46E40, 46G10, 47B38

BULL. AUSTRAL. MATH. SOC. VOL. 36 (1987) 267-278.

OPERATORS ON LOCALLY CONVEX SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS

A. GARCÍA LÓPEZ

Let E and F be locally convex spaces and let K be a compact Hausdorff space. C(K,E) is the space of all E-valued continuous functions defined on K, endowed with the uniform topology.

Starting from the well-known fact that every linear continuous operator T from C(K,E) to F can be represented by an integral with respect to an operator-valued measure, we study, in this paper, some relationships between these operators and the properties of their representing measures. We give special treatment to the unconditionally converging operators.

As a consequence we characterise the spaces E for which an operator T defined on C(K,E) is unconditionally converging if and only if (Tf_n) tends to zero for every bounded and converging pointwise to zero sequence (f_n) in C(K,E).

Received 13 October 1986. This research was partially supported by CAICYT grang n. 0338/84.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87 \$A2.00 + 0.00.

1. Introduction

Throughout this paper K is a compact Hausdorff topological space, Σ the Borel σ -field of K, E and F are quasicomplete Hausdorff locally convex spaces, P_E and P_F saturated families of seminorms defining the topologies of E and F respectively, C(K,E) is the space of all continuous E-valued functions defined on K, with the uniform convergence topology.

We are interested in operators (= continuous linear operators) Tfrom C(K,E) to F and their operator-valued representing measures. The study of the relationship between an operator and its representing measure has been considered by many authors, see for instance [1], [2], [3], [5], [9], [11] or [12]. Some interesting characterisations for several properties of T in terms of properties of m are known when E and Fare Banach spaces. In this paper we consider this class of problems in the general case where E and F are locally convex spaces.

The notation and terminology used and not defined can be found in [4] or [8].

Before proceeding further, let us give some definitions and results for reference purpose.

DEFINITION 1. [3] If $m: \Sigma \rightarrow L(E,F)$ is a (finitely additive) operator-valued measure, $q \in P_F$, $p \in P_F$ and $A \in \Sigma$ then define

$$\tilde{m}_{(p,q)}(A) = \sup\{q(\sum_{i \in \pi} m(A_i) x_i) : \pi \in \Pi(A), x_i \in V_p\}$$

where $\pi(A)$ denotes the set of disjoint finite $\Sigma-\text{partitions}$ of A and $V_p=\{x\!\!\in\!\!E\colon p(x)\leq 1\}$.

We say that m has bounded semivariation if for each q in P_F there is a p in P_E with $\tilde{m}_{(p,q)}(K)$ finite, and we write $p \sim q$ to denote this correspondence. THEOREM 2. [3]. If $T:C(K,E) \rightarrow F$ is an operator, then there is a a unique representing measure $m:\Sigma \rightarrow L(E,F'')$ such that

- i) m has bounded semivariation
- ii) for $x \in E$ and $z' \in F'$, $m_{xz'}(.) = \langle m(.)x, z' \rangle$ is a finite regular Borel measure
- iii) for $f \in C(K, E)$

$$T(f) = \int_{K} f dm$$

The reader could consult [3], [11] and [12] for more information about representing measures.

<u>Remarks</u>: It is easy to prove for $f \in C(K,E)$, $A \in \Sigma$ and $p \sim q$ that

(1)
$$q\left(\int_{A} f dm\right) \leq \tilde{m}_{(p,q)}(A) \sup\{p(f(t)): t \in A\}.$$

If $x \in E$, the vector measure defined from Σ with values in F by $m_x(.) = m(.)x$ is the representing measure of the operator $T_x:C(K) \rightarrow F$, $T_x(\Psi) = T(x\Psi)$; so an easy extension of a classical theorem of Bartle, Dunford and Schwartz (VI.2.1. of [4]), proves that $m(\Sigma) \subseteq L(E,F)$ if and only if T_x is a weakly compact operator for every $x \in E$.

2. The strongly continuous at ϕ measures

In this section we introduce a new concept of semivariation for an operator-valued measure very helpful in characterising some properties of an operator T from C(K,E) to F.

