F(f | a)# g(a)”. Without loss of general-
ity, since P has the countable chain condition, C e M®. Construct a descending

continuous sequence {q, :a € w1} < R such that q,=q;
q. decides whether aeC; there is B=a such that (¢,q,)IFBeC and

(Wacw,)3 antichain A, cP:VpeA,(pq,) decides f(a). Let D=
laoew: (D, q,)F “aecC”}. D is a closed unbounded set and De M. Let
E <D be a closed unbounded set of limit ordinals such that (3) a« € E and
B <a implies dom gz ={y}Xa. Let h be a P-name such that

1th:w;,—>2 and @) (D, q)th } a=f | «a

1IF“E is a closed unbounded set and F: Q— 2 is good” and h: w, — 2 implies
that 1I+“(3a € E) F(h | «) is defined”. Choose p<p and a € E and i €2 such
that (p, D)WF“F(h | o)=i". This is possible since h | aeM?, EecM and
FeMP. By 4), (p,q ) F“F(f | a)=i". Let G=q.U{a,i)}. g is defined since
« is a limit ordinal, {q, : @ € w,} is continuous and (3) (p, @)IFF(f | a)=g(a)
by the definition of g and since qIF“g<= G | {y}Xw,”. (p, q)IF“a e C” since
aeD and (J, q.)=(p, q) by the definition of D. This contradicts (2).

Note: In this model, «>X; implies Ostaszewski’s axiom ¢ is false.
Moreover, whenever X,-many Cohen reals are added to a model M (VF*Q
may be obtained by adding X,-many Cohen reals to V¥ ' «*72*9) the principle
HS,:acw}cP(w):VScw,Jacw,:SDS, is false. Otherwise, by the
countable chain condition, we may assume, without loss of generality, {S, :a €
wi}€ M. Letting S be coded by the first X;-many Cohen reals provides a
contradiction.

A discussion is facilitated by some definitions.

A weak Q-sequence is a sequence {S, : @ € w,} such that each S, = P(«) and
such that, whenever A c w,, {a: ANaeS,} is stationary.

A sequence {A, : a € w,} refines a sequence {B, :a € w,} iff A, © B, (o € w,).

A weak O-sequence {S, :a € w,} is wide iff whenever {A, : n € w} are subsets
of wy, {a €w,:ne€w implies A, Na €S,} is stationary.

Mathias [3] has formulated Q for stationary systems as: each weak Q-
sequence can be refined by a <>-sequence. Mathias showed that, under 0*, each
weak Q-sequence can be refined by a weak Q-sequence of countable sets.

Shelah [4] has shown that it is consistent with O that there is a weak
{-sequence of sets of size 2 which cannot be refined by a {-sequence. We have
shown that, under O%, each wide weak {-sequence can be refined by a wide
weak (}—sequence of countable sets. The difference is that, under ZFC, any
wide weak Q-sequence of countable sets can be refined by a Q-sequence. Let
®; be formulated by applying ®p to partial colorings f which are not neces-
sarily good but are such that, whenever f:w,; — 2, {a:F(f | «) is not defined}
does not contain a closed unbounded set. ®p is not used in this paper, despite
its comparative simplicity, because it is not implied by ¢* (or even Q). This is
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true because any weak Q-sequence {{S%, S1}:a € w,} codes a partial coloring F
defined, whenever A is a subset of w, (letting x, be the characteristic function
of A), by F(xa | a@)=iiff ANa=S), (ieca) and because g:w; — 2 as in &}
provides the Q-sequence refinement {S5“:a € w,}.

We are grateful to the referee for the preceding discussion.
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