Can. J. Math., Vol. XXX, No. 6, 1978, pp. 1319-1330

POINCARE TRANSVERSALITY FOR DOUBLE COVERS
I. HAMBLETON AND R. J. MILGRAM

Let 7: X' — X be a double cover of 2n-dimensional Poincaré duality (PD)
spaces. The double cover is a fibering so it is classified by a map
fi X — RP™Y( > n). If the homotopy class of [ contains a representative
which is Poincaré transverse [5] to RP! C RP'!, we say that = is Poincaré
splittable. In this paper we prove that an invariant A (X, f) in Z/2 (defined in
[4]) is the complete obstruction to finding a Poincar¢ splittable double cover
bordant to (X, f). In addition we give an explicit example in each dimension
2n 2z 4 which is not Poincaré splittable. These examples are used to recover
information on secondary operations in Thom spaces of certain spherical
fibrations and reprove Browder’s results [1] on the maps in the Levitt exact
sequence.

The basic information about the invariant 4 (X, f) is given in Sections 1 and
2. It is the Arf invariant of a quadratic map

q: H" (X', Z/2) — Z/2
refining the non-singular bilinear form
a,b) = (¢ \J T, [X'])

where a, O ¢ H"(X', Z/2) and 1T X’ — X’ is the frec involution. This qua-
dratic map is shown to be the same as the Browder—Livesay map (Theorem 1.4)
used in [2] to define a desuspension obstruction for smooth free involutions on
homotopy spheres.

In § 3 we describe a hasic example in dimension 4 with A-invariant non-zero.
This PPD space is the orbit space of a free simplicial involution on a finite
simplicial complex with the homotopy type of S? X S A non-splittable
example in each even dimension is then given (Theorem 3.1) by forming the
product with suitable smooth manifolds so that in cach case the covering space
has the homotopy type of a manifold. Some variations of the construction are
described and in § 4, we show how to use the A-invariant to compute some
secondary operations (Corollaries 4.4, 4.5).

In the final section, § 5, we state the results about Poincaré transversality
needed to identify the A-invariant with the obstruction to Poincaré splittability
(Theorem 5.6). These results were obtained by Levitt [8], Jones [7] and Quinn
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1320 I. HAMBLETON AND R. J. MILGRAM

[11] and take the form of an exact sequence measuring the obstructions to
transversality for a map S"t* — T'(4"*) where 7'(»*) is the Thom space of a
(k — 1)-spherical fibration.

It is a pleasure to thank the Mathematics Institute of Aarhus University
for its support during the writing of this paper.

1. A quadratic map for double covers. In this section, we recall the
definition of the quadratic map ¢ and prove that it equals the Browder-Livesay
map. We use Z/2 coefficients throughout and [X] denotes the fundamental
class of a PD space X.

Let m: X’ — X be a double cover of 2n-dimensional P spaces classified
by [+ X — RP”. We denote the involution on X’ by 7" and the map covering
Shy 7 X' —S7 Form S” X ,,2(X" X X’) where Z/2 acts on X’ X X’ by
interchanging the factors and define I: X — 57 X ,,2(X" X X’) to be the
quotient of the equivariant map

FX 57X (XX X)

given by [I7(x) = (['(x), (x, Tx)). Now if «y is a cocycle on X’ representing
w € H"(X"), then 1 @ «s @ «y is an equivariant cocycle on .S” X (X' X X')
and so represents a class a ¢ H¥(S™ X ,,2(X’ X X)).

Definition 1.1. q(0) = I™*(a), [X]).

