SEPARATING POINTS AND COLORING PRINCIPLES

BY
W. STEPHEN WATSON

Abstract

In the mid 1970's, Shelah formulated a weak version of \diamond. This axiom Φ is a prediction principle for colorings of the binary tree of height ω_{1}. Shelah and Devlin showed that Φ is equivalent to $2^{\kappa_{0}}<2^{\kappa_{1}}$. In this paper, we formulate Φ_{p}, a " Φ for partial colorings", show that both \diamond^{*} and Fleissner's " \diamond for stationary systems" imply Φ_{p}, that \diamond does not imply Φ_{p} and that Φ_{p} does not imply $C H$. We show that Φ_{p} implies that, in a normal first countable space, a discrete family of points of cardinality \aleph_{1} is separated.

In the mid 1970's, Shelah [1] formulated a weak version of \diamond. This axiom Φ is a prediction principle for colorings of the binary tree of height ω_{1}. This tree may be identified with Ω, the set of functions from a countable ordinal into 2 .
$(\Phi): \forall F: \Omega \rightarrow 2 \exists \mathrm{~g}: \omega_{1} \rightarrow 2: \forall f: \omega_{1}$
$\rightarrow 2 \exists$ stationary set $S: \forall \alpha \in S F(f \mid \alpha)=g(\alpha)$
The axiom states that however we color the nodes of the binary tree of height ω_{1} with two colors, there is a coloring of ω_{1} with two colors which coincides with the coloring of each branch in the tree on a stationary set. Shelah and Devlin [1] showed that Φ is equivalent to $2^{\aleph_{0}}<2^{\aleph_{1}}$.

In this paper, we formulate Φ_{p}, a " Φ for partial colorings", show that both \diamond^{*} and Fleissner's " \rangle for stationary systems" imply Φ_{p} and that \diamond does not imply Φ_{p}. Fleissner [2] formulated " \rangle for stationary systems" in 1972 in order to show that, in a normal first countable space, a discrete family of points of cardinality \aleph_{1} is separated and asked whether this axiom was implied by \diamond^{+}. Shelah [4] showed in 1976 that \diamond^{+}does not imply Fleissner's axiom but that \diamond^{+}, nevertheless, implies that, in a normal first countable space, a discrete family of points of cardinality \aleph_{1} is separated. We show that Φ_{p} implies that, in

[^0](C) Canadian Mathematical Society, 1984
a normal first countable space, a discrete family of points of cardinality \aleph_{1} is separated.

To formulate Φ_{p}, we observe that a good partial coloring F (a coloring to which Φ_{p} can apply) must be such that, whenever $f: \omega_{1} \rightarrow 2,\{\alpha: F(f \upharpoonright \alpha)$ is not defined\} does not contain a closed unbounded set. We require a little more: a good partial coloring F is a partial coloring which is such that, for any $\left\{f_{n}: \omega_{1} \rightarrow 2(n \in \omega)\right\}, \bigcup_{n \in \omega}\left\{\left(\alpha: F\left(f_{n} \upharpoonright \alpha\right)\right.\right.$ is not defined $\left.)\right\}$ does not contain a closed unbounded set.
$\left(\Phi_{p}\right): \forall F: \Omega \xrightarrow{\text { good }} 2 \exists g: \omega_{1} \rightarrow 2: \forall f: \omega_{1}$

$$
\rightarrow 2 \exists \text { stationary set } S: \forall \alpha \in S F(f \mid \alpha)=g(\alpha)
$$

Φ_{P} is a strengthening of Φ and therefore implies $2^{\kappa_{0}}<2^{\kappa_{1}}$.
We need an equivalent formulation of \diamond^{*}.
To motivate this formulation, we can say that \diamond-principles predict subsets A of ω_{1} and that a \diamond-sequence consists of guessing $A \cap \alpha$ for each $\alpha \in \omega_{1} . \diamond$ states that there is a \diamond-sequence such that, for each $A \subset \omega_{1}$, there is a stationary set S such that, for each $\alpha \in S$, the \diamond-sequence guesses $A \cap \alpha$ correctly. ZFC implies that there is no \diamond-sequence such that, for each $A \subset \omega_{1}$, there is a closed unbounded set C such that, for each $\alpha \in C$, the \rangle-sequence guesses $A \cap \alpha$ correctly but ∇^{*} states that there are countably many $\nabla_{\text {-sequences such that, }}$ for each $A \subset \omega_{1}$, there is a closed unbounded set C such that, for each $\alpha \in C$, at least one of the \diamond-sequences guesses $A \cap \alpha$ correctly.

