GENERALIZATION OF A RESULT OF E. LUCAS

BY
R. A. MACLEOD

Abstract

A well-known result of E. Lucas enables one to obtain the residue modulo p of $\binom{M}{N}$ in terms of the base- p digits of M and N. Using a recent result of P. W. Haggard and J. O. Kiltenen, a proof of N. J. Fine has been adapted to yield the corresponding residue modulo p^{r}.

The following theorem has been known at least since the time of E. Lucas, who gives it in [4], pp. 417-420.

Theorem 1. Let p be prime, and let

$$
\begin{array}{ll}
M=M_{0}+M_{1} p+M_{2} p^{2}+\ldots+M_{k} p^{k}, & 0 \leqq M_{r}<p, 0 \leqq r \leqq k \\
N=N_{0}+N_{1} p+N_{2} p^{2}+\ldots+N_{k} p^{k}, & 0 \leqq N_{r}<p, 0 \leqq r \leqq k
\end{array}
$$

Then

$$
\begin{equation*}
\binom{M}{N} \equiv\binom{M_{0}}{N_{0}}\binom{M_{1}}{N_{1}}\binom{M_{2}}{N_{2}} \ldots\binom{M_{k}}{N_{k}}(\bmod p) \tag{1}
\end{equation*}
$$

N. J. Fine [2] gives a short and simple proof of this result. It is our object to see what this result looks like if we replace the modulus p by the modulus p^{r} for arbitrary positive integer r. With the help of a recent result of P. W. Haggard and J. O. Kiltenen, it has been possible to adapt Fine's method to obtain a result corresponding to (1), as follows.

Theorem 2. Let p be prime, let r be a positive integer, and let

$$
M=M_{0}+M_{1} p^{r}+M_{2} p^{2 r}+\ldots+M_{k} p^{k r}, \quad 0 \leqq M_{s}<p^{r}, 0 \leqq s \leqq k
$$

Then

$$
\binom{M}{N} \equiv \sum\binom{p^{r-1} M_{0}}{N_{0}}\binom{p^{r-1} M_{1}}{N_{1}} \ldots\binom{p^{r-1} M_{k}}{N_{k}} \quad\left(\bmod p^{r}\right)
$$

over all $k+1$-tuples $\left(N_{0}, N_{1}, \ldots, N_{k}\right)$ such that

$$
p^{r-1} N=N_{0}+N_{1} p^{r}+\ldots+N_{k} p^{k r}, \quad 0 \leqq N_{s}<p^{r-1} M_{s}, 0 \leqq s \leqq k
$$

[^0]Example. We note that, unlike the case $r=1$, we need not have a unique $k+1$-tuple. For example, with $p=r=2$ and $N=10$, we have the potential 3-tuples $(0,1,1),(4,0,1),(0,5,0)$, and $(4,4,0)$. If we take $M=14$, we have $2 M_{0}=4,2 M_{1}=6, M_{2}=0$, and the result becomes (using only the 3-tuples $(0,5,0)$ and $(4,4,0)$)

$$
\binom{14}{10} \equiv\binom{4}{0}\binom{6}{5}+\binom{4}{4}\binom{6}{4}=6+15=21 \equiv 1 \quad(\bmod 4) .
$$

Lemma 1. For p a prime, m and n positive integers with $n \geqq m-1$, and for $0 \leqq k \leqq p^{n}$, we have

$$
\binom{p^{n}}{k}=\left\{\begin{array}{l}
0, \text { if } p^{n-m+1}+k \\
\binom{p^{m-1}}{i}, \text { if } k=i p^{n-m+1}
\end{array}\left(\bmod p^{m}\right)\right.
$$

Proof. This is the main result in [3].
Lemma 2. Let r and m be positive integers. Then for prime p we have

$$
(1+x)^{p^{m r}} \equiv\left(1+x^{p^{m r-m+1}}\right)^{p^{m-1}} \quad\left(\bmod p^{m}\right)
$$

Proof.

$$
(1+x)^{p^{m r}}=\sum_{k=0}^{p^{m r}}\binom{p^{m r}}{k} x^{k}
$$

Now, by Lemma 1,

$$
\binom{p^{m r}}{k}=\left\{\begin{array}{l}
0, \text { if } p^{m r-m+1+k} \\
\binom{p^{m-1}}{i}, \text { if } k=i p^{m r-m+1} \quad, \quad\left(\bmod p^{m}\right) .
\end{array}\right.
$$

Hence we have

$$
\begin{aligned}
(1+x)^{p^{m r}} & \equiv \sum_{i=0}^{p^{m-1}}\binom{p^{m-1}}{i} x^{p^{m r-m+1}} \quad\left(\bmod p^{m}\right) \\
& =\left(1+x^{p^{m r-m+1}}\right)^{p^{m-1}} \quad\left(\bmod p^{m}\right)
\end{aligned}
$$

Proof of Theorem 2. From the binomial theorem and Lemma 2, we have

$$
\begin{equation*}
\sum_{N=0}^{M}\binom{M}{N} x^{N}=(1+x)^{M}=\prod_{s=0}^{k}\left\{(1+x)^{p^{p}}\right\}^{M_{s}} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \equiv(1+x)^{M_{0}} \prod_{s=1}^{k}\left(1+x^{p^{r s-r+1}}\right)^{p^{r-1} M_{s}} \quad\left(\bmod p^{r}\right) \\
& =(1+x)^{M_{0}} \prod_{s=1}^{k} \sum_{m_{s}=0}^{p^{r-1} M_{r}}\binom{p^{r-1} M_{s}}{m_{s}} x^{m_{s} p^{r s-r+1}}
\end{aligned}
$$