Let V =57 X 4,X" and defineN: V— 57 X ,,(X" X X’) by Nu, x] =
[ie, (x, Tx)]. If p: V— X is given by plu, x] = w(x) then p is a homotopy
cquivalence and /1o p ~ X. We now describe a chain approximation for \.
Suppose that 7@ X' — X’ is simplicial and 7o Mo = 0 for all simplices
o € X’'. Partially order the simplices so that 7'(« \U;0) = Tu \U; 10 where
U denotes the Steenrod cup-sub-i-product. We give S™ its usual equivariant
cellular decomposition with cells ¢; and 7¢; in each dimension. In the statement
below, A;: C(X') = Cp (X7 X X') is the jth Steenrod map [12] and
70 G (X" X X)) — C(X" X X') is defined by 7(¢ @ b)) = b ® «. We recall
the formulas:

A, = (1 +7)A, 1+ 3,4 and A,01 = (1" Q@ 1)A..

THEOREM 1.2. The map given by

Nei®o) = 2 ¢, ® 1@ 1)r'A ()
0=j=1
and
M(Te; @ ¢) = (T @ 1)\(e; @ Tc), forc ¢ Ch(X'),

15 a chain approximation to \.

Proof. Iirst we define an equivariant acyclic carrier @ from Cy(S® X X')
to Ce(S® X X' X X') by @ (e; ® o) = Cs(e; X ¢ X 1'a). Since \; is carried
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by % and agrees with \ on the O-skeleton, by the acyclic models theorem it
remains to show that M4 is a chain map.

First:
Myl @ c) = OéZé (14 Te;a @ (1@ T)r'Ary(c)
+ 2 6@ 1@ DL+ D8imm() + Ay (3]
=N ® )+ [1+T® (T'® I)rry(er1 ® ¢).
However,

M@+ 11 ®@c¢) = Nlemr1 ®@¢) + T @ T 4(e-1 @ Tc)

=M1 ®c)+ T ® r[ > (G ® 1e D' (e T)Ai—]'—l(c):|

0=jsi—
=[14+7Q® (I'® I\ (eim1 @ ¢).
Therefore 9Ny = N0 as required.

COROLLARY 1.3. Fora € H*(X'),

0@ =3 ' U1y, V1)
where ay 1s a cocycle representing «, ¢* s dual to e; and p4[ V] = [X].
Proof. Let ¢ be any chain in Cy(X"). Then
()\#(1 Ra;@ay),e;®c)={1Qa;®ayN;e:Qc))

<1 ® a; ® ay, OZ G ®(1® T)‘rin_j(c)>

=j=

(ay Ui Tay c).

Now
)\#(1 ®a; Qay) = ZO ' ® (ay UiTay)

and the result follows from the relation M = pf F*.
With this explicit cochain formula, we can relate ¢ to the Browder—Livesay
map ¢ : H*(X') — Z/2. First we summarize its definition [2].
Let x be a cocycle in C"(X') representing a cohomology class «. Cochains
v"*7 are constructed for 0 = j < » such that
X Upej T + 801 = (1 + 1)+,

The cochain »** turns out to be determined by x modulo 6C*~1(X’) &
(1 + 7)C*™(X') and the equivariant cohomology class {(1 4+ 1")v*"} ¢
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H* 5 15(Co (X')) = H*(X) depends only on a. They set
Y(a) = ({1 + Dy, [X]).
THEOREM 1.4, For all « € H*(X'), ¥ (a) = q(a).

Proof. By construction, (1 + 1)v* = x \U Tx + 6v*'~! where x is a cocycle
representing a. Set

n—1
—i—1 1
g = Z cn ® anr
1=0

and compute

n

=2, e @ (x\U; Ix) +e' @ (1+ T)™

i=0
Therefore v = M (e* @ x @ x) + o' (1 + 1), s0
M @x®x),[V])= (" ® A+ I, [V])
and the result follows.

The final result of this section is a formula for evaluating ¢ (0) when b € im#*’
In the statement Sq,: H"(X) — H 1 (X) is Steenrod’s operation [12].

ProrosiTioN 1.5. Let m: X' — X be « double cover of 2n-dimensional PD
spaces and b ¢ H*(X). Then

q(w*b) = <; f* (") U Saq(0), [X]>
where 1 generates HY(RP”).