DEFINITION 3. For $m: \Sigma \to L(E,F)$, $q \in P_F$, B a bounded subset of E and $A \in \Sigma$, we define $\tilde{m}_{Bq}(A)$ by

$$\tilde{m}_{Bq}(A) = \sup\{q(\sum_{i \in \pi} m(A_i)x_i): \pi \in \Pi(A), \{x_i\} \subset B\}.$$

We say that m is strongly continuous at ϕ (s.c.v.) if for each bounded

set $B \subseteq E$ and each $q \in P_F$

 $\lim \tilde{m}_{Bq}(A_n) = 0$

for every decreasing sequence $(A_{\nu}) + \phi$ in Σ .

When E and F are Banach spaces, the s.c.v. measures are the *s*-bounded measures of [3], or those with semivariation continuous at ϕ (see [2], [5] or [9]), so the representing measure of every compact, weakly compact, absolutely summing, nuclear or unconditionally converging operator possesses this property.

Now we study some properties of $\tilde{\textit{m}}_{R\alpha}$.

For each z' in F', let $m_{z'}$, be the vector measure, with values in the locally convex space $(E', \beta(E', E))$, defined by

$$\langle x, m_{\gamma}, (A) \rangle = \langle m(A)x, z' \rangle \quad x \in E, A \in \Sigma$$

Whenever m is a representing measure, m_z , has bounded variation, that is:

$$|m_{z}|_{p'}(K) = \sup\{\sum_{i=1}^{n} p'(m_{z'}(A_{i})): \{A_{i}\} \in \Pi(K)\} < \infty$$

for every continuous seminorm p' on E'. Indeed each $|m_{z'}|_{p'}$, is a finite positive Borel regular measure on K.

It can also easily be shown that the following property holds:

If B is a bounded set in E, p_B is the seminorm defined on E' by $p_B(x') = \sup \{ |\langle x, x' \rangle | : x \in B \}$ and $q \in P_F$, then

(2)
$$\tilde{m}_{Bq}(A) = \sup\{|m_{z}||_{p_{B}}(A): z' \in V_{q}^{\circ}\}, A \in \Sigma.$$

PROPOSITION 4. Let $m:\Sigma \rightarrow L(E,F)$ be a representing measure, B a bounded disc (absolutely convex set) in E and $A \in \Sigma$, then:

a)
$$\tilde{m}_{Bq}(A) = \sup\{q(\int_{A} fdm): f \in C(K, E), f(A) \subseteq B\}$$
 for $q \in P_{F}$,
b) $|m_{z'}|_{p_{B}}(A) = \sup\{|<\int_{A} fdm, z'>|: f \in C(K, E), f(A) \subseteq B\}$ for $z' \in E'$.

270

Operators on locally convex spaces

Proof. We prove a), the proof of b) is similar.

For $f \in C(K, E)$ and $f(A) \subseteq B$, there is a net (f_j) of E-simple functions which converges uniformly to f and $f_j(A) \subseteq B$ for every j. Then

$$q(\int_{A} f dm) = q(\lim \int_{A} f_{j} dm) \leq m_{Bq}(A)$$

On the other hand, for $\varepsilon > 0$ there is a partition $\pi \in \Pi(A)$ $\pi = \{A_1, \ldots, A_n\}$, a finite set $\{x_1, \ldots, x_n\} \subseteq B$ and a $z' \in V_q^\circ$ such that

$$\tilde{m}_{Bq}(A) - \epsilon < |\sum_{i=1}^{n} \langle m(A_i) x_i, z' \rangle| = |\sum_{i=1}^{n} m_{x_i z'}(A_i)|$$

For the regularity of m_{x_iz} , we can choose some compact sets $K_i \subset A_i$ and disjoint open sets $G_i \supseteq K_i$, with

$$|m_{x_i^z},|(A_i \setminus K_i)| < \frac{\epsilon}{2n} , |m_{x_i^z},|(G_i \setminus K_i)| < \frac{\epsilon}{2n} .$$

(Here |. | denotes the variation of the scalar measure).

Now there are functions $\Psi_i \in C(K)$, with $0 \le \Psi_i \le 1$, $\Psi_i(K_i) = \{1\}$ and $\Psi_i(K \setminus G_i) = \{0\}$. Let $f \in C(K, E)$ be

$$f = \sum_{i=1}^{n} x_i \Psi_i ,$$

then

$$\begin{split} m_{Bq}(A) &- \varepsilon < \left| \sum_{i=1}^{n} m_{x_i^z}, (A_i) - \sum_{i=1}^{n} m_{x_i^z}, (K_i) \right| + \left| \sum_{i=1}^{n} m_{x_i^z}, (K_i) \right| \\ &- \sum_{i=1}^{n} \int_A \Psi_i dm_{x_i^z}, \left| + \right| < \int_A f dm, z' > \left| < \varepsilon + q \left(\int_A f dm \right) \right| . \end{split}$$

Since ε is arbitrary, this completes the proof.