We need a principle which predicts countable sequences $\left(A_{n}: n \in \omega\right)$ of subsets of ω_{1}. the equivalent formulation of \diamond^{*} states that there is a \diamond sequence for each $n \in \omega$ (the nth \rangle-sequence consists of guessing $A_{n} \cap \alpha$ for each $\left.\alpha \in \omega_{1}\right)$ such that, for each sequence $\left\{A_{n}: n \in \omega\right\}$ of subsets of ω_{1}, there is a closed unbounded set C such that, for each $\alpha \in C$, some $A_{n} \cap \alpha$ is guessed correctly by its \diamond-sequence. The difference between \diamond^{*} and its equivalent formulation is that, in the former we know which set we're guessing correctly but we don't know which \diamond-sequence is guessing it, whereas in the latter we don't know which set we're guessing correctly but we do know which \rangle sequence is guessing it.

Lemma 1. \checkmark^{*} if and only if $\exists\left\{S_{\alpha}^{n}: n \in \omega, \alpha \in \omega_{1}\right\}: \forall\left\{S^{n}: n \in \omega, S^{n} \subset \omega_{1}\right\} \exists$ closed unbounded set $C: \forall \alpha \in C \exists n \in \omega: S^{n} \cap \alpha=S_{\alpha}^{n}$.

Proof of Lemma 1. \rangle^{*} states that $\exists\left\{S_{\alpha}^{n}: n \in \omega, \alpha \in \omega_{1}\right\}: \forall S \subset \omega_{1} \exists$ closed unbounded set $C: \forall \alpha \in C \exists n \in \omega: S \cap \alpha=S^{n}$. By a standard coding argument $\left(\omega_{1}^{2} \text { may be coded by } \omega_{1} \text {), }\right\rangle^{*}$ implies that $\exists\left\{S_{\alpha}^{n, m}: m, n \in \omega, \alpha \in \omega_{1}\right\}: \forall\left\{S^{n}: n \in\right.$ $\omega\} \exists$ closed unbounded set $C: \forall \alpha \in C \exists m \in \omega: \forall n \in \omega S_{\alpha}^{n, m}=S^{n} \cap \alpha$. Letting $S_{\alpha}^{m}=S_{\alpha}^{m, m}$ for each $m \in \omega$, we get that \diamond^{*} implies that $\exists\left\{S_{\alpha}^{n}: n \in \omega, \alpha \in\right.$
$\left.\omega_{1}\right\}: \forall\left\{S^{n}: n \in \omega\right\} \exists$ closed unbounded set $C: \forall \alpha \in C \exists m \in \omega: S_{\alpha}^{m}=S^{m} \cap \alpha$ as required. The other direction is obtained by letting $S^{n}=S$ for each $n \in \omega$.

