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Abstract

We prove that a finite coprime linear group G in characteristic p ≥ 1
2 (|G| − 1) has a regular orbit. This

bound on p is best possible. We also give an application to blocks with abelian defect groups.
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1. Introduction

Linear groups, that is, subgroups G of GL(V) where V is a vector space, play an
important role in many branches of group representation theory. In the present note
we are interested in the situation where V is an elementary abelian p-group and G
is a p′-group. Then, by Maschke’s theorem, the action of G on V is semisimple. A
crucial fact used in the solution of the so-called k(GV)-problem [16] is that G often
has a regular orbit on V , that is, an orbit of size |G|. This is well known for abelian
groups G and many other special cases have been handled in the literature (see, for
example, [3, 4, 7, 10, 17]). It is also known that regular orbits exist if p is ‘large’, for
example if p > |G| (see [11, Lemma 2.2]). The main result of this paper establishes the
existence of a regular orbit under the weaker condition p ≥ 1

2 (|G| − 1). The proof relies
on a classification of finite groups with ‘many’ minimal subgroups given by Burness
and Scott [2]. Conversely, for every odd prime p, we construct linear groups G without
regular orbits such that p = 1

2 |G| − 1.
These results are motivated by Brauer’s k(B)-conjecture, which is still open even for

blocks with abelian defect groups. In this situation, V is a defect group of a block B of
a finite group and G is the corresponding inertial quotient. The number of irreducible
characters in B is denoted by k(B). By a result of Robinson [11], Brauer’s k(B)-
conjecture, that is, k(B) ≤ |V |, holds provided G has a regular orbit on V . In previous
papers [13–15], we have applied some of the techniques from the k(GV)-problem to
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this more general situation. Now in the present paper we will give a new application
of our main theorem.

Recently there has been some interest in the base size of linear groups (or, more
generally, permutation groups). Here a base in the situation above is a set of elements
b1, . . . ,bn ∈ V such that CG(b1) ∩ · · · ∩ CG(bn) = 1. Our main theorem gives a sufficient
condition for a linear group to have a base of size 1. In general, it was shown by Halasi
and Podoski [6] that every coprime linear group has a base of size 2 (independent of p).

2. Main theorem

In the following we denote a cyclic group of order n by Cn. A dihedral group of
order n is denoted by Dn and the symmetric and alternating groups of degree n are S n

and An, respectively. For a finite group G, we set Gn := G × · · · ×G (n copies). The
exponent of G is defined by exp(G) := min{n ≥ 1 : gn = 1 for all g ∈ G}. Note that the
minimal subgroups of a finite group are precisely the subgroups of prime order.

Proposition 2.1 [2, Theorem 1.1]. If a nontrivial finite group G has more than 1
2 |G| − 1

minimal subgroups, then one of the following holds:

(i) G � A oC2, where A is abelian and C2 acts as inversion;
(ii) G � Cn

2 oC2 for some n ≥ 2;
(iii) G � C2n

2 oC3 for some n ≥ 1 (Frobenius group);
(iv) G � D8 ∗ · · · ∗ D8 ×Cn

2 for some n ≥ 0 (central product);
(v) exp(G) = 3;
(vi) G � D2

8 ×Cn
2 for some n ≥ 0;

(vii) G � S 3 × D8 ×Cn
2 for some n ≥ 0;

(viii) G ∈ {S 2
3, S 4, A5}.

Note that (i) in Proposition 2.1 includes all nontrivial elementary abelian 2-
groups. In our main theorem we prove slightly more than what was promised in the
introduction.

Theorem 2.2. Let G be a p′-automorphism group on a finite p-group P such that
|G| ≤ 2p + 9. Then one of the following holds:

(i) G has a regular orbit on P;
(ii) G � D2p+2;
(iii) G � D8 ∗C4 and p = 5.