Proof. The following diagram commutes:

X—F—-)SOD Xz/z (X’ X X,)

lel llXWXW
1 A
RP® x X L2228 oo o (X X X)

Since (1 X# X m*(1 ®b0Qb) =1Q o @ »*b and

n

AX z20*A@0®0b0) = 2 ¢ @ Sq:d),

=0

we obtain,

g(7*b) = (F*(I X = X m)*(1 ® b ® b), [X])

(% ) Usad), (7).
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2. A product formula. We now recall the definition of 4(X, f) where
[ : X — RP” classifies the double cover 7 : X’ — X of 2n-dimensional PD
spaces. According to [2] or [4].

gla +0) —gla) —q®) = (@I T#*b, [X'])

for all «, b € H"(X"). The bilinear form defined by the formula on the right-
hand side is non-singular and hence there exists a symplectic basis for H*(X")
with respect to this form. A (X, f) is the Arf invariant [2] associated to any
such base. The first observation is:

ProposiTioN 2.1. A (X, f) defines a homomorphism A: N 4, *P(RP®) — Z /2.

Proof. Since A is additive on disjoint unions, it is enough to check that if
(X, f) = oW, k) then A (X, f) = 0. But this is obvious from the definition
of ¢ by the usual argument, namely that ¢ vanishes on im (¢* : H*(W') —
H"(X')), an isotropic subspace of half the rank of H"(X").

The second observation, a result of [4], is:
ProrositioN 2.2, If w: X' — X 45 « Poincaré splittable double cover of 2n-
dimensional PD spaces, then A(X, f) = 0 where [ : X — RP% classifies .

For the later calculations, we need to compute the 4-invariant of product
covers

X x NIFXL v o n

where N is a PD space of dimension 2m. Our main applications are the cases
N = CP?*and N = RP.

THEOREM 2.3. Let 7 X 1: X' X N — X X N be a product covering where
N is a 2m-dimensional PD space. Let o« ¢ H?(X') and b € H'(N) with
p + r =n-+4 m,then

q(a @ b) = 0<Z< (1@ a®a)Uf*uw) @ Sq;0), X1 ® [Y]>
<i=r

where u generates H*(RP%).

Proof. Consider the commutative diagram:

XX N L § X (XX N) X (XX N)
A X1 AX1X1
(X' X X)X N 52X S® X (X' X N) X (X' X N)
I X f/ X1 shuffle

F’ 1 A
@ x5 x M IZXIX A o (0 % X)X 57 X (N X N)
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If we give (X’ X X’ X N) the involution 7" X 7" X 1, then all the maps are
equivariant so we get a diagram on the quotient spaces. Let G be the composite
of the vertical right-hand maps, then

FG*AlR®e®e®1®I®D) =11 Qe ®®L®a ®D),
and the proof is completed by setting this equal to the other composite.
Two easy applications are:
COROLLARY 2.4. If b ¢ H"(N), then g(a ® b) = g(a) < b* [N]).

COROLLARY 2.5. If b € H(N), wherer < m, then g(a @ b) = 0.
The product formula we need is:

CoroLLARY 2.6. If 7 X 1 : X' X N — X X N is the product covering with
N = CP%or RP?, then A(X X N, f.p)) = AX, [) where p, : X X CP? — X
1s the projection.

Proof. We give the proof only for N = CP? as the other case is similar. Con-
sider the equivariant decomposition

H™2(X' X CP?) = H'(X') ® H*(CP?) ® H"*(X') ® HY(CP?)
@ Hn—Q(XI) ® H4(C‘])2).

With respect to the bilinear form above, the first summand is self-dual and
orthogonal to the other two. The second and third summands are dually
paired by PPoincaré duality. Since, by Corollary 2.5, ¢ vanishes on the second
summand, the result is established by Corollary 2.4.

3. Examples of non-splittable double covers. In this section we will
describe a basic example in dimension 4 with 7,(X?*) = Z/2and A (X4 [) =1
where [ : X*— RP” classifies the universal cover. The product formula is then
applied to give examples in each even dimension of non-splittable double
covers. Some variations of the construction are also sketched, and an orientable
example X°¢ given in dimension 6. The result that X* and X have non-zero
A-invariant is used in the next section to give information on secondary opera-
tions in certain Thom complexes associated to them.