Theorem 1. \diamond^{*} implies Φ_{p}.
We need a preliminary lemma.
Lemma 2. \diamond^{*} implies $\forall F: \Omega \rightarrow 2 \exists\left\{g_{n}: n \in \omega\right\} \subset{ }^{\omega_{1}} 2: \forall\left\{f_{n}: n \in \omega\right\} \subset{ }^{\omega_{1}} 2 \exists$ closed unbounded set $C: \forall \alpha \in C \exists n \in \omega: g_{n}(\alpha)=F\left(f_{n} \upharpoonright \alpha\right)$.
Proof of Lemma 2. We can state the equivalent formulation of \diamond^{*} in terms of functions in ${ }^{\omega_{1}} 2$ by identifying subsets of ω_{1} with their characteristic functions. \diamond^{*} implies $\exists\left\{f_{\alpha}^{n}: n \in \omega, \alpha \in \omega_{1}\right\}: \forall\left\{f_{n}: n \in \omega\right\} \subset \omega^{\omega} 2 \exists$ closed unbounded set $C: \forall \alpha \in C \exists n \in \omega: f^{n} \upharpoonright \alpha=f_{\alpha}^{n}$. Letting $g_{n} \in{ }^{\omega_{1}} 2$ be defined, for each $n \in \omega$, by $g_{n}(\alpha)=F\left(f_{\alpha}^{n}\right)$ and applying F to the equation $f_{n} \backslash \alpha=f_{\alpha}^{n}$, we get that $\forall\left\{f^{n}: n \in \omega\right\} \subset{ }^{\omega} 2 \exists$ closed unbounded set $C: \forall \alpha \in C \exists n \in \omega: F\left(f^{n} \mid \alpha\right)=$ $g_{n}(\alpha)$ as required.

Proof of Theorem 1. Let $F: \Omega \xrightarrow{\text { good }} 2$. Extend f to $F^{\prime}: \Omega \rightarrow 2$ arbitrarily. By Lemma 2, \diamond^{*} implies that $\exists\left\{g_{n}: n \in \omega\right\} \subset{ }^{\omega_{1}} 2: \forall\left\{f_{n}: n \in \omega\right\} \subset{ }^{\omega_{1}} 2 \exists$ closed unbounded set $C: \forall \alpha \in C \exists n \in \omega: \mathrm{g}_{n}(\alpha)=F^{\prime}\left(f_{n} \upharpoonright \alpha\right)$. If Φ_{p} fails, then, for each $n \in \omega$, there is $f_{n} \in{ }^{\omega_{1}} 2$ and a closed unbounded set C_{n} such that $\forall \alpha \in C_{n}$ $\mathrm{g}_{n}(\alpha) \neq F\left(f_{n} \upharpoonright \alpha\right)$ or $F\left(f_{n} \upharpoonright \alpha\right)$ is not defined. F is good implies that $D=$ $\bigcup\left\{\left\{\alpha: F\left(f_{n} \backslash \alpha\right)\right.\right.$ is not defined $\left.\}: n \in \omega\right\}$ does not contain a closed unbounded set and so $E=\left(\omega_{1}-D\right) \cap C \cap \cap\left\{C_{n}: n \in \omega\right\}$ is nonempty. Let $\alpha \in E$. $\alpha \in C$ implies that, for some $n \in \omega, g_{n}(\alpha)=F^{\prime}\left(f_{n} \upharpoonright \alpha\right), \alpha \in \omega_{1}-D$ implies that $F\left(f_{n} \upharpoonright \alpha\right)$ is defined and $\alpha \in C_{n}$ implies $g_{n}(\alpha) \neq F\left(f_{n} \upharpoonright \alpha\right)=F^{\prime}\left(f_{n} \upharpoonright \alpha\right)$.

Theorem 2. \diamond for stationary systems implies Φ_{P}.
Proof. \diamond for stationary systems states that, whenever $\left\{S_{f}: f \in{ }^{\omega_{1}} 2\right\}$ is a stationary system (that is, whenever $\left\{S_{f}: f \in{ }^{\omega_{1}} 2\right\}$ is such that each S_{f} is a stationary set and such that, whenever $\alpha \in \omega_{1}, f \upharpoonright \alpha=g \upharpoonright \alpha$ implies $S_{f} \cap(\alpha+1)=$ $\left.S_{g} \cap(\alpha+1)\right), \exists\left\{f_{\alpha}: \alpha \in \omega_{1}\right\}: \forall f: \omega_{1} \rightarrow 2 \exists$ stationary set $S \subset S_{f}: \forall \alpha \in S f \upharpoonright \alpha=$ f_{α}. Let $F: \Omega \rightarrow 2$. For each $f \in{ }^{\omega_{1}} 2$, let $S_{f}=\{\alpha: F(f \upharpoonright \alpha)$ is defined $\}$. F is good implies that $\left\{S_{f}: f \in^{\omega_{1}} 2\right\}$ is a stationary system. \diamond for stationary systems implies that $\exists\left\{f_{\alpha}: \alpha \in \omega_{1}\right\}: \forall f: \omega_{1} \rightarrow 2 \exists$ stationary set $S: \forall \alpha \in S f \upharpoonright \alpha=f_{\alpha}$ and $F(f \upharpoonright \alpha)$ is defined. Define $g: \omega_{1} \rightarrow 2$ so that $g(\alpha)=F\left(f_{\alpha}\right)$ whenever $F\left(f_{\alpha}\right)$ is defined. Whenever $f: \omega_{1} \rightarrow 2$, there is a stationary set S such that, for each $\alpha \in S, g(\alpha)=F(f \upharpoonright \alpha)$.

