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OPERATORS ON LOCALLY CONVEX SPACES

OF VECTOR-VALUED CONTINUOUS FUNCTIONS

A, GARCIA LOPEZ

Let E and F be locally convex spaces and let K be a compact

Hausdorff space. C(K,E) is the space of all B-valued continuous

functions defined on K , endowed with the uniform topology.

Starting from the well-known fact that every linear continuous

operator T from C(KtE) to F can be represented by an integral

with respect to an operator-valued measure, we study, in this paper,

some relationships between these operators and the properties of

their representing measures. We give special treatment to the

unconditionally converging operators.

As a consequence we characterise the spaces E for which an operator

T defined on C(K3E) is unconditionally converging if and only if

CTf) tends to zero for every bounded and converging pointwise to

zero sequence (f ) in CCK3E) .
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1. Introduction

Throughout this paper K is a compact Hausdorff topological space,

£ the Borel a-field of K, E and F are qua si complete Hausdorff

locally convex spaces, P^ and ?„ saturated families of seminorms
fi £

defining the topologies of E and F respectively, C(K3E) is the space

of all continuous iJ-valued functions defined on K , with the uniform

convergence topology.

We are interested in operators (= continuous linear operators) T

from C(K3E) to F and their operator-valued representing measures. The

study of the relationship between an operator and its representing measure

has been considered by many authors, see for instance [7], [2], [3], [5],

[9]f [//] or [J2]. Some interesting characterisations for several

properties of T in terms of properties of m are known when E and F

are Banach spaces. In this paper we consider this class of problems in

the general case where E and F are locally convex spaces.

The notation and terminology used and not defined can be found in

141 or m .

Before proceeding further, let us give some definitions and results

for reference purpose.

DEFINITION 1. [3] if m:t •*• L(E,F) is a (finitely additive)

operator-valued measure^ q e P } p e ?„ and ^ £ I then define

where v(A) denotes the set of disjoint finite E-partitions of A and

V = {xeE: p(x) < 1} .

We say that m has bounded semivariation if for each q in Pp

there i s a p in P_ with fh, ,(K) f ini te, and we write p ^ to
E (p*<j)

denote this correspondence.
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THEOREM 2. [3]. If T:C(K,E) •+ F is an operator, then there is a
a unique representing measure m:E -»• L(E3F") such that

i) m has bounded semivariation

ii) for x e E and z' e F', m ,(.) = <m(..)x,z'> is a finite regular

Borel measure

Hi) for f « C(K,E)

T(f) = I fdm .
JK

The reader could consult [3], [7 7] and [72] for more information

about representing measures.

Remarks: It is easy to prove for f e C(K3E), Act and p "u q

that

(1) q(\ fdm) < fn( }(A) sup{p(f(t)): UA] .

If x e E , the vector measure defined from E with values in F by

m (.) = m(.)x is the representing measure of the operator

T :C(K) •+• F, T (V) = T(xV) ; so an easy extension of a classical theorem

of Bartle, Dunford and Schwartz (VI.2.1. of [4]), proves that

md.) c L(E,F) if and only if T is a weakly compact operator for every

x e. E .

2. The strongly continuous at $ measures

In this section we introduce a new concept of semivariation for an

operator-valued measure very helpful in characterising some properties of

an operator T from C(K,E) to F .

DEFINITION 3. For m:Z ->• L(E,F), q e Pp, B a bounded subset of E

and A e 1, we define fh~ (A) by

mR (A) = sup{q( t m(A.)x-): TteU(A)3 ix.} c s} .
If

We say that m is strongly continuous at <fi (s.c.v.) if for each bounded
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set B c E and each q e P~

lim f»BqCAn) = 0

for every decreasing sequence (A ) + <f> in E .

When E and F are Banach spaces, the s.c.v. measures are the

s-bounded measures of [3], or those with semivariation continuous at t\>

(see [2], [5] or [9]) , so the representing measure of every compact,

weakly compact, absolutely summing, nuclear or unconditionally converging

operator possesses this property.

Now we study some properties of mD

tsq

For each z' in F' , let m , be the vector measure, with values

in the locally convex space (E'} 8(E'3E)) , defined by

<x,m^,(A)> = <m(A)x,z'> x e E} A e Z .

Whenever m is a representing measure, m t has bounded variation, that
z

is:

In? f L ,(K) = sup{.?7 p'(m9l(A.)): iA.) e Tl(K)}<"

for every continuous seminorm p' on £" . Indeed each \m , I , is a
s p

finite positive Borel regular measure on K .