The example X* in dimension 4 is among those constructed in [13, p. 240].
Let K be the 3-skeleton of RP* X S* in a normal cell decomposition, fixed for
the remainder of the discussion. Note that the universal cover K' ~ S;* V
Se? vV 5% We obtain X* by attaching the 4-cell ¢* by a different map than that
used to get RP? X S To describe the map we denote generators of m.S.?,
w353 and w352 by I, J and n, respectively for ¢ = 1, 2. Note that by construc-
tion the 3-skeleton K of X ¢ will be the same as that of X% X S2. Then, accord-
ing to the Hilton—Milnor theorem, 73K is generated by J, 71, 5o and [I1, I,].
The Z/2 action on these is given by

7] =7 — [Ilrlﬂv Tm =M ]‘[11,12] = _[Ily Iz]
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and the attaching map used to obtain RP? X S? has class J. To construct X*
we use a map in the class J + 7, where the notation is chosen so that .S;% is
the sphere covering RP? in the universal cover of (RP? X S?). Since
(1 — T)o*is then attached with class [I3, I2], X' ~ S? X S%. Observe that X*
is non-orientable. This PD space has 4 (X4, f) = 1 where the map f: X — RP~
induces the universal covering m: X’ — X. To see this we need a description
for the generators of H2(X’). By construction, X* ~ (RP? V 5?) U ¢% U ¢
A basis for H*(X') = Hom (H.(X"), Z/2) is given by duality from the basis
of H:X' represented by covers of RP* C RP? VvV S? C X*and §* C RP? V
S? C X*. Denote these classes by « and b respectively. Then b = 7*b for some
b € H2(X*) and from Proposition 1.5.

o0 = {3 1w USa6), 1X1) = (0 UG, X)) = 1

where @ is dual to the class represented by RP?* C RP? Vv §* C X% Since
{«, b} form a symplectic basis of H2(X'), to prove that A (X4, f) = 1 itisenough
to check g(a) = 1.

For this recall that by Corollary 1.3 we must compute ay \U; Tay where ay
is the obvious cochain representing «. Clearly «y Us Tay = 0. but for the others
it is convenient to construct a complex L by collapsing # V.5? and then the
resulting .S? in X* to a point (the notation again refers to the normal cell
decomposition as above). Let p: X — L be the quotient map and note that
L ~ RP*\U ¢tso H*(L') = Z/2 generated by a class ¢ such that p¥¢ = a.
Also p*: H*(L) — H*(X) is an isomorphism. [t is important to observe that
the attaching map of the 4-cell in L represents n1 € m3(RP?) = 73(S,%). Since
71 mod 2 is detected by Sq?, we have ¢y Uo Tcy = (1 + T)o* where o, Ta!
are the generators of C*(L’). Now ¢4 U: T¢y = 0 and ¢; U1 T¢y = 0 hence
g(c) = 1. By naturality, ¢(¢) = g(p*c) = 1.

Our main result on the existence of non-splittable covers is:

THEOREM 3.1. In each dimension 2n = 4 there exists a PD space X and a
map f: X* — RP” such that A (X**, f) = 1 and X' has the homotopy type of «
smooth manifold.

it

Proof. The method is clear. We simply form the product of X’ — X*¢ with
suitably many copies of CP? and RP?. The result follows from Corollary 2.6.

Another example X® can be constructed in a similar way to X¢ One takes
the 4-skeleton of RP? X S% and reattaches the 5-cell using the generator of
7453 corresponding to the first summand of

T ((RP? X S*) ) = mi(RP?) @ m4(S?) ® ma(SH)

together with a generator of 7,(5*). This PD space was described in [6] and
motivated the construction of X*. One sees that X is orientable, 7,(X%) = Z/2
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and 4 (X° f) = 1, however X’ is homotopy equivalent to the non-trivial S*
fibration over .S* which is not the homotopy type of a manifold.

