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Abstract. It is known that for any sequence X\, X2 ..., of identically distributed
independent random matrices with a common distribution fj, the limit

exists with probability 1. We study some conditions under which A(/̂ fc)-» A(/u)
provided Hk -* M in the weak sense.

1. Introduction
Let Xi, X2,... be a sequence of identically distributed independent random mx.m
real matrices with common distribution /JL on the unimodular group SL (m,R).
Under the assumption that

(1.1)

Furstenberg and Kesten [6] showed that

A(M)= limn"1 log||ATn • • • ATiH (1.2)
n-»oo

exists with probability 1 and is almost surely (a.s.) constant.
Because of the applications of random matrix products to physical and to

population processes (e.g., see [3] and [8]), it is of interest to understand when
A(/i) is stable under perturbations of /x, say, in the weak topology of measures.

In the case when the support of /u, is irreducible (in the sense that the minimal
closed subgroup of SL (m, R) containing the support of /x leaves no proper subspace
of R m invariant) Kifer [9] has applied Furstenberg's formula [7] to show that if iik

converges weakly to fi (fj,k %• n) then A(/xk) -* A((JL ) as k -> oo.
In the present paper, we consider the quite different case of \x supported on a

reducible subgroup of SL (m, R) and prove under certain assumptions on n and
/xfc that Aik-̂ /Li implies A(/xfc)-» A(/a). Slud [12] had previously shown A(/u,jc)-» A(/A)
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368 Y. Kifer and E. Slud

in the special case when m = 2, /x has support on two diagonal matrices, and fik is
the convolution of \x with the random rotation uniformly distributed in the
orthogonal group SO (2, R) on the \/k-neighbourhood of the identity.

The counterexample of § 2 in [9] shows that in general the convergence
A(ju.k)-* A(/u) does not take place and so in the reducible case some assumptions
are needed. In § 2 we formulate our conditions on measures and the main result
of this paper. In § 3 we prove auxiliary lemmas and in § 4 we establish our theorem.
Finally, in § 5 we indicate some classes of examples fulfilling our hypotheses. In
particular, our assumptions on (i are satisfied if /u. is supported on a commutative
subgroup of SL (m, R).

Our result, which extends the work begun in [9] and [12], also has some connection
with the problem considered by Ruelle in [11].

2. Assumptions and the main theorem
Let jit be a Borel probability measure on SL (m, R) with a compact support satisfying
the following properties.
(A^. There exist two subspaces rmax and rmin left invariant by all matrices from
the support of p. (and so by all matrices of the smallest closed subgroup G^
containing supp ft) such that

*m = r m a x © r m i n .
(A2). For any 5 >0,

lim sup P{\og\\Xn • • •A'ix||<(A(/Li)-5)n} = 0,

where Xu X2, • • • are identically distributed random matrices with the common
distribution /n, P{ •} is the probability of an event in brackets, S = {z £ R m: ||z|| = 1}
and the norm || • || is Euclidean.
(A3). There exists y > 0 such that

liminfrt-'ElogllrUnAT,, • • • Xl\\<A(fi)-3y,
n-*oo

where E denotes the expectation and nm a x and nmin are the projection operators
on rm a x and rmin so that for any y eRm one has

nmaxy £ rmax, nminy e rmin and y = nmaxy + nminy.

The counterexample of [9] shows that the conditions (A!)-(A3) are not enough
to obtain the desired convergence. So we make the following additional assumptions
on the 'perturbed' measures fik, k = 1,2,...:

(Bx). sup . inf | | / i -g | |=£-
hesuppjAfc g€supp/i. rC

fjbk ^* (j. a s k -> oo.

(B3). There exist a, /3, Ru R2>0 such that for any e >0 and z eS satisfying the
property

l|nmaxz||/||nminz||</3
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the following holds:

p\ there exists n <Ri log k so that

||nn
\\nminx

(k) • • • xVz\\ \\nminz\\ k

where X(k), X2
k), • • • are identically distributed independent random matrices with

the common distribution f/.k on SL(m, R).
We show in § 5 that the assumptions (Ai)-(A3) are satisfied, for instance, if

supp (i is contained in a commutative subgroup. The assumption (B3) is unwieldy,
so we discuss it here to show that it is actually a rather weak regularity condition.
For example, (B3) is satisfied if the measures ix,k are convolutions of fi with measures
r]k which are concentrated in 1/k -neighbourhoods of the identity matrix and have
positive density Pk(g) with respect to the Haar measure on a compact subgroup of
SL (m, R) acting transitively on the sphere 5, provided for any gu g2 e supp -qk and
some constant c > 0

C"1 ̂ Pk(gl)/Pk{g2)^C <0O.