Proof. Let G be a minimal counterexample. By a result of Hartley and Turull [8,
Lemma 2.6.2], we may assume that P is elementary abelian. Then G is nonabelian
(see, for example, [4, Corollary 4.I]). If G is a proper quotient of G, then either
|G| ≤ 1

3 |G| ≤
2
3 p + 3 < 2p + 2 or p > 2 and |G| = 1

2 |G| ≤ p + 9
2 < 2p + 2. In particular,

every proper quotient of G has a regular orbit. By [4, Lemmas 2.I and 3.I], it suffices
to assume that P is an absolutely irreducible G-module over a finite field with q = pt
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elements. In particular, the centre Z(G) of G is cyclic. Let M be the set of minimal
subgroups of G. Then for every x ∈ P there exists M ∈M such that M ≤ CG(x). Hence,

P =
⋃

M∈M

CP(M). (2.1)

Since G acts faithfully, CP(M) < P for every M ∈ M. This shows that m := |M| ≥ 2
and

|P| <
∑

M∈M

|CP(M)| ≤ m
|P|
q
. (2.2)

Therefore, 1
2 (|G| − 9) ≤ p ≤ q ≤ m − 1. Let |G| = 2p + k with k ≤ 9 (here k may be

negative). We discuss four cases.

Case 1. k ∈ {3, 5, 7, 9}. Here G has odd order. Since two distinct minimal subgroups
of G intersect trivially, it follows that m ≤ 1

2 (|G| − 1). Equality can only hold if G is a
3-group. Then p = 2 according to [4, Theorem 1.II] and we easily get a contradiction.
Hence, m ≤ 1

2 (|G| − 3). If we have equality this time, G consists of elements of order
3 and just one subgroup of order 5. But then G is nilpotent and must contain elements
of composite order as well. This shows that m ≤ 1

2 (|G| − 5). Since the number of
subgroups of prime order r is always congruent to 1 modulo r (Frobenius’ extension
of Sylow’s theorem), equality in this case leads to G � C7 o C3. Of course, this
is impossible and we conclude that 1

2 (|G| − k) ≤ p ≤ m − 1 ≤ 1
2 (|G| − 9) and k = 9.

However, it is not hard to see that there is no group with the desired number of minimal
subgroups.

Case 2. k ∈ {4, 8}. Now G has even order and p > 2. Hence, |G| is not divisible by 4.
It is well known that in this situation G has a normal 2-complement N. As usual, the
number of minimal subgroups of G inside N is at most 1

2 (|N| − 1) < 1
4 |G|. Let S be

a Sylow 2-subgroup of G. Then the number of minimal subgroups of G outside N is
|G : NG(S )|. If S < NG(S ), then m < 1

4 |G| +
1
6 |G| =

5
12 |G|. Since 1

2 |G| − 4 ≤ p ≤ m − 1,
we see that |G| < 36. These cases have been handled in [12, Proposition 14.9]. Let
S = NG(S ). Then S acts as inversion on N and N must be abelian. Ito’s theorem implies
that dim P = 2 (see [9, Theorem 6.15]). Since N ≤ G′ ≤ SL(2, q), N is cyclic and so
G ∈ {D2p+4,D2p+8}. Both cases are excluded by [12, Proposition 14.8].

Case 3. k = 6. As before, 1
2 |G| − 3 = p ≤ m − 1. Suppose first that m = 1

2 |G| − 2. Let
M = {M1, . . . , Mp+1} and |CP(Mi)| = pdi with d1 ≥ · · · ≥ dp+1. Setting |P| = pn, we
refine (2.2) to

|P| ≤
p+1∑
i=1

|CP(Mi)| −
p+1∑
i=2

|CP(M1) ∩ CP(Mi)| ≤ pd1 + (1 − pd1−n)
p+1∑
i=2

pdi ≤ pn. (2.3)