The construction given here can also be attempted in higher dimensions.
The resulting examples will not be used in the rest of the paper so some
details are omitted. Let Ky = (RP" X S*) e be the (n 4 1)-skeleton in a
normal cell decomposition. Since

Tt (Ko) = m1(RP") @ m,y31(S") @ mpr (S™F1)

we can construct a complex K by attaching an (# + 2)-cell to K, using a map
representing 1 + « where n € 7, (RP") is the generator and « ¢ 4.1 (Ky) is
the class used to get the normal (n + 2)-skeleton of RP" X S*. From [10],
7 is a projective element if and only if # = 2 (mod 4). If we now use a pro-
jective 7 then we will be able to choose a map ¢: S**' — K’ whose class gener-
ates a summand of m,,+(K) such that T’¢ ~ =¢. This is the main difficulty
in the proof of the following result.

ProrositioN 3.2, If n = 2 (mod 4), there exists « PD space X* with
(X)) = Z/2, X >~5" XS X0 =K 1n « normal cell decomposition and
AX,f) = 1.

4. The Spivak normal bundles to X* and X¢. The purpose of this section
is to clarify the structure of these non-splittable covers by finding the stable
homotopy types of certain Thom complexes.

Define an injection p : A TP (pt) — N 4 PP (RP*) by p| X"] = [X”, w,] where
w; : X" — RP” classifies the first Stiefel-Whitney class of X.

The following result contains the result of Browder [1] on the maps in the
Levitt exact sequence and will be proved in the next section. Another proof
can be found in [5, Theorem 10.6].

THEOREM 4.1. The Pontrjagin—"1"hom map
PN EP(RP®) — 7,5 (RP® A MG)
s an injection for m = 4, so characteristic numbers detect each bordism cluss.

Consider the class [ X'] in. A/, "P (pt). We calculate that the Stiefel-\Whitney
classof X4is1 + ¢tand hence [ X, f] = p[ X*]. Therefore [X"] ## 0 and we have
COROLLARY 4.2, The characteristic number ky.e! % 0 on X' aund | X*] generates

the cokernel of im (N PV (pt)) in N TP (pt).

Ilere k3 is the first exotic characteristic class and the result follows from
checking the classes in dimension =4. (see [9]).
Let

i A
X' 5 S Uy o' S BG
be the composition where 7 is the pinching map and M satisfies N*(k3) # 0,
M (ws) = 0. Let (k) be the induced fibre space (of some large fibre dimension).
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COROLLARY 4.3. The Spivak normal fibre space of X*1is 11 @ (k) where 9y is
the non-trivial line bundle.

Proof. One checks easily that the set of homotopy classes of maps [X*, BG]
are distinguished by their induced cohomology maps so the assertion follows
from Corollary 4.2.

Let ¢2.2 1 be the secondary operation based on the relation Sq?(Sq? Sq') = 0.
It is defined on the kernel of Sq* Sq! with values in H*4(—)/Sq*(H**+2(—)).

CoRrOLLARY 4.4. Let U be the Thom class of T (n1) over X*. Then ¢2.1(U) =
et'\U U 1s non-zero with zero indeterminacy.

Proof. Let T be the Thom complex of n; over the 3-skeleton of X*. Then 1 is
(S Usze) V (§* Uz e?)

and w3 (V) = Z/2 @ Z/2 @ Z/2 with generators v(Io), n{(n, 2, Lo), nl..

Now Steenrod squares detect the first and third generators, hence the
attaching map of the top cell of T(g1) is en{n, 2, Iy) where ¢ = 0 or 1. If
e = 0, then 7'(n;) is reducible contradicting 4.3. Therefore ¢ = 1 and ¢2.21 is
defined on 1'(y1) and detects n (n, 2, I, ) so the result follows.