Indeed, in this case one can write X[k) = Ulk) • Xu where Xi and U(k) are indepen-
dent and have distributions fi and t)k, respectively. Define

A 2 , R - 1 6 _ V . . , . . , . | | I W 2 | | | | n n

One can see that for some positive R2 and a independent of z, the intersection of
AZiR2 and 1/fc-neighbourhood of the identity matrix has Haar measure bigger than
a/k. Thus by the definition of the measure rjk one has

P{U(k)eAz,R2}>a

for some a independent of z and k. Therefore the same is true if we replace z by
gz for any g € SL (m, R). Since X\ and U(k) are independent we can write also X\z
in place of gz to obtain

(\k)z\\ I I I W L i u , ,
l||nmtaA'it)z|| l|nminzinW

which is a special case of (B3) with n = 1.
Our main result is the following

THEOREM. Let (i and {tik}l°=i satisfy (Ai)-(A3) and (Bi)-(B3), respectively. Then

A(fik)-* A((j.) ask-* oo.

Remark. It is well known (cf. [5]) that (B2) together with proposition 1 and theorem
2 of [5] also imply that independent identically distributed sequences {AT,} with law
/x and {ATjfc)} with law fj.k, k = 1, 2 , . . . can be constructed on the same probability
space with

where
limaOfc)=lim/3(/fc) =
fcoo ko
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Without loss of generality we assume that

^ ) ^ (2.D

since otherwise one can pass to a subsequence.

Conjecture. The theorem remains true without the assumption (B3).

3. Auxiliary lemmas

LEMMA l.Ifuk-^/x and the supports of all measures fik are contained in one compact
set then

limsupA(|Lifc)<A(M). (3.1)
k-»oo

The proof is very easy and can be found in the introduction of [9].

For any probability measure 17 on SL (m, R) and each probability measure v on S
we define the measure 77 * v on S by the formula

J / ( Z ) T , * i>(dz) = ̂  f(gz/\\gz\\)v(dg)i>(dz) (3.2)

which holds for any Borel function / on S. Here and in what follows we omit the
space of integration if it is the whole sphere S or the space SL (m,R). From now
on we assume that (Ai)-(A3) and (Bi)-(B3) are satisfied.

LEMMA 2. If ^ *v = v then
W(r m a xur m i n )nS)=l . (3.3)

Proof. If rmin is trivial i.e. Tm2lx = Rm, then (3.3) is trivially true. Thus we assume
for the proof of this lemma that rmin is not the zero subspace of R m.

By (A2) and (A3) it follows that

lim sup P{W(Xn---X1z)-W(z)<2yn} = 0 (3.4)

where for any r ^ O

, ||nmaxz|,
l o 8 »?i—TiT' l f z £ rmax u r m i n ;

W(z) = (3.5)
00, if z e rmax;

-00, if 2 e rmin.
Indeed, clearly

| |nm i n^n • • • ATiH • | |nm i nz | |> | |nm i nxn • • • x&\. (3.6)

Therefore

w(xn • • •x1z)-w(z)>log (\\nmaxxn • • •*1z||/||nmM2||)

-log||IImtoXB---X1||. (3.7)

But results of [6] applied to the product of matrices Xu X2,... restricted to rmin

together with (A3) imply that with probability 1,

lim n"1 log||nminATn • • • Xj\\<Mn)-3y. (3.8)

https://doi.org/10.1017/S0143385700001668 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700001668
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Now (A2), (3.7) and (3.8) yield (3.4).
Therefore if Q is a compact subset of S such that

Q n ( r m a x u r m i n ) = 0

then for any z & Tmax u rm i n

l i m P{Xn • • • XlZ/\\Xn •••Xlz\\eQ} = 0 . (3.9)
n-*oo

But if /A * v = v then also

H*"*v = v (3.10)

where fj.*" is n-fold convolution fi * • • • * fi. Therefore

where we have used (At) to say that if

A n ' ' " X\Z £ 1 max *-* 1 min

thenz^rm a xurm i n . Letting n ^oo in (3.11) one gets from (3.9) that */(Q) =
so (3.3) is true.

Define the family of Markov chains {Z™} on S by

where Z(
o
k) is chosen to be independent of X[k\ Xik\ Substituting here Xt in

the place of X\k) and Z o in the place of Zo° we define analogously the Markov
chain {Zn}. Let qk{x, Y) be the transition function of {Z{k)} and q(x, F) be the
transition function of Ym i.e.,

OT-jjeT and <?U,D = P j — ^ e T ,
||A i X\\ J l||AiX|| J

(3.13)

Since 5 is compact, the Markov chains {Z(k)} have invariant measures vk (see
[4]) i.e. measures satisfying

= f Vk(dx)qk(x,D (3.14)
Js

or, equivalently,

li.k*vk = vk. (3.15)

fc, * vki = vk.foralli = 1, 2 Ifi>(TmaxnS) = 1
f/ten A(/u.fci)-» A(/i) aski-*<x>.