This implies that d1 = · · · = dp+1 = n − 1. In particular, every Mi acts faithfully on
[Mi, P] � Cp and we deduce that |Mi| | p − 1. Hence, |Mi| divides |G| − 2(p − 1) = 8
and G is a 2-group. But then we may choose Mi ≤ Z(G) and obtain the contradiction
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CP(Mi) = 1, since CP(Mi) is G-invariant and P is irreducible. This argument implies
that m ≥ 1

2 |G| − 1. If G is still a 2-group, p must be a Fermat prime or a Mersenne prime
by [4, Theorem 2.II]. It follows easily that p = 5 (a Fermat prime) and |G| = 16. Here
one can show with GAP [5] that G � D8 ∗C4 as given in the statement of our theorem.
Now suppose that G is not a 2-group. If m = 1

2 |G| − 1, then, by (2.3), G contains just
one minimal subgroup of odd (prime) order. Since the number of involutions is always
odd, we conclude that |G| ≡ 2 (mod 4). But this gives the contradiction p = 2. Hence,
we may assume that m ≥ 1

2 |G|. At this point we refer to the next case.

Case 4. m ≥ 1
2 |G|. First observe that this case includes the remaining possibility

k ≤ 2, since 1
2 (|G| − k) ≤ p ≤ m − 1. Moreover, G is given as in Proposition 2.1. Since

Z(G) is cyclic, some cases can be excluded immediately. If G has odd order, then
m ≤ 1

2 (|G| − 1), which is impossible. Therefore, |G| is even and p > 2.
Suppose first that G � A o C2, where A is abelian and C2 acts as inversion. Let M

be a minimal subgroup of G lying inside A. Then M EG and CP(M) is G-invariant.
It follows that CP(M) = 1. Hence, in (2.1) we only need to consider the minimal
subgroups outside A. This leads to k ∈ {2, 6} in (2.2) after taking the last cases into
account. By Ito’s theorem, we have dim P = 2 and O2′(A) ≤ SL(2, q) is cyclic. Since
also Z(G) is cyclic, A contains at most one involution. This shows that A is cyclic and
G ∈ {D2p+2,D2p+6}. The first case corresponds to the exception given in the statement
of the theorem and the second case is excluded by [12, Proposition 14.8].

Next let G � Cn
2 o C2 with n ≥ 2. Then |Z(G)| = 2 and [1, Lemma 1.1] gives

|G : G′| = 4. A theorem of Taussky leads to G � D8 (see [1, Proposition 1.6]). But
then p = 3 and G � D2p+2. Now let G � C2n

2 o C3. Then Ito’s theorem implies that
dim P ≤ 3 and the 2-rank of G is at most 3 (see, for example, [12, Proposition 7.13]).
Consequently, n = 1, G � A4 and p = 5. One can show that A4 always has a regular
orbit (see [12, Proposition 14.9]).

Now we discuss the extraspecial group G � D8 ∗ · · · ∗ D8 with n ≥ 2 factors (note
that there are no elementary abelian direct summands, because Z(G) is cyclic). Then
p ≥ 1

2 |G| − 3 ≥ 13 by the last cases. Let z ∈ Z(G) be the unique central involution.
Then CP(z) = 1, since CP(z) is G-invariant. Hence, z inverts the elements of P. The
noncentral involutions in G can be paired in the form {x, xz}. Then P = [x, P] × CP(x)
and CP(x) ⊆ [xz, P]. This yields |CP(x)| |CP(xz)| ≤ |P| and

|CP(x)| + |CP(xz)| ≤ |CP(x)| +
|P|
|CP(x)|

≤
|P|
p

+ p.

As in (2.2),

|P| <
m − 1

2

(
|P|
p

+ p
)
.

From [2, Table 1], it follows that m ≤ 3
4 |G|. In the case |P| ≥ p3, we derive the

contradiction

p <
m
2

(
1 +

1
p

)
≤

3
8
|G|

14
13

=
21
52
|G| ≤

1
2
|G| − 3.
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Therefore, |P| = p2 and dim P = 2. Then again G has 2-rank at most 3, which
contradicts n ≥ 2.

