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1. Introduction

Using the terminology in 2 (where the expression w-type is also explained)
we will prove the following theorems:

THEOREM 1. If there exist

(i) a skew-Hadamard matrix H = U+I of order h,

(ii) m-type matrices M = W+I and N = NT of order m, and

(iii) three matrices X, Y, Z of order x = 3 (mod 4) satisfying
(a) XYT, YZT and ZXT all symmetric, and
(b) XXT = aIx+bJx

T _ jm + mx — mh — a) lmh — m —YY - 1 ^ n ) h + {

then
H = UxNxZ+IhxWxY+IhxImxX

r's an Hadamard matrix of order mxh.

THEOREM 2. If all the conditions of theorem 1 are satisfied and in addition X
is skew-type and Y and Z are symmetric then H is skew-Hadamard.

We will show theorem 2 demonstrates the existence of previously unknown
skew-Hadamard matrices of orders 552 and 3304.

THEOREM 3. If h is the order of any skew-Hadamard matrix and pr (prime
power) = 3 (mod 4) then there is a skew-Hadamard matrix of order h(pr +1).

Theorem 3 is due to Williamson [8; p. 67] we include a proof because we
use the matrices of the proof elsewhere.

THEOREM 4. If there exist

(i) a skew-Hadamard matrix of order h,
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(ii) four matrices X, Y, Z, W of order p = 1 {mod 4) satisfying

(a) XYr, XZT, XWr, YZr, YW'r, ZWT all symmetric, and

(b) XXT+YYT = 2{p + l)Ip-2Jp

WWT = aIp+bJp

ZZT = {m{p + l-h-a)+a}Ip+{m(h-l-b)+b}Jp

where m = 2 or 4, then there is an Hadamard matrix of order mph.

THEOREM 5. If h = 0 {mod 4) is the order of a skew-Hadamard matrix and
2h + 3 is a prime then there is an Hadamard matrix of order 2h{h+l).

2. Preliminaries

An Hadamard matrix H is a matrix of order n, all of whose elements are +1
and — 1 and which satisfies HHT = nln. It is conjectured that an Hadamard
matrix exists for n = 2 and for n = At, where t is any positive integer. Many
classes of Hadamard matrices are known; most of these can be found by reference
to [3], [6] and [7J. Hadamard matrices aie known for all orders less than 188.

An Hadamard matrix H = U+I is called a skew-Hadamard if UT = —U. It is
conjectured that whenever there exists an Hadamard matrix of order n there exists
a skew-Hadamard matrix of the same order. As the existence of certain skew-
Hadamard matrices is essential for my results I list the order for which skew-
Hadamard matrices are known to exist.

I 2'nkj t,rt all positive integers, kL= pl' + l = 0 (mod 4),

Pi a prime; from [9],

II {p—1)3 + 1 p the order of a skew-Hadamard matrix; from [2],

III 2'{q+1) t ^ 1 an integer, q (prime power) = 5 (mod 8); from [5],

IV 52 from[l],

V 36 unpublished result of J. M. Goethals

VI pr(pr +1 ){m — 1) m of type /, pr(prime power) = 3 (mod 4), and
(m-\){pr + \)jm the order of a skew-Hadamard matrix;
proved in corollary 9,

VII pr{pr — 3){m— 1) m of type /, pr (prime power) = 3 (mod 4) and
{m- \)(pr-3)lm the order of a skew-Hadamard matrix;
proved in corollary 9,

VIII h{pr +1) h the order of a skew-Hadamard matrix,
pT (prime power) = 3 (mod 4), from [8],

IX 2h h the order of a skew-Hadamard matrix.
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The orders less than 1004 for which skew-Hadamard matrices are not yet
known are:

92, 100, 116, 148, 156, 172, 184, 188, 196, 232, 236, 260, 268, 276, 292, 296, 324,
340, 356, 372, 376, 388, 392, 404, 412, 428, 436, 452, 472, 476, 484, 508, 516,
520, 532, 536, 580, 584, 592, 596, 604, 612, 628, 652, 668, 676, 680, 708, 712, 716,
724, 732, 756, 764, 772, 776, 784, 804, 808, 820, 836, 852, 856, 868, 872, 876, 892,
900, 904, 908, 916, 932, 940, 944, 952, 956, 964, 980, 988, and 996.