Proof. Assume that */fc( is an ergodic invariant measure of the Markov chain {Z(
n
fc|)}

andZcf'' is a random point of S with the law vki and is independent of X{ki), X(ki),
Then {Z(k<)} is an ergodic stationary process and by the Birkhoff ergodic theorem
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with probability 1,

lim n-l\og\\Xy • ••X[k')Z{
o

k')\\= lim /T1 £

(3.16)

But the left hand side of (3.16) is less than or equal to A(fj.ki). Therefore

AGtik|)> j j \og\\gz\WXdgWXdz) (3.17)

for any invariant ergodic measure vki. Thus (3.17) holds for any invariant measure
vkj since the ergodic invariant measures are extremals of the convex set of all
invariant probability measures.

Since nki^/j. and vki^v, also (see [1, theorem 3.2]) /Mki x j ^ . -»/i x p and letting
i -»oo in (3.17) one obtains

liminf A ( ^ ) a f f log||gz|MdgM<fe) (3.18)

where we make use of the compact support of /x and the inclusion

supp ixki c{g: dist (g, supp /u.)<ki1} (3.19)

which follows from (Bi).
If fikj * vki = vki then also fit" * vki = vki and in the same way as above one can prove

• -»<»
liminf Mtit")^ f f log||gB • • • giz\\(i(dgl)

= [ E \og\\Xn • • • XlZ\\p(dz),
Jrm«ns

(3.20)

since we assume v (rmaxnS) = 1.
It is easy to see that

A{fi*") = nA(fj,ki). (3.21)

Then by (3.20) and (3.21),

liminf A(/ufci)> lim n'1 [ E \og\\Xn • • • Xiz\\v(dz). (3.22)

But
lim n~1£'log||Ar

n • • • Xtz\\ = A(ix) (3.23)

boundedly for any z e rmax n 5. Indeed, since supp /JL is compact, there exists a
constant M > 0 such that with probability 1

-nAf<log||ATn •••X1y\\^nM for all y e S and n > 1 (3.24)

and for z € r m a x u S by (1.2) and (A2),

n'llog\\Xn---XlZ\\

converges in probability to A(/LI ) as n -* °o. By the dominated convergence theorem,
(3.23) follows.
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By hypothesis i>(Tmaxr\S) = 1, and then (3.22)-(3.24) imply

limi

which together with (3.1) proves lemma 3. •

Define the set M of probability measures on S by

M = {v: 3{/t,} such that vki^*v, where vk. satisfy (3.15)}.

COROLLARY. If all v&Mhave the property v(rma*r\S) = 1 then

A(^ifc)^ A(JU.) as k-*oo.

Proof. Suppose that for some subsequence {fc,}

(3.25)

The sequence of measures vki on the compact set S is compact and so there is a
subsequence {£,,} such that

vklj -» v as / -*• oo,

where i ? € ^ by the definition of M. By hypothesis >'(rmMn5') = 1 and lemma 3
implies

contradicting (3.25) and proving the corollary. •

Remark. It is well known in the present setting (see e.g. [9, formulae (1.19), (1.20)]),
and follows easily from

w
flic, X Vkt ~* ^ X V,

that veJl, vkl%v and (3.15) together imply

ix * v = v. (3.26)

4. Proof of theorem

By the corollary of the previous section it suffices to prove that \tveM then

f ( r m a x n 5 ) = l . (4.1)

This is, clearly, true when r m i n is trivial i.e.,
r — n m
1 max -TV ,

and so it remains to consider the case of non-trivial rmjn-
Take now an arbitrary veJi. This means that there exists a subsequence {£,}

such that

vki^>v as/-»oo (4.2)

and all vki satisfy the property

Via * vki = vki. (4.3)
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By (3.4) one can find N > 0 such that

sup P{W{XN •••X1z)-W(z)<2yN} = p, (4.4)

where p > 0 satisfies the property

2(2p)y/y+3M=p<l, (4.5)

W(z) is defined by (3.5) and M is the same as in (3.24).
From (3.24) it follows easily that

-2nM< W(Xn • ••Xlz)-W(z)<2nM(a.s.) (4.6)

for any z & rmax u rmin and all n = 1, 2,
By (4.4) and (4.6), employing (Bi), (B2) and

\\V(k) . . . v-((c) _ v- . . . v- II _. 2/

one can see that there exist k0 > 0 and 3) > 0 so large that if it a &0 then

-3NM < W(A'(n'
c) • • • X[k)z) - W{z)< 3NM (a.s.) (4.7)

for all n = 1 , . . . , N and

PiWixW • • • X[k)z)-W(z)<yN}<2p (4.8)

for any z # 0 belonging to the domain

qii(k) = {z:\W(z)\<\log3)/k\}. (4.9)

In what follows we shall assume that k is big enough so that (4.7) and (4.8) hold
for all z e ^ O t ) .