In the case exp(G) = 3, G has odd order, which was already excluded. Finally, the
cases G ∈ {S 3 × D8, S 2

3, S 4, A5} give 1
2 |G| − 3 ≤ p ≤ m − 1 ≤ 1

2 |G| (see [2, Table 1])
and k = 2. Again one can show that these groups have regular orbits (see [12,
Proposition 14.9]). �

Theorem 2.2 does not extend to |G| = 2p + 10. For example, the semidihedral group
S D16 of order 16 acts faithfully on C2

3 without having regular orbits, since 16 > 9.
Similarly, SmallGroup(24, 8) is an automorphism group on C2

7 without regular orbits.
There is no doubt that one can classify these examples as well, but this becomes
increasingly tedious and probably will not reveal new insights.

One can check that the exception G = D8 ∗ C4 in Theorem 2.2 actually occurs. In
the following, we show that the other exceptions occur for every odd prime p.

Proposition 2.3. Let p be an odd prime. Then there exists an automorphism group G
on a finite p-group P such that |G| = 2p + 2 and G has no regular orbit on P.

Proof. Let P be a two-dimensional vector space over Fp. We regard P as the additive
group of the field Fp2 . Let γ be a generator of F×p2 . Then H := 〈γp−1〉 has order p + 1
and acts by multiplication on P. Let F be the Frobenius automorphism of Fp2 . Then
F(γp−1) = γp2−p = γ1−p and G := H o 〈F〉 � D2p+2 acts faithfully on P. It suffices to
show that F fixes every orbit of H on P. Any nontrivial element of P has the form γi

for some i ∈ Z. Then F(γi) = γip = γiγi(p−1). Hence, γi and F(γi) lie in the same orbit
of H. �

For p = 2, the smallest p′-automorphism group without regular orbits is the
semilinear group C7 o C3 acting on C3

2. It is obvious from the group order that in
this situation there are no regular orbits.

3. Application

In the next theorem we consider blocks of finite groups with respect to an
algebraically closed field of characteristic p > 0. We use the standard notation, which
can be found for example in [12].

Theorem 3.1. Let B be a p-block of a finite group with abelian defect group D
and inertial index e ≤ 6p + 5. Then Brauer’s k(B)-conjecture holds for B, that is,
k(B) ≤ |D|.

Proof. By [12, Theorem 14.13], we may assume that e > 255 and therefore p ≥ 43.
The inertial quotient I(B) of B is a p′-group of order e and acts faithfully on D. In
order to find a large orbit of I(B) on D, we may assume by [8, Lemma 2.6.2] that D is
elementary abelian of rank n. Then I(B) ≤ GL(n, p). Let N := I(B) ∩ SL(n, p) E I(B).
We use the arguments from the proof of Theorem 2.2 to show that N has a regular
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orbit on D. Suppose by way of contradiction that N has no regular orbit. LetM be the
set of minimal subgroups of N. Then D =

⋃
M∈M CD(M). Since N ≤ SL(n, p), we have

|[D,M]| ≥ p2 and |D : CD(M)| ≥ p2 for M ∈ M. Consequently,

|D| <
∑

M∈M

|CD(M)| ≤ |M|
|D|
p2

and p2 < |M| ≤ e ≤ 6p + 5. This contradicts p ≥ 43.
Hence, N has a regular orbit, that is, there exists x ∈ D such that CN(x) = 1. It

follows that |CI(B)(x)| ≤ |I(B)/N|. Now if |I(B)/N| is a prime or 1, then the claim follows
from [14, Proposition 11]. In the remaining case there exists a normal subgroup
K E I(B) such that |I(B)/K| is 4 or an odd prime. We conclude that |K| ≤ e/3 < 2p + 2.
Theorem 2.2 implies that K has a regular orbit on D. Now the claim follows from [12,
Lemma 14.5] and [14, Corollary 12]. �
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