We study skew-Hadamard matrices because the construction of [2], [4], [6],
[7], [9] and this paper depend heavily on the existence of these special matrices.
Also theorem 14.1.3 of [3], quite powerful theorem depends on skew-Hadamard
matrices.

A skew-type matrix A = £/+/has UT = — U.
A (v, k, X)-conJiguration is an arrangement of v elements xlt x2, • • • xu into

v sets S t , S2, • • •, Sv such that every set contains exactly X elements in common.
A (v, k, A)-configuration can be characterized by its incidence matrix A = (afj)
defined by afj- = 1 if Xj e St and a^ --= — 1 if Xj $ St. This matrix A, of order v,
consists entirely of l's and — l's, and it can be seen that A satisfies the incidence
equation.

AAr = 4(k-X)I+(v-4(k-X))J

where / is the identity matrix of order v and / is the matrix of order v with every
element + 1 .

A set of elements D = {x^, x2, • • •, xk] will be said to generate a circulant
(1, —1) matrix A = (ay) if ay = alfJ-_j+1 = 1 when 7—1 + 1 eD (all numbers
modulo v) and — 1 otherwise. A back-circulant matrix A = (a^) of order v has
au = a1+jt i-j where 1 +j and i—j are reduced to modulo v.

LEMMA 6. (i) If there exists a circulant A of order v then there also exists a back
circulant B of the same order, (ii) If A is circulant B back circulant, both of order v,
then ABT is symmetric.

PROOF, (i) trivial, (ii) this is Theorem 1 of [6] restated.
Table 1 gives those known (v, k, X) configurations, together with their

incidence equations, which have a circulant, (hence back circulant) incidence
matrix. All are derived from difference sets, and we use the notation of Marshall
Hall [3; p. 141—2] to indicate the type of the difference set.

In the table p is a prime and pr a prime power.
Table 2 gives those configurations from Marshall Hall [3; 291 — 8] which

are not already covered by Table 1 and in which v is an odd prime power. Each
entry in Table 2 satisfies the conditions for (v, k, 1) configurations, namely that

and that
x2 = (k-iy+(-iyv-l)/2iz2
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[5] Hadamard matrices 301

should have a solution in the integers for x, y, z not all zero.
No case has yet been found where these two conditions are both satisfied

and the corresponding configuration has not been found by a systematic search.

TABLE 2

(D, k, A)-configuration

(31,10,3)

(71,15,3)

(79, 13, 2)

(111,11,1)
(25, 9, 3)

(157, 13, 1)

Incidence equation

287+3/

487+237
447+357

407+717

247+7

487+109/

Comment

Exists: but no circulant
design exists
Solution Unknown

Exists: but no circulant
design exists

Solution Unknown

Exists: but no circulant
design exists
Solution Unknown

We now define the matrices needed to prove theorem 3. With q = pr (prime
power) = 3 (mod 4), let a0 = 0, at, • • •, aq_x be the elements of GF{q) numbered
so that a0 = 0 and aq-t — —at, i = 1, • • •, q— 1. Now put

S=(sij), stJ = x(at-aj),

where /(x) is the character defined on GF(q) by #(0) = 0, x(x) = +1 if x is a
square and x(x) = — 1 if JC is not a square.

Here
sji = Xiaj-di) = xiPi-aj),

and since —1 is a non-square if q'= 3 (mod 4), ST = —S. By the properties of
X it may be shown SST = qIq — Jq.

Let R = (ru) i,j = 0, • • •, q— 1 be the matrix of order q = pr defined by

'00 = 1

rUq_t = 1 i = 1, • • • , q-\,

rtj = 0 otherwise.