Theorem 3. Φ_{p} implies that, in a normal first countable space, discrete families of points of cardinality \aleph_{1} are separated.

To prove Theorem 3, we need an equivalent formulation of Φ_{p}.

Lemma 3. Φ_{p} if and only if $\forall F:{ }^{\omega_{1}} c \rightarrow 2 \exists g: \omega_{1} \rightarrow 2: \forall f: \omega_{1} \rightarrow c \exists$ stationary set $S: \forall \alpha \in S F(f \mid \alpha)=g(\alpha)$.

Proof. A standard device is to code each function $f: \omega_{1} \rightarrow 2^{\omega}$ by a function $f^{*}: \omega_{1} \rightarrow 2$ by letting $f(\alpha)(n)=f^{*}(\alpha \cdot \omega+n)$ for each $\alpha \in \omega_{1}$. Let $F:{ }^{\omega_{1}} c \rightarrow 2$. Let $F^{*}: \omega_{1} 2 \rightarrow 2$ be defined so that $F^{*}\left(f^{*} \upharpoonright \alpha\right)=F(f \upharpoonright \alpha)$ when α is a limit ordinal (F^{*} is well-defined since, if α is a limit ordinal $f^{*} \upharpoonright \alpha=g^{*} \upharpoonright \alpha$ implies $f \upharpoonright \alpha=g \upharpoonright \alpha$ and F^{*} is good since $\left\{\alpha: F^{*}\left(f^{*} \upharpoonright \alpha\right)\right.$ is defined $\}=\{\alpha: F(f \upharpoonright \alpha)$ is defined and α is a limit ordinal\}). By Φ_{p}, there is a $g: \omega_{1} \rightarrow 2$ such that, for each $f^{*}: \omega_{1} \rightarrow 2, \exists$ stationary set $S: \forall \alpha \in S F^{*}\left(f^{*} \mid \alpha\right)=g(\alpha)$. For each $f: \omega_{1} \rightarrow c$, there is a stationary set S of limit ordinals $: \forall \alpha \in S F(f \mid \alpha)=$ $F^{*}\left(f^{*} \upharpoonright \alpha\right)=g(\alpha)$.

Proof of Theorem 3. Let X be a first countable normal space (X need only have character C) with a discrete unseparated family D of points of cardinality κ_{1}. We use a result of Taylor [6]:

Claim: There is a discrete family of points $\left\{X_{\alpha}: \alpha \in \omega_{1}\right\}$ such that there does not exist a closed unbounded set C such that $\left\{X_{\alpha}: \alpha \in C\right\}$ is separated.