We can also apply the same ideas to X¢. The class [X®, ¢!] in A/ (T2 (RP%) is
non-zero since A (X9, ¢') = 1 and hence a characteristic number is non-zero.
But the Stiefel-Whitney class of X¢is 1 and the only indecomposable exotic
classes in dimensions =6 are k;, Sq'ks, Sq*ks, Sq*Sq'ks. Thus (e')* \U kj is the
only possible non-zero characteristic number.

COROLLARY 4.5. The secondary operation é- o based on the relation Sq*Sq® +
Sq®Sql = 0 s defined on all of H3(X°) with zero indecterminacy and is non-zero.

Proof. It follows from the definition of k3 (see [9]) that if ¢» » is defined on
all of FH3(X*%) with zero indeterminacy then

(ks \J a, [X°]) = (¢2,2(a), [X°]).

5. The transversality obstruction. Let »* be a (k¢ — 1)-spherical fibre
space over a space 3 and consider triples (V, g, ) such that ¥V is an m-dimen-
sional PD space, g: ¥ — B a map and b: v* — * covers ¢ where »* is the normal
fibration of a Poincaré embedding of V in S”*%. Define bordism of triples in
the obvious way and call the set of bordism classes 7 (S™**, T°(n")).

The general theory of [7], [8] or [11] gives an exact sequence (for & = 3
and m = 4)

o= Loy (m(B), w) — T(S™™ T()) B 1 (T (1)

b L (ma(B), w)— . ..
where w = w;(n*), L,, (1 (B), w) are the surgery obstruction groups (L = L")
of C.T.C. Wall [14] and 6 is a “‘transversality obstruction’’. The sequence is
natural under maps &: B — B’ covered by hig—.
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Let /, k be large compared to # (so that the groups below are stable) and
7 — RP! the canonical line bundle. Then if w,— BG(k) is the universal
(k — 1)-spherical fibration 7' (w; X n1) = MG(k) A RP™!and we can com-
bine two special cases of the Levitt sequence into one diagram,

Ol
(5.1) T (S, T(wp X 1))
lpo
WP (RPN (MG () A RPET) 0
‘A 6

v o~
Z/2 ——— 3y Ly s(Z/2 X Z/27)

l

though at this point we cannot yet assert that the square above commutes.
(The full diagram is defined for n = 3; for n = 2 we will use the Pontrjagin-
Thom maps). Since A: A5, PP (RP) — Z/2 vanishes on im (A, P (pt) —
ﬁ,/qg,ll’D(RP”l)) (Proposition 2.2) it can be regarded as a homomorphism
N0, PP (RPY) — Z /2. We will now prove Theorem 4.1 and use this to prove
that 4 = 6p, i.e. that the square in 5.1 commutes.

Prorositiox 5.2. For the examples (X, f) of Theorem 3.1., (n = 2)

A f) = 0p(X*, f) = 1.

Proof. There is a cohomological formula for 6p(X?"), f from Theorem I [5]
involving a class @ = (ky) € H¥1(BSG). (The component in dimension 3 is
just ky, cf. §4). For n = 2, we interpret the right-hand side by this formula.

0p (X" f) (p(H*®i(we X m), [S*]) (& = Thom isomorphism)

= (p(Fe(R(@) @ V), [$™)
B <<VX Xf)* <E<wk) ® ; (61)2i_1), [X2n]>
= <;Z)1 erz——ﬂi-(wl . (61)2{_1Y [X2;1]>

For the examples of Theorem 3.1, this formula reduces to 0p(X?", f) =
(ks.e’, [X]). In order to give an alternate proof that this is non-zero (without
using Theorem 4.1), consider the commutative diagram:

Li(Z/27) — > NP2 (pt) ————> 10 (MG (R))

T

Li(Z/2 X 2/27) ——» N PP(RPUWY) — Ly o (MG(R) A RP, ™)
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Since 74 is an isomorphism on the Wall groups [14], if (k;.c!, [X*]) = 0 then
[ X4, el] = 14[ V]. But this contradicts A[X*, ¢1] = 1.