It can also easily be shown that the following property holds:

If B is a bounded set in E. p_ is the seminorm defined on E'
D

by pB(x') = sup {\<x,x'>\: x e B) and q e Pp , then

(2) KJA) = suP^m.fln (A): z' e V°},A e I .
bq z p s q

PROPOSITION 4. Let m:Z •*• L(E3F) be a representing measure, B a

bounded disc (absolutely convex set) in E and A £ E, then:

a) mB (A) = sicp{qC\ fdm): f e C(K,E)3 f(A) £ B) for q e Pp3

'A

?B 'A
K , L (A) = sup{\<\ fdm}z'>\: f e C(K3E), f(A) £ B) for z< e E' .z P 1A
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Proof. We prove a), the proof of b) is similar.

For / £ C(K,E) and f(A) £ B, there is a net (f.) of
d

E-simple functions which converges uniformly to / and fi(A) c B for
3

every j . Then
q( If dm) = q(lim I f-dm) nmR (A) .

k >A
 3 q

On the other hand, for £ > 0 there is a partition IT e

f « iA13...,An\ a finite set {x ,̂ . . .xn } c B and a z ' e V°

such, that

mBJA) - z < Q2 j

For the regular i ty of m , , we can choose some compact se t s X. c A-
1>

and disjoint open sets 0* ̂  K> , with

(.Here I. I denotes the variation of the scalar measure) .

Now there are functions y. e C(K) , with 0 < y. < 1 , y.(K.) = {1}

and V.(K\G.) = {0} . Let f e C(K,E) be
1> "V

then

• 1, "V

- lt J V ^ ^ f l + |<j fdm,z'>\ < z + q(j fdm) .

Since c is arbitrary, this completes the proof.

Remark: Looking at the above proof, we can deduce, when A is an

open set, that:
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ffiB (A) = sup{q(\ fdm): f e C(K}E)} fCA) c B, suppCf) £ A};

K , L CAJ = sup{|<[ fdm,z'>\: f e CC^ffJ, f(.A) c B,
PB -U

In the next theorem, the equivalence a ** d gives an interesting

characterisation of the operators with s.c.v. representing measure.

THEOREM 5. Let T:C(K3E) + F be an operator with representing

measure m:l -»• L(E,F") . Then, the following assertions are equivalent:

a) m is s.c.v.;

b) m(X) £ L(E,F) and for every bounded disc B c E and every q e ?„,

the set of scalar measures {\m , \ : z' e y°} is uniformly countably

additive;
c) For each B and q as in b) there is a finite positive regular

Borel control measure V on K such that

Urn ffiB (A) = 0 ;
Bq

d) (Tf ) tends to zero for every uniformly bounded sequence

(f ) £ C(K,E) converging pointwise to zero.

Proof: The equivalence a ** b ** c follows from (2) and from some

classical results for sets of scalar measures (see I. 2 of [4] or IV. 9 of

[6]) .

a *>d) Let (f ) £ C(KSE) be a uniformly bounded sequence, converging

pointwise to zero, we shall prove that (Tf ) tends to zero. Let

B £ E be a bounded disc with / (K) c B for every n . If q c Pp ,

there is a finite positive regular Borel measure y and a 9 > 0 such

that

tfL, (A) < h when \i(A) < 3
tsq

Now let p e P- satisfy p ^ q , then the sequence (p°f ) £ C(K)

converges pointwise to zero, so that, by the Egoroff theorem, there is a
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Ko e Ej with \i(K\Ko) < d, and no such t h a t

/ .00
Cp}q)

for s e K and n > no . Then

q(\ f dm) ± "jjP'i* (°K) + m (K\KO)
KO

 n p ^

Hence q(Tf ) < 1 for n > no and we conclude t h a t (Tf ) •* 0 .

d°*b) Since C(K) has the rec iproca l Dunford-Pettis property (see [ 7 ] ) ,

for each x e X the operator T i s weakly compact, so

m(Z) £ L(EtF) and i t suff ices to show t h a t for any bounded disc

B c E and any q e P- the family of sca la r measures

{\m , | : z' e V} i s uniformly countably add i t i ve . Indeed i f i t were2 PB <7

not , then there i s a sequence (z') <= V , and another (G ) of

d i s j o i n t open se t s in K , with

Now by proposition 4 and its remark, we can choose a sequence of functions

(f ) c C(K3E) such that for every n we have

fn(K) £ B, j

This sequence is uniformly bounded and converges pointwise to zero.

However (Tf ) does not converge to zero in F because

\.dm, z' > I > e

and this contradicts d).
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3. Unconditionally converging operators

In the following, we are going to characterise the unconditionally

converging operators from C(K3E) to F .

Recall that an operator T between E and F is unconditionally

converging if T maps weakly unconditionally Cauchy (w.u.c.) series into

unconditionally convergent ones, or, what is equivalent, (Tx ) tends

to zero in F when Zx is a w.u.c. series in E .
n

The next result follows from 14.6 of [g],

LEMMA 6. For every sequence (x ) in E, the following assertions

are equivalent:

a) txn is w.u.c.;

b) z\< x ,x'>\ <°° for each x' e E'j

c) {£ x : M e F(JN)) is a bounded set in E .
neM

n

Here F(JN) denotes the system of all finite subsets of JN .