Proof of Claim. Suppose otherwise. Whenever $\varphi: D \rightarrow \omega_{1}$ is such that each $\varphi^{-1}(\alpha)$ is countable, there is a closed unbounded set C such that $\varphi^{-1}(C)$ is separated (otherwise, enumerating each $\varphi^{-1}(\alpha)$ by $\left\{d_{n}^{\alpha}: n \in \omega\right\}$, there are closed unbounded sets $\left\{C_{n}: n \in \omega\right\}$ such that each $\left\{d_{n}^{\alpha}: \varphi(\alpha) \in C_{n}\right\}$ is separated and a closed unbounded set $C=\cap\left\{C_{n}: n \in \omega\right\}$ such that, applying \aleph_{0}-collectionwise normality, $\varphi^{-1}(C)$ is separated). Define $\varphi_{n}: D \rightarrow \omega_{1}$ such that each $\varphi_{n}^{-1}(\alpha)$ is countable and closed unbounded sets C_{n} by induction on $n \in \omega$: define $\varphi_{0}: D \rightarrow \omega_{1}$ to be a bijection and when $\varphi_{n}: D \rightarrow \omega_{1}$ is defined, define C_{n} to be a closed unbounded set such that $\varphi_{n}^{-1}\left(C_{n}\right)$ is separated and $\varphi_{n+1}: D \rightarrow \omega_{1}$ by $\varphi_{n+1}(p)=\max \left\{\alpha \in C_{n}: \alpha \leq \varphi_{n}(p)\right\}$. Each $\varphi_{n}^{-1}\left(C_{n}\right)$ is separated; by $\kappa_{0^{-}}$ collectionwise normality, $\bigcup\left\{\varphi_{n}^{-1}\left(C_{n}\right): n \in \omega\right\}$ is separated and thus there is a $p \in D$ such that, for each $n \in \omega, \varphi_{n}(p) \notin C_{n} .\left\{\varphi_{n}(p): n \in \omega\right\}$ is an infinite descending sequence of ordinals and the claim is established.

We use Fleissner's proof in [2]: We shall define a partial function F mapping functions from a countable ordinal into $\omega \times 2$ to 2 . For each $\alpha \in \omega_{1}$, let $\left\{U_{n}(\alpha): n \in \omega\right\}$ be a neighborhood base for x_{α}. Whenever $f: \alpha \rightarrow(\omega \times 2), \dot{f}$ assigns a color and a neighborhood to each x_{β} (If $f(\beta)=\langle n, 1\rangle, x_{\beta}$ is assigned the i th color and the nth neighborhood) and we can define $V_{i}(f)$ to be $\bigcup\left\{U_{n}(\beta): f(\beta)=\langle n, i\rangle\right\}$. For each $f: \alpha \rightarrow(\omega \times 2)$, let

$$
F(f)=\left\{\begin{array}{cll}
\text { undefined } & \text { if } & x_{\alpha} \notin \overline{V_{0}(f) \cup V_{1}(f)} \\
1 & \text { if } & x_{\alpha} \in \overline{V_{0}(f)} \\
0 & . & \text { otherwise }
\end{array}\right\}
$$

We shall obtain a contradiction.

Suppose F is good. An application of Lemma 3 yields $g: \omega_{1} \rightarrow 2$ such that, for each $f: \omega_{1} \rightarrow(\omega \times 2$), there is an α (we do not need a stationary set of α) such that $F(f \upharpoonright \alpha)=g(\alpha)$. The normality of X implies that there is $n: \omega_{1} \rightarrow \omega$ such that, whenever $\alpha, \alpha^{\prime} \in \omega_{1}, g(\alpha) \neq g\left(\alpha^{\prime}\right)$ implies $U_{n(\alpha)}(\alpha) \cap U_{n\left(\alpha^{\prime}\right)}\left(\alpha^{\prime}\right)=\varnothing$. Let $f: \omega_{1} \rightarrow(\omega \times 2)$ be defined by $f(\alpha)=\langle n(\alpha), g(\alpha)\rangle$. Let $\alpha \in \omega_{1}$ be such that $F(f \upharpoonright \alpha)=g(\alpha) . g(\alpha)=1$ implies that $x_{\alpha} \in \overline{V_{0}(f)}$, that $U_{n(\alpha)}(\alpha) \cap V_{0}(f) \neq \varnothing$ and so that, for some $\alpha^{\prime} \in \omega_{1}, U_{n(\alpha)}(\alpha) \cap U_{n\left(\alpha^{\prime}\right)}\left(\alpha^{\prime}\right) \neq \varnothing$ while $g(\alpha)=1$ and $g\left(\alpha^{\prime}\right)=0 . g(\alpha)=0$ implies that $x_{\alpha} \in \overline{V_{1}(f)}$ and a similar contradiction.