Define M_{s}^{\prime} and l_{s} by

$$
M_{s}^{\prime}=\left\{\begin{array}{l}
M_{0}, s=0 \\
p^{r-1} M_{s}, s \geqq 1
\end{array} \quad l_{s}=\left\{\begin{array}{l}
0, s=0 \\
r s-r+1, s \geqq 1
\end{array}\right.\right.
$$

Then line (1) becomes

$$
\sum_{N=0}^{M}\binom{M}{N} x^{N}=\prod_{s=0}^{k} \sum_{m_{s}=0}^{M_{s}^{\prime}}\binom{M_{s}^{\prime}}{m_{s}} x^{m_{s} p^{\prime}}=\sum_{N=0}^{M}\left\{\sum \prod_{s=0}^{k}\binom{M_{s}^{\prime}}{m_{s}}\right\} x^{N}
$$

where the inner sum is over all $k+1$-tuples $\left(m_{0}, m_{1}, \ldots, m_{k}\right)$ such that

$$
\begin{equation*}
\sum_{s=0}^{k} m_{s} p^{l_{s}}=N, \quad 0 \leqq m_{s} \leqq M_{s}^{\prime} \tag{3}
\end{equation*}
$$

i.e. $\quad m_{0}+\sum_{s=1}^{k} m_{s} p^{r s-r+1}=N$,

$$
0 \leqq m_{0} \leqq M_{0}<p^{r}, 0 \leqq m_{s} \leqq p^{r-1} M_{s}, 1 \leqq s \leqq k
$$

i.e. $\quad m_{0} p^{r-1}+\sum_{s=1}^{k} m_{s} p^{r s}=p^{r-1} N$.

Write $m_{0}^{\prime}=p^{r-1} m_{0}, m_{s}^{\prime}=m_{s}, s \geqq 1$. Then (3) becomes

$$
\sum_{s=0}^{k} m_{s}^{\prime}\left(p^{r}\right)^{s}=p^{r-1} N
$$

But since $\binom{M_{0}}{m_{0}} \equiv\binom{p^{r-1} M_{0}}{p^{r-1} m_{0}}\left(\bmod p^{r}\right)\left(\right.$ by Lemma 1) $\equiv\binom{M_{0}^{\prime}}{m_{0}^{\prime}}\left(\bmod p^{r}\right)$, we find on equating coefficients of x^{N}

$$
\binom{M}{N}=\sum \prod_{s=0}^{k}\binom{p^{r-1} M_{s}}{m_{s}^{\prime}}\left(\bmod p^{r}\right)
$$

over all $k+1$-tuples ($m_{0}^{\prime}, m_{1}^{\prime}, \ldots, m_{k}^{\prime}$) such that

$$
\sum_{s=0}^{k} m_{s}^{\prime}\left(p^{r}\right)^{s}=p^{r-1} N, 0 \leqq m_{s}^{\prime} \leqq p^{r-1} M_{s}, 0 \leqq s \leqq k
$$

Note. A referee has drawn the author's attention to some related results which appear in a paper of B. Dwork [1], one of which is as follows.

Let p be a fixed prime number; let θ be a p-adic integer which is neither zero nor a negative rational integer; let θ^{\prime} be that unique rational number, integral at p, such that $p \theta^{\prime}-\theta$ is an ordinary integer; let $C_{\theta}(n)$ denote 1 if $n=0$ and $\prod_{\nu=0}^{n-1}(\theta+\nu)$ if $n>0$; let $A_{\theta}(n)$ be $C_{\theta}(n) / n!$; and if $\theta_{1}, \ldots, \theta_{r}$ are rational p-adic integers, none of which are zero or ordinary negative integers, then for $n>0$ write

$$
A(n)=\prod_{t=1}^{r} A_{\theta_{t}}(n), \quad B(n)=\prod_{t=1}^{r} A_{\theta_{t}}(n) .
$$

Then
(i) $A(n) / B\left(\left[\frac{n}{p}\right]\right)$ is a p-adic integer
(ii) $A\left(n+m p^{s+1}\right) / B\left(\left[\frac{n}{p}\right]+m p^{s}\right) \equiv A(n) / B\left(\left[\frac{n}{p}\right]\right) \bmod p^{s+1}$.

References

1. B. Dwork, p-adic cycles, Inst. Hautes Études Sci. Publ. Math. No. 37 (1969), pp. 27-115.
2. N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), pp. 589-592.
3. P. W. Haggard and J. O. Kiltenen, Binomial expansions modulo prime powers, Internat. J. Math. and Math. Sc. 3 (1980), pp. 397-400.
4. E. Lucas, Théorie des nombres, Tome I, Librairie Scientifique et Technique Albert Blanchard, Paris (1961) (Original 1891).

University of Victoria
Victoria, British Columbia V8W 2 Y2

[^0]: Received by the editors May 29, 1986, and, in revised form November 25, 1986.
 AMS Subject Classification (1980): 11B48, 11B64.
 © Canadian Mathematical Society 1986.