Then /?T = R, and if we write RS = (c0-), then c0J = / ( O - ^ ) and

ci} = x{aq-i-aj) = x(-<*i-aj), i = \ , - - ; q - \ ,

whence in all cases ctJ = x( — at—a,) and so RS is symmetric.
Using ST = -S, SST = ql-J, RJ = J, and (RS)T = RS we have

S(R + RS)T = (R + RS)ST.
Choose

P = S + I and Z> = R + RS
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then PDT = DPT. Then if

(1) M =

1 1 - - - I
- 1
; p

and N =

1 1---1
1
: D

MNT = NMT. M and N are of order / +1 and MMT = NNT = (pr+ 1)
Now if H — 1+ U is a skew-Hadamard matrix of order h then #77 r = A/h =

Ih+UUT. Write M = / + Vwhere F r = - Fand consider

Af= IxM+UxN = IhxIh+IhxV+UxN.

It can be shown that AT is a skew-Hadarnard matrix of order /;(//+1).

DEFINITION. Af and N will be called m-type matrices if M is a skew-Hadamard
matrix. AT is a symmetric Hadamard matrix and

MNT =

LEMMA. 1. If M = W+I and N are m-type matrices then WNT — NWT

PROOF. Since MNT = NMT, we have

= ( ^ + /)iVr =-- WNT+ NT = ^ iV T + N = NMT = 7V(WT + / ) = NWT+N

and so
W/VT= NWT.

LEMMA %. If m = 2'Y\ (p? +1) where t is a non-negative integer andp\{ {prime
power) = 3 (mod 4) then there are m-type matrices of order m.

PROOF, (i) Mz = [_j j ] and N2 = [J _ j

are two suitable matrices of order 2.
(ii) Af and N as defined in (1) are two suitable matrices of order

pr +1 = 0 (mod 4), p' a prime power.
(iii) Let Mm = Wm + Im and jVm be m-type matrices of order m and

MB = Wn + In and JVn be w-type matrices of order n.
Then

is a skew-Hadamard matrix of order mn and

lymn — J y m * i y n

is a symmetric Hadamard matrix of order ran. Now
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MmnNl, = (ImxMn + Wmx Nn)(Nlx NT
n)

= NmxNnMl+Nm W*x Nn JVj using lemma 7

So Mmrt and Nmn are m-type matrices of order mn.
(iv) Combining the results of (i), (ii) and (iii) we have the lemma for m > 1.

But the case m = 1 is trivial.

3. A construction with » = 3 (mod 4)

PROOF OF THEOREM 1. Since H is skew-Hadamard UT — —U and UUT =
(h-l)Ih.M = W-YIand iV being m-type means WT - -JV, WWT = (m-l)Im,
MNT = NMT, MMT = NNT = mlm and iVT = N and lemma 7 shows
WNT = NWT.

HHT = (U x N xZ+IhxW xY+IhxImx X)

•(UTxNTxZT+IhxWTxYT + IhxIr,xXT)

=•• UUTx NNTxZZT+Ikx WWTx YYT+hxlmx XXT+ UTx WNTx YZT

+ Ux NWTxZYT +UTx NTx XZT +Ux NxZXT

+ IhxWTxXYT + IhxWxYXT

=•- UUTxNNTxZZT+IhxWWTxYYT+IkxImxXXT

+ (U+UT)xWNTxYZT + (UT+U)xNxZXT + hx(W+WT)xXYT

= (h- l)Ih x mlm x {(x +1)7x - Jx)+ihxlmx{(m + n>x-mh- a)Ix

+ (mh-m-b)Jx} + Ihxlmx {aIx+bJx}

which completes the proof.

PROOF OF THEOREM 2. The Hadamard property has been proved above. To
prove skew-type property let X = R+I where RT = -R then

H = UxNxZ+IhxWxY+IhxImxR + IhxImxIx = Q + I
and

HT = UTxNTxZT + IhxWTxYT + IhxImxRT + IhxInxIx

= -UxNxZ+Ihx -WxY+IhxImx -R + Ihxlmxlx

= -Q+I.
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Which completes the proof.
We now investigate when the conditions of theorem 2 are satisfied.