<u>Remark</u>: Looking at the above proof, we can deduce, when A is an open set, that:

A. García López

$$\begin{split} \tilde{m}_{Bq}(A) &= \sup\{q(\int_{A} fdm): f \in C(K, E), f(A) \subset B, \sup\{f) \subseteq A\}; \\ |m_{z'}|_{p_{B}}(A) &= \sup\{|<\int_{A} fdm, z'>|: f \in C(K, E), f(A) \subseteq B, \sup\{f) \subset A\}. \end{split}$$

In the next theorem, the equivalence $a \Leftrightarrow d$ gives an interesting characterisation of the operators with s.c.v. representing measure.

THEOREM 5. Let $T:C(K,E) \rightarrow F$ be an operator with representing measure $m:\Sigma \rightarrow L(E,F'')$. Then, the following assertions are equivalent:

a) m is s.c.v.; b) $m(\Sigma) \subseteq L(E,F)$ and for every bounded disc $B \subseteq E$ and every $q \in P_{F^{*}}$ the set of scalar measures $\{|m_{Z},|_{P_{B}}: z' \in V_{q}^{\circ}\}$ is uniformly countably additive;

c) For each B and q as in b) there is a finite positive regular Borel control measure Ψ on K such that

$$\lim_{\substack{\mu(A)\to 0}} \tilde{m}_{Bq}(A) = 0;$$

d) (Tf_n) tends to zero for every uniformly bounded sequence $(f_n) \subseteq C(K, E)$ converging pointwise to zero.

Proof: The equivalence $a \Leftrightarrow b \Leftrightarrow c$ follows from (2) and from some classical results for sets of scalar measures (see I. 2 of [4] or IV. 9 of [6]).

 $c \Rightarrow d$) Let $(f_n) \subseteq C(K, E)$ be a uniformly bounded sequence, converging pointwise to zero, we shall prove that (Tf_n) tends to zero. Let $B \subseteq E$ be a bounded disc with $f_n(K) \subset B$ for every n. If $q \in P_F$, there is a finite positive regular Borel measure μ and a $\partial > 0$ such that

$$\tilde{m}_{Bq}(A) < \frac{1}{2}$$
 when $\mu(A) < \partial$

Now let $p \in P_E$ satisfy $p \circ q$, then the sequence $(p \circ f_n) \subseteq C(K)$ converges pointwise to zero, so that, by the Egoroff theorem, there is a

272

Operators on locally convex spaces

 $K_{\circ} \in \Sigma$, with $\mu(K \setminus K_{\circ}) < \partial$, and n_{\circ} such that

$$p(f_n(s)) < \frac{1}{2\tilde{m}(p,q)(K)}$$

for $s \in K$ and $n > n_o$. Then

$$q(Tf_n) \leq q(\int_{K_o} f_n dm) + q(\int_{K \setminus K_o} f_n dm) \leq \frac{\tilde{m}(p,q)(K_o)}{2\tilde{m}(p,q)(K)} + \tilde{m}_{Bq}(K \setminus K_o)$$

Hence $q(Tf_n) < 1$ for $n > n_o$ and we conclude that $(Tf_n) \neq 0$. $d \Rightarrow b$) Since C(K) has the reciprocal Dunford-Pettis property (see [7]), for each $x \in X$ the operator T_x is weakly compact, so $m(\Sigma) \subseteq L(E,F)$ and it suffices to show that for any bounded disc $B \in E$ and any $q \in P_F$ the family of scalar measures $\{|m_z,|_{p_B} : z' \in V_q^o\}$ is uniformly countably additive. Indeed if it were not, then there is a sequence $(z'_n) \in V_q^o$, and another (G_n) of disjoint open sets in K, with

$$|m_{z_n}|_{p_B}(G_n) > \epsilon .$$

Now by proposition 4 and its remark, we can choose a sequence of functions $(f_n) \in C(K, E)$ such that for every n we have

$$f_n(K) \subseteq B$$
, $f_n(K \setminus G_n) = \{0\}$, $|\langle \int_K f_n dm, z'_n \rangle | \rangle \in$

This sequence is uniformly bounded and converges pointwise to zero. However (Tf_n) does not converge to zero in F because

$$q(Tf_n) \ge | < \int_K f_n dm, z'_n > | > \epsilon$$

and this contradicts d).