Proof of Theorem 4.1. The classifying map of w; X 71 induces a map of Levitt
sequences:

0 —— T(S*H, T'(wx X m)) —’3°——> Tonix (MG (k) A RP'™) —— Lo, o(Z/2 X Z/27)—> 0

| l

0> T(S™, T (wes1)) —————> Togs (MG (k + 1)) ——> Ly _o(2/2)

Wall groups is an isomorphism. Hence the map 4 in the lower sequence is onto.
(This is the result of Browder [1]). Finally, the naturality of the Levitt
sequence for the inclusion pt C RP'™! (as in the proof of Proposition 5.2)
yields Theorem 4.1.

From Proposition 5.2, 6 in the upper sequence is onto (z = 3) and the map on

COROLLARY 5.3. The Pontrjagin—1hom map
piN oy PP (RPIY) = 19, (MG(E) A RPMY)

15 an 1somorphism for n = 2 (and [, k > n).

These results will now be applied to show that 4 = 6p.

Definition 5.4. Let %, be the subgroup of A5, *P(RP 1) containing those
bordism classes with a Poincaré splittable representative.

PRrROPOSITION 5.5. There is a monomorphism s: T(S* T'(w, X m1)) — G,
(forn = 3and k > n).

Proof. Let (Z*1, g) represent a class in 7°(S?* T (w, X 11)). (Since k is
large, b is unique so can be ignored). By low-dimensional surgery on g, we may
assume that g4: 7 (Z) » m (BG (k) X RP') is an isomorphism. Let E(7) — Z be
the pull-back of the disk bundle of n1, S (1) be the pull-back of 71, then (£ (5),S(»))
is a PD pair of dimension 27 with S(y) >~ 2’ (Z' — Z is the 2-fold cover
induced by Z 28 BG(k) X RP! Py RPY. If h: E(n) — E(n) is a bundle map
covering ps.¢ and w: F(g) — RP? the projection, we can assume m.k[S () = *
(a base point). Define s(Z, ¢) = (E(n) UswY, mh U %) = (X, f) where
(Y, Z’) is a PD pair bordant (rel. Z’) to (£(n), Z). It is easy to see that s is

a well-defined homomorphism into .4, *?(RP ') whose image, by construc-
tion, lies in ¥ 4,. If we surger (E(n), Z") (rel. Z') to (¥, Z") with

(2 2k

an isomorphism, and use this pair in the construction of s(Z, g), it is evident
that (vy) X fu: 71 (X) = 7 (BG(k) X RP't1) isan isomorphism (vy: X =BG (k)
classifies the Spivak normal fibre space of X).

Suppose that s(Z, g) ~ 0, or equivalently that (X, f) = o(W, k). Again
we may assume that the inclusion map X — W induces an isomorphism on .
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The map h: W — RP'*!is now transverse to RP' when restricted to X. The
obstruction to making it transverse on all of W lies in LN,y (Z/2 — Z/2 X
Z/27) according to § 5 |7]. Since this group is zero (by the exact sequence

12.9.2(15)) (Z,¢) = 0(1, k) where i ~hand V" = h='(RP") C V.

THEOREM 5.6. The homomorphism 44::/[7‘.’.)1 PD(RPUHYY — Z/2 can be identified
with 0p for n = 2.

Proof. For n = 2, we interpret 6.p by the cohomological formula used in
Proposition 5.2. Since our example (X* f) generates the cokernel of
im (A PH(RPHYY - N PP (RPH1)) (cf. 4.2) the result follows from 5.2.

For 7 = 3, we note that ¥,, C ker 4 (Proposition 2.2) and that %, C
ker 6.p since the Pontrjagin—Thom construction on a Poincaré splittable cover
gives a DPoincaré transverse map in wo, (M G(k) A RP™!). However, by
Propositions 5.2, 5.3, 5.5, rank %,, = rank ker A (as Z/2-vector spaces) so
4G4, = ker A = ker 0.p.
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