COROLLARY 9. Let p' andq\' be prime powers = 3 (mod 4), t be positive integer
and m = 2'77(<7;' + l) then if there is a skew-Hadamard matrix of order

( i ) (m-\)(f+\) (m-i)(pr-3)
m m

then there is a skew-Hadamard matrix of order

(0 />V + l)(m-l), (ii) />r(/-3)(m-l)
respectively.

PROOF, m as given is, from lemma 8, the order of m-type matrices. Then if
P and D are as defined in (1), the proof follows with

(i) X = P, Y = J and Z = D, (ii) X = P, Y = K and Z = D,

in theorem 2.
With m = 2, pr = 23 and (i) of corollary 9 we find a skew-Hadamard matrix

of order 552, and with m = 2, p' = 59 and (ii) of corollary 9 we obtain a skew-
Hadamard matrix of order 3304; neither of these two matrices were previously
known.

Let H of order x+1 be any Hadamard matrix written in the form

1

(2)

Then

(3)

FFT = (x + I)/-/and

H =

if

1

1
1

.1

r _

1 • •

F

FG

where G is the back diagonal matrix, then FET = FGTFT = FGFT = EFT.
Then using theorem 1 we have

COROLLARY 10. If x+l is the order of any Hadamard matrix and m is the
order of m-type matrices then if there is a skew-Hadamard matrix of order.

... (x + l ) (m-l) .... (x-3)(m-l) ,..., , ,. •. -
(l) ^ '-, (n) v ^ -;, (m) x+ l , (iv) x - 3 ,

m m
then there is an Hadamard matrix of order

(i) jc(*+l)(ifi-l), (ii) X ( X - 3 ) ( I H - 1 ) , (iii) x(x + l), (iv) x(x-3).

PROOF. The proof follows from theorem 1 with F and E as in (2) and (3)
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and (i) X = F, Y = J, Z = E; (ii) X = F, Y = K,Z = E; (iii) X = J, Y = F,
Z = E and m = 1; (iv) X = K, Y = F, Z = E and m = 1.

(iii) and (iv) were given in [6].

COROLLARY 1 1 . / / there is a skew-Hadamard matrix of order

m ( x 3 ) 4 ( g " - 1 l )

m m

where m is the order of m-type matrices, q, y and y + 2 are odd primes,
x = q" + q"~1 + • • • + q+l = 3 {mod 4), and x = y(y + 2) then there is an Hada-
mard matrix of order

(i) [m(x-3)-4{qn-1-l)]x (ii) [

respectively.

PROOF. If P is the circulant matrix generated by an {x, %(x+l), ^{
configuration and Q is back circulant (from table 1) then the proof follows with
(i) X = Q, Y = K, Z = P, (ii) X = K, Y = Q, Z = P in theorem 1.

With m = 1 and « = 2we obtain corollary 5 of [6] from (ii).
The existence of a circulant incidence matrix for any of the entries with

v = 3 (mod 4) in Table 2 will give Hadamard matrices. If a circulant (71,15,3)
configuration exists then there is an Hadamard matrix of order 1704. This would
be a new order.

4. A construction with v — 1 (mod 4)

In this section q = pr (prime power) = 1 (mod 4). Let a0 = 0, at, • • •, a,_ t be

the elements of GF{q) numbered so that a0 = 0 and a4_f = at,i = 1, • • •, q— 1.

Now define F = ( / , •) by

(4) "J
Then by the properties of % and GF(q), F is a symmetric matrix satisfying

W T = prI-J.

Write /; for pr and define A' and Y by

(5) Z

Y=F-Ip.

Then JTFr = (F+Ip)(F
T-Ip) = F i ^ - / , = (F-Ip)(F

T + Ip) = rar and

= 2(p + l ) / p -2J p .
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PROOF OF THEOREM 4. If m = 2 use

M =

[10]

tor m

M =

= 4 use

' Z

-w
-w

,-w -

w
z
w
w

w
-w

z
w

w
w

-w
z.

and N =

X
Y

X
_Y

y
-X

Y
-X

X
Y

-X
-Y

Y
-X

-Y
X

Then since ZWT and XYT are symmetric

MNT = NMT

MMT =
and

Now H is Hadamard so ^ifT = hlh = UUT+Ih and

H = UxN+IhxM

is the required Hadamard matrix of order mph since

= UUTxNNT+UTxMNT+UxNMT +

= (A-1)7, x {m(p+l)Ip-mJp} x /„

+ 4 x {m(p + l-h)Ip+m(h-l)Jp} xIm

= mphlmph

Which completes the proof.