A. García López

3. Unconditionally converging operators

In the following, we are going to characterise the unconditionally converging operators from C(K, E) to F.

Recall that an operator T between E and F is unconditionally converging if T maps weakly unconditionally Cauchy (w.u.c.) series into unconditionally convergent ones, or, what is equivalent, (Tx_n) tends to zero in F when Σx_n is a w.u.c. series in E.

The next result follows from 14.6 of [8].

LEMMA 6. For every sequence (x_n) in E, the following assertions are equivalent:

- b) $\Sigma |\langle x_{m}, x' \rangle| < \infty$ for each $x' \in E'$;
- c) { $\Sigma x_n : M \in F(\mathbb{IN})$ } is a bounded set in E. $n \in M$

Here $F(\mathbb{N})$ denotes the system of all finite subsets of \mathbb{N} .

THEOREM 7. Let $T:C(K,E) \rightarrow F$ be an unconditionally converging operator, then its representing measure m satisfies

a) m is s.c.v.;

b) for every $A \in \Sigma$, $m(A): E \rightarrow F$ is an unconditionally converging operator.

Proof. The proof of a) is just like that of $"d \Rightarrow b"$ in Theorem 5, since the sequence (f_n) mentioned there satisfies:

i) { $\Sigma f_n: M \in F(\mathbb{N})$ } is a bounded set in C(K, E) . So Σf_n is a w.u.c. series;

ii) (Tf_{v}) does not converge to zero.

b) Suppose that T is an unconditionally converging operator, $A \in \Sigma$ and Σx_n a w.u.c. series in E. We shall prove that $(m(A)x_n)$ tends to zero in F. Let *B* be a bounded disc in *E* such that $\{x_n : n \in \mathbb{N}\} \subseteq B$. If $q \in P_F$, using the existence of a regular control measure for \tilde{m}_{Bq} , we can find a compact *H* and an open *G* in *K* with $H \subseteq A \subseteq G$ and $\tilde{m}_{Bq}(G \setminus K) < \frac{1}{2}$, then there is a function $\Psi \in C(K)$ such that $0 \leq \Psi \leq 1$, $\Psi(G \setminus H) = \{0\}$ and $\Psi(H) = \{1\}$. We define $f_n \in C(K, E)$ by $f_n = x_n \Psi$, it is clear that Σf_n is a w.u.c. series, so (Tf_n) tends to zero and we have

$$q(Tf_n - m(A)x_n) = q\left(\int_K (\Psi - \chi_A x_n)dm\right) \le \tilde{m}_{Bq} (G \setminus H) < \frac{1}{2}.$$

Therefore we obtain that $q(m(A)x_n) < 1$ for almost every n. Hence $(m(A)x_n)$ converges to zero and the proof is complete.

An immediate consequence of Teorems 5 and 7 is:

COROLLARY 8. If $T:C(K,E) \rightarrow F$ is an unconditionally converging operator, then (Tf_n) tends to zero for every uniformly bounded sequence $(f_n) \in C(K,E)$ converging pointwise to zero.

The converse of the above result is not true in general. Now, we characterise those spaces E for which this converse holds.

DEFINITION 9. A locally convex space E is weakly Σ -complete if every w.u.c. series in E is weakly convergent.

All the weakly sequentially complete spaces, and so all the semireflexive ones, are weakly Σ -complete. An easy extension of the Bessaga-Pelczynski theorem proves that a sequentially complete locally convex space E is weakly Σ -complete if and only if it does not contain a copy of C_{\circ} .

If E is a weakly Σ -complete space, the converse of Corollary 8 is true; furthermore this property characterises the weakly Σ -complete spaces, as we prove in the next theorem.

THEOREM 10. The following assertions are equivalent; a) E is weakly *\(\Sum_complete\)*; b) for any compact Hausdorff space K and any space F, an operator $T:C(K,E) \rightarrow F$ is unconditionally converging if and only if its representing measure is s.c.v.;

c) there is a compact K such that every operator T from C(K,E) to E with representing measure s.c.v. is unconditionally converging.