Suppose f is not good. There are functions $f_{n}: \omega_{1} \rightarrow(\omega \times 2)(n \in \omega)$ and a closed unbounded set C such that $\forall \alpha \in C \exists n \in \omega: F\left(f_{n} \upharpoonright \alpha\right)$ is undefined. $\left\{x_{\alpha}: \alpha \in C\right\}$ is not separated by hypothesis. In a normal space, countable discrete families of closed sets are separated. This implies that there is $A \subset \omega_{1}$ and $n \in \omega$ such that $\left\{x_{\alpha}: \alpha \in A\right\}$ is not separated and such that, for each $\alpha \in A$, $F\left(f_{n} \upharpoonright \alpha\right)$ is undefined. For each $\alpha \in A$, let $m \in \omega$ be such that $U_{m}(\alpha) \cap U_{n}(\beta)=\varnothing$ whenever $\beta \in A$ and $\beta<\alpha$. $\left\{U_{m}(\alpha) \cap U_{n}(\alpha): \alpha \in A\right\}$ is a separation of $\left\{x_{\alpha}: \alpha \in A\right\}$.

Corollary. \diamond does not imply Φ_{p}.
Proof. Shelah [5] has shown that the existence of a normal first countable space with a discrete unseparated family of points of cardinality \aleph_{1} is consistent with \diamond.

The referee has stated the surprising result
Theorem 4. If CH holds and $\kappa<\lambda$ are regular uncountable cardinals and κ Cohen reals and λ Cohen subsets of ω_{1} are added by product forcing to the universe, then Φ_{P} holds in the extension.

Corollary. It is consistent with \neg CH that normal first countable spaces are \aleph_{1}-collectionwise Hausdorff.

Proof (due in part to Juris Steprāns). Let V be a model of CH. Let $\kappa<\lambda$ be regular uncountable cardinals. Let $P=F n(\kappa, 2, \omega)$ be the partial order which adds κ Cohen reals. Let $Q=F n\left(\lambda \times \omega_{1}, 2, \omega_{1}\right)$ be the partial order which adds λ Cohen subsets of ω_{1}. Let $V^{P \times Q^{\prime}}$ " $F:{ }^{\omega_{1}} 2 \rightarrow 2$ is good". Assume, without loss of generality, that $1 \Vdash$ " $F:{ }^{\omega_{1}} 2 \rightarrow 2$ is good". By the \aleph_{2}-chain condition, $\aleph_{1}<\lambda$ and $\kappa<\lambda$ there is $\gamma \in \lambda$ such that $F \in V^{\mathbf{P} \times Q \mid \gamma \times \omega_{1}}$. Let G be the generic function from $\lambda \times \omega_{1}$ into 2 . Let $g: \omega_{1} \rightarrow 2$ be defined in $V^{P \times O}$ by $g(\alpha)=$ $G(\gamma, \alpha)$. We must show (1) $V^{P \times Q_{\|}}$" $\forall f: \omega_{1} \rightarrow 2 \exists$ stationary $S: \forall \alpha \in S$ $F(f \upharpoonright \alpha)=g(\alpha) "$. We work in $M=V^{Q} \mid(\lambda-\{\gamma\}) \times \omega_{1}$.