PROOF OF THEOREM 5. Szekeres' construction for primes = 3 (mod 4), see
[5], gives two complementary difference sets of order h + l. Use one of these two
sets to generate a circulant matrix, X, and the other to generate a back-circulant
matrix, Y. Then with Z = J, W = J-2I, p = h +1 and m = 2, theorem 4 gives
the result.

We now investigate when the conditions of theorem 4 are satisfied. We note
that for p prime X and Y defined by (5) are circulant symmetric matrices.

COROLLARY 12. Letpr be a prime power ~ 1 {mod A), q be a prime power {may
be a power of 2), x and a odd, and m = 2 or 4, then if there is a skew-Hadamard
matrix of order
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(ii) p+1 ; where p = q" + q"~1 + • • • +q+l, n a positive integer;
m

4a"~1

(iii) p + l- 4q"~ x + — , with p as in (ii);
m

4(q"~l — \\
(iv) p + l-4q"~1+ — ', with p as in (ii);

m

4(q"~1 — l)
(v) p — 3 -- , withp as in (ii);

m

(vi) , where p = 4x2 +1;

(vii) , where p = 4x2 +1;
4

. .... 7x2 + l , , 2 ,
(vm) , where p = 4x + 1 ;

4

(ix) , where p = 4x2 + 9;

(x) 2{25b2 + 3), where P = Sa2 + l = 64b2+ 9, b odd;

(xi) 2(2562 + 173), where p = 8a2 + 49 = 64Z>2+441, b even;

(xii) 5762 + 390, where p and b are as in (x);

(xiii) 4362 + 294, where p and b are as in (x);

then there is an Hadamard matrix of order

(i)

(ii) M
(iii) M

(iv) M

(v) [m(

(vi) (5x

(vii) (13.

(viii) (Ix

(ix) (5x

(x) 4(2:

(xi) 4(2:

p+l) — 4q" ]p;

p+l — 4q" ~ *) + 4q" ~1

p+l— 4qn~i) + 4(qn~'

p — 3) — 4(q"~1 — l)]p;
2 + 3)(4x2 + l) ;

x2-5)(4x2 + l);
2 + l)(4x2 + l) ;
2 + ll)(4x2 + 9);

562 + 3)(64Z>2 + 9);

562 + 172)(64i2+441);
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(xii) 4(5762 + 390)(64Z>2+441);

(xiii) 4(43Z>2+294)(6462+441);

respectively.

PROOF. We use the notation of Table 1, and each matrix for Z and W if it is
not / or J— 21 is back circulant. In cases (ii), (iii), (iv) and (v) m is not evaluated
as q may be a power of 2. The corollary follows with the following substitutions
in theorem 4:

(i) m = 2, Z = J-2I, W= J;

(ii) Z = S, W = J;

(iii) Z = J, W = S;

(iv) Z = J-2I, W= S;

(v) Z = S, W = J-2I;

(vi) m = 2, Z = B, W= J;

(vii) m = 4, Z = B, W = .7-2/;

(viii) m = 4, Z = / - 2 / , JF = B;

(ix) m = 2, Z = £<,, ^ = 7 ;

(x) w = 2, Z = 0, *F= J-21;

(xi) w = 2, Z = 00, W = J;

(xii) m = 4, Z = 00, ^ = .7-2/;

(xiii) w = 4, Z = J - 2 / , W = 00.

The result in (i) comes from [7].
Although the entries in table 2 give Hadamard matrices they do not yield

any new orders.
This corollary gives no new orders less than 4000 but it appears highly likely

that higher order matrices may be obtained.

Note added in proof (January 31st, 1970): We wish to thank R. Turyn and
L. D. Baumert for pointing out some errors in the original forms of Tables 1
and 2.
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