Proof. $a \Rightarrow b$) Let Σf_n be a w.u.c. series, then $\Sigma f_n(t)$ is weakly convergent for every $t \in K$, then, according to the Orlicz-Pettis theorem, $\Sigma f_n(t)$ is convergent for each t. Therefore (Tf_n) tends to zero in F, because (f_n) is a uniformly bounded sequence converging pointwise to zero in C(K,E) and m is s.c.v.

b⇒c) Trivial.

 $c \Rightarrow a$) First we fix $a \in K$ and define an operator T on C(K,E) by T(f) = f(a). Then, by Theorem 5, the representing measure of T is s.c.v., so T is unconditionally converging.

Now we consider a function $\Psi \in C(K)$ with $0 \leq \Psi \leq 1$ and $\Psi(\alpha) = 1$. If Σx_n is a w.u.c. series in E, then Σf_n , with $f_n = x_n \Psi$ is w.u.c. in C(K, E), so $\Sigma T(f_n) = \Sigma x_n$ is unconditionally convergent in E. Hence E is weakly Σ -complete.

The result " $b \Rightarrow a$ " of the above theorem extends, with an easier proof, an analogous theorem proved by Saab in [9] for E and F Banach spaces.

Bombal and Cembranos show in [2] that conditions a) and b) in theorem 7 characterise the unconditionally converging operators from C(K,E) to F, for E and F Banach spaces, if and only if K is a dispersed compact (that is, it does not contain any perfect set). In our case this result is also true.

THEOREM 11. Let K be a dispersed compact and T an operator from C(K,E) to F, with representing measure m, then the following assertions are equivalent:

a) T is an unconditionally converging operator

b) m is s.c.v. and for each $A \in \Sigma$, $m(A): E \rightarrow F$ is an unconditionally converging operator.

Proof. The proof of " $b \Rightarrow a$ " is similar to that of Theorem 7 of [2], but we use that for a regular Borel measure μ in a dispersed compact K there is a countable family (x_n) in K such that

$$\mu = \sum_{n \in IV} \mu(x_n) \partial_{x_n}$$

(see [10] p.338) instead, to consider a metrisable quotient of K.

<u>Remark:</u> It is also possible to prove an analogue of the previous theorem for compact and weakly compact operators from C(K,E) to F.

References

- [1] J. Batt and E.J. Berg, "Linear bounded transformations on the space of continuous functions", J. Funct. Anal. 4 (1969), 215-239.
- [2] F. Bombal and P. Cembranos, "Characterization of some classes of operators on spaces of vector-valued continuous functions", Math. Proc. Cambridge Philos. Soc. 97 (1985), 137-146.
- [3] J.K. Brooks and P.W. Lewis, "Linear operators and vector measures", Trans. Amer. Math. Soc. 192 (1974), 139-163.
- [4] J. Diestel and J.J. Uhl, Vector measures, (Math. Surveys 15 A.M.S. Providence R.I. 1977).
- [5] I. Dobrakov, "On representation of linear operators on C_o(T,X)", *Czechoslovak Math. J.* 21 (1971), 13-30.
- [6] N. Dunford and J.T. Schwartz, Linear operators, part I (Interscience, New York, London 1958).
- [7] A. Grothendieck, "Sur les applications linéaires faiblement compactes d'espaces du tipe C(K), Canad. J. Math. 5 (1953), 129-173.
- [8] H. Jarchow, Locally convex spaces, (Teubner, Stuttgart 1981).
- [9] P. Saab, "Weakly compact, unconditionally converging and Dunford-Pettis operators on spaces of vector valued continuous functions", Math. Proc. Cambridge Philos. Soc. 95 (1984), 101-108.

277

- [10] Z. Semadeni, Banach spaces of continuous functions, (PWN-Polish Scientific Publishers, Warszawa 1971).
- [11] A.H. Shuchat, "Integral representation theorems in topological vector spaces", Trans. Amer. Math. Soc. 172 (1972), 373-397.
- [12] K. Swong, "A representation theory of continuous linear maps", Math. Ann. 155 (1964) 270-291.

Departamento de Teoria de Funciones, Facultad de Ciencias Matematicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.