THEOREM 7. Let T:C(K,E) -*• F be an unconditionally converging

operator, then its representing measure m satisfies

a) m is s.o.v.;

b) for every A e 1 , mCA) :E ->• F is an unconditionally converging

operator.

Proof. The proof of a) is just like that of "d =» b" in

Theorem 5, since the sequence (f ) mentioned there satisfies:

i} { I f : M e F(1N) } is a bounded set in C(K,E) . So if is a
n

w.u.c. series;

ii) (Tf ) does not converge to zero.

b) Suppose that T is an unconditionally converging operator, A e E

and Zx a w.u.c. series in E . We shall prove that (m(A)x ) tends

to zero in F •
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Let B be a bounded disc in E such that d : n £ j ) c B. if
n ~

q e Pp, using the existence of a regular control measure for in-, , we can

find a compact H and an open G in K with H £ A c G and
mD (G\K) < h . then there is a function f e C(K) such that 0 < V < 1 ,
tiq

V(G\H) = 10) and ff j j = ( i ) . We define fn e C(K,E) by fn = x^*' ,

i t i s clear that E_f i s a w.u.c. s e r i e s , so (Tf ) tends to zero and we

have

q(Tf - m(A)x) = q(\ (V - X/p)dm) < m (G\E) < % .
At ft. \ V T

Therefore we obtain that q(m(A)x ) < 1 for almost every n . Hence

(m(A)x ) converges to zero and the proof is complete.

An immediate consequence of Teorems 5 and 7 is:

COROLLARY 8. If T:C(K,E) -*• F is an unconditionally converging

operator, then (Tf ) tends to zero for every uniformly bounded sequence

(f ) c C(K,E) converging pointwise to zero.

The converse of the above result is not true in general. Now, we

characterise those spaces E for which this converse holds.

DEFINITION 9. A locally convex space E is weakly Z-complete if

every w.u.c. series in E is weakly convergent.

All the weakly sequentially complete spaces, and so all the semi-

reflexive ones, are weakly £-complete. An easy extension of the Bessaga-

Pelczynski theorem proves that a sequentially complete locally convex space

E is weakly Z-complete if and only if it does not contain a copy of Co •

If E is a weakly E-complete space, the converse of Corollary 8 is

true; furthermore this property characterises the weakly Z-complete

spaces, as we prove in the next theorem.

THEOREM 10. The following assertions are equivalent;

a) E is weakly Z-complete;
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b) for any compact Eausdorff space K and any space F, an operator

T:C(K,El •* F is unconditionally converging if and only if its representing

measure is s.c.v.;

c) there is a compact K such that every operator T from C(K}E) to

E with representing measure s.c.v. is unconditionally converging.

Proof, a => b) Let If be a w.u.c. series, then lfn(t) is

weakly convergent for every t e K , then, according to the Orlicz-Pettis

theorem, Zf (t) is convergent for each t . Therefore (Tf ) tends to

zero in F , because (f) is a uniformly bounded sequence converging

pointwise to zero in C(K,E) and m is s.c.v.

b=*c) Trivial.

c=>a) First we fix a e K and define an operator T on C(K,E) by

T(_fl = f(.a) . Then, by Theorem 5, the representing measure of T is

s.c.v., so T is unconditionally converging.

Now we consider a function V e C(K) with 0 S Y < 1 and V(a) = 1 .

If tx is a w.u.c. series in E , then Zf , with / = xJV is w.u.c.

in C(K,E)_ , so ZT(f ) = 1x is unconditionally convergent in E . Hence

E is weakly E-complete.

The result "b =» a" of the above theorem extends, with an easier

proof, an analogous theorem proved by Saab in [9] for E and F Banach

spaces.

Bombal and Cembranos show in [2] that conditions a) and b) in

theorem 7 characterise the unconditionally converging operators from

C(KjE) to p , for E and F Banach spaces, if and only if K is a

dispersed compact (that is, it does not contain any perfect set) . In our

case this result is also true.

THEOREM 11. Let K be a dispersed compact and T an operator from

C(K3E) to F j with representing measure m , then the following assertions

are equivalent:
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a) T is an unconditionally converging operator

b) m is s.c.v. and for each A e I, mCA) :E •*• F is an unconditionally

converging operator.

Proof. The proof of "b =* a" is similar to that of Theorem 7 of

[2], but we use that for a regular Borel measure \i in a dispersed

compact K there is a countable family (x ) in K such that

V. = Z v(x ) 3
n Xn

(see [JO] p.3381 instead, to consider a metrisable quotient of K .

Remark: It is also possible to prove an analogue of the previous

theorem for compact and weakly compact operators from C(K,E) to F .
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