Let $R=Q \upharpoonright\{\gamma\} \times \omega_{1}$. Note that $F \in M^{P}$ and $V^{P \times Q}=M^{P \times R}$. If (1) is not true, then there is $p \in P$ and $q \in R$ such that (2) $(p, q) \Vdash$ " $f: \omega_{1} \rightarrow 2$ and C is a closed
unbounded set of ω_{1} and $(\forall \alpha \in C) F(f \upharpoonright \alpha) \neq g(\alpha) "$. Without loss of generality, since P has the countable chain condition, $C \in M^{R}$. Construct a descending continuous sequence $\left\{q_{\alpha}: \alpha \in \omega_{1}\right\} \subset R$ such that $q_{0}=q$;
q_{α} decides whether $\alpha \in C$; there is $\beta \geq \alpha$ such that $\left(\phi, q_{\alpha}\right) \Vdash \beta \in C$ and $\left(\forall \alpha \in \omega_{1}\right) \exists$ antichain $A_{\alpha} \subset P: \forall p \in A_{\alpha}\left(p, q_{\alpha}\right)$ decides $f(\alpha)$. Let $D=$ $\left\{\alpha \in \omega_{1}:\left(\varnothing, q_{\alpha}\right) \Vdash\right.$ " $\alpha \in C$ " $\}$. D is a closed unbounded set and $D \in M$. Let $E \subset D$ be a closed unbounded set of limit ordinals such that (3) $\alpha \in E$ and $\beta<\alpha$ implies dom $q_{\beta} \subset\{\gamma\} \times \alpha$. Let h be a P-name such that

$$
1 \Vdash h: \omega_{1} \rightarrow 2 \quad \text { and } \quad(4)\left(\varnothing, q_{\alpha}\right) \Vdash h \upharpoonright \alpha=f \upharpoonright \alpha
$$

$1 \Vdash$ " E is a closed unbounded set and $F: \Omega \rightarrow 2$ is good" and $h: \omega_{1} \rightarrow 2$ implies that $1 \Vdash$ " $(\exists \alpha \in E) F(h \upharpoonright \alpha)$ is defined". Choose $\bar{p} \leq p$ and $\alpha \in E$ and $i \in 2$ such that $(\bar{p}, \varnothing) \Vdash$ " $F(h \upharpoonright \alpha)=i$ ". This is possible since $h \upharpoonright \alpha \in M^{P}, E \in M$ and $F \in M^{P}$. By (4), $\left(\bar{p}, q_{\alpha}\right) \Vdash$ " $F(f \mid \alpha)=i$ ". Let $\bar{q}=q_{\alpha} \cup\{\langle\alpha, i\rangle\} . \bar{q}$ is defined since α is a limit ordinal, $\left\{q_{\alpha}: \alpha \in \omega_{1}\right\}$ is continuous and (3) $(\bar{p}, \bar{q}) \Vdash F(f \upharpoonright \alpha)=g(\alpha)$ by the definition of g and since $\bar{q} \Vdash " \bar{q} \subset G \upharpoonright\{\gamma\} \times \omega_{1} " .(\bar{p}, \bar{q}) \Vdash$ " $\alpha \in C$ " since $\alpha \in D$ and $\left(\varnothing, q_{\alpha}\right) \geq(\bar{p}, \bar{q})$ by the definition of D. This contradicts (2).

Note: In this model, $\kappa>\boldsymbol{K}_{1}$ implies Ostaszewski's axiom $\mathcal{C}_{\mathbb{R}}$ is false. Moreover, whenever $\boldsymbol{\aleph}_{2}$-many Cohen reals are added to a model $M\left(V^{P \times Q}\right.$ may be obtained by adding \aleph_{2}-many Cohen reals to $\left.V^{P \upharpoonright\left(\kappa-\omega_{2}\right) \times Q}\right)$, the principle $\exists\left\{S_{\alpha}: \alpha \in \omega_{1}\right\} \subset \mathscr{P}\left(\omega_{1}\right): \forall S \subset \omega_{1} \exists \alpha \in \omega_{1}: S \supset S_{\alpha}$ is false. Otherwise, by the countable chain condition, we may assume, without loss of generality, $\left\{S_{\alpha}: \alpha \in\right.$ $\left.\omega_{1}\right\} \in M$. Letting S be coded by the first \aleph_{1}-many Cohen reals provides a contradiction.

A discussion is facilitated by some definitions.
A weak \diamond-sequence is a sequence $\left\{S_{\alpha}: \alpha \in \omega_{1}\right\}$ such that each $S_{\alpha} \subset \mathscr{P}(\alpha)$ and such that, whenever $A \subset \omega_{1},\left\{\alpha: A \cap \alpha \in S_{\alpha}\right\}$ is stationary.

A sequence $\left\{A_{\alpha}: \alpha \in \omega_{1}\right\}$ refines a sequence $\left\{B_{\alpha}: \alpha \in \omega_{1}\right\}$ iff $A_{\alpha} \subset B_{\alpha}\left(\alpha \in \omega_{1}\right)$.
A weak \diamond-sequence $\left\{S_{\alpha}: \alpha \in \omega_{1}\right\}$ is wide iff whenever $\left\{A_{n}: n \in \omega\right\}$ are subsets of $\omega_{1},\left\{\alpha \in \omega_{1}: n \in \omega\right.$ implies $\left.A_{n} \cap \alpha \in S_{\alpha}\right\}$ is stationary.

Mathias [3] has formulated \diamond for stationary systems as: each weak \rangle sequence can be refined by a \diamond-sequence. Mathias showed that, under \diamond^{*}, each weak \diamond-sequence can be refined by a weak \rangle-sequence of countable sets.

Shelah [4] has shown that it is consistent with ∇^{+}that there is a weak \diamond-sequence of sets of size 2 which cannot be refined by a \rangle-sequence. We have shown that, under ∇^{*}, each wide weak \diamond-sequence can be refined by a wide weak \diamond-sequence of countable sets. The difference is that, under ZFC, any wide weak \rangle-sequence of countable sets can be refined by a \rangle-sequence. Let Φ_{P}^{\prime} be formulated by applying Φ_{P} to partial colorings f which are not necessarily good but are such that, whenever $f: \omega_{1} \rightarrow 2,\{\alpha: F(f \upharpoonright \alpha)$ is not defined $\}$ does not contain a closed unbounded set. Φ_{P}^{\prime} is not used in this paper, despite its comparative simplicity, because it is not implied by \diamond^{*} (or even ∇^{+}). This is
true because any weak \rangle-sequence $\left\{\left\{S_{\alpha}^{0}, S_{\alpha}^{1}\right\}: \alpha \in \omega_{1}\right\}$ codes a partial coloring F defined, whenever A is a subset of ω_{1} (letting χ_{A} be the characteristic function of A), by $F\left(\chi_{\mathrm{A}} \backslash \alpha\right)=i$ iff $A \cap \alpha=S_{\alpha}^{i}(i \in \alpha)$ and because $g: \omega_{1} \rightarrow 2$ as in Φ_{P}^{\prime} provides the $\widehat{\diamond}$-sequence refinement $\left\{S_{\alpha}^{g(\alpha)}: \alpha \in \omega_{1}\right\}$.

We are grateful to the referee for the preceding discussion.

Bibliography

1. K. Devlin and S. Shelah, A weak version of \diamond which follows from $2^{x_{0}}<2^{x_{1}}$, Israel Journal of Math 29 (1978) 239-247.
2. W. G. Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. Soc. 46 (1974) 294-298.
3. A. R. D. Mathias, Logic Colloquium 76, North Holland 1977, p. 542.
4. S. Shelah, S. A Note in General Topology; If $\diamond_{\aleph_{1}}^{*}$, then any normal space is \aleph_{1} - CWH ; Preprints in Math. Logic, spring 1979.
5. S. Shelah, Whitehead Groups may not be free, even assuming CH, Israel Journal of Math. I 28 (1977) 193-204; II 35 (1980) 257-285.
6. A. D. Taylor, Diamond Principles, Ideals and the Normal Moore Space Problem. Can. Jour. Math. 33 (1981) 282-296.

York University
Downsview, Ontario.
M3J1P3 CANADA

[^0]: Received by the editors January 12, 1983 and, in final revised form, March 14, 1984.
 1980 AMS Subject Classification. Primary: 03E05, 54D15; Secondary: 54A35, 03E35, 03 E 45

 This work has been supported by the Natural Sciences and Engineering Research Council of Canada.