Let P(
z
k){ •} be the probability of an event in brackets under the condition Zo0 = z.

Then we can rewrite (4.8) as follows

P(k){W{ZW)~W{z)<yN}<2p foranyze<%iOt). (4.10)

We need the following technical result.

LEMMA 4. For any number L, integer n > 0 and point z €°U\(k.),

Q(z,n,L)^P[k){W(Z(
n
k))-W(z)^L and Zik) €%(£)

forallj = 0, l , . . . , n - l }

<2p[ n / N ] (p/2)-a + 3 A 'M ) / i 'N
> (4.11)

where p is given by (4.5) and [a] denotes the integral part of a number a.

Proof. Let / = [n/N] and

(4.12)

where d s 0 is an integer less than N. Let/'i <ji<- • • <j, < I be the random numbers
such that

^ ^ (4.13)

for all i = l 5 and

W{Z[k)
+l)N)-W{Z{k^)^yN (4.14)

if 0 < / < / and / #/,, / = 1 , . . . , s.
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Since we assume that

L>W(Zik))-W(z)

(kl 'V)- W(Z(kld) + l (W(Z{k)
+1)N) - W(Z$)), (4,15)

where Zofc) = z, then by (4.7),

and so

For any integers (non-random)/i, j 2 , . . . , js such that 0 </i </2 < • • •<]',< I define

ly L + 3NM _

Qh ,.(z)=P[k){W(Z[k?+l)N) - W(Z*j$) < yN

and Z}5J € <&i(k) for all i = 1 , . . . , s}. (4.17)

Then by (4.16) and the definition of Q(z, n, L) one can easily see that

Q(z,n,L)< I I O/.....J.U)- (4-18)
l>s>r Os;i<".</,<l

Employing s times the Markov property of the process {Z)k)} in the expression
(4.17) one has by (4.10) for all z e <%i(fc)

On is(z)^(2pY. (4.19)

Finally, (4.5), (4.16), (4.18) and (4.19) yield

Q(z, n, L) < 2'(2p)r(l - 2pTl < 2p'( |J (4.20)

since from (4.5) it follows that p < | . This completes the proof of lemma 4.
Next, define the following domains:

= {z: W{z)>\ogk/2)};
= {z: W(z)<logS};and

k,C) = {z:W{z)<\ogC/k};

where constants S and C will be chosen in (4.27) and (4.34) below.
Defining the Markov times

r(p) = inf {n: exp W(Z(
n

k))-exp W(Zi,fc))>p} (4.21)

we can rewrite the condition (B3) of § 2 as

} {4i22)

for any z satisfying exp W(z)^(3. Set

] + l). (4.23)
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By the strong Markov property of the process {Z{k)} one can obtain from (4.22)
that

Pz (T(2C/i)s/0(t)}>a 2 , (4.24)

foranyze<%(fc, C).
Fix now a small number e >0. By (4.24) and the strong Markov property, there

exists Ke > 0 sufficiently large, depending only on e, that

Pz
k){r(2C/k)>KMk)}<e, (4.25)

for any z €<%(£, C).
If the Markov time d\ is defined by

^ = inf{n:Z(
n

fc)e5\%(fc,C)}

then clearly 6»i<r(2C/fe) if Z(
o
k) e<%(fc, C) and k is big enough. Hence by (4.25)

Pik){e1>KMk)}<e (4.26)

for any z e%(fc, C).
In order to complete the proof of the theorem we need the following.

LEMMA 5. For any z eS and sufficiently large k,

?) (4.27)

where

(4.28)

lo(k) is given by (4.23), e is the same as in (4.25) and S is small enough but
independent of e.

Proof. Define the Markov times

02 = mf{n:Zik)e<K2(k)}

and

By (4.11), for any z^%3(^)u(%(/t, C) and any integer n such that

J / , (k)s«</ i ( t ) (4.29)

one obtains

P[k){82 A O^n and Z(
n
fc) €%4(5)}<2p[('"l)/2A'](|) , (4.30)

since if zg %(fc, C) and Zik) e %4(5) then

W(Zik))-W{z)<log8k/C.

Here a A 6 =min (a, b).

Next, if zg <%(&, C) and Z(k) e *U2{k) then

W(Zik))-W{z)^\og3l/C
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and so by (4.11) for such z it follows

(4.31)

where ICi > 0 is independent of z, k and C.
Next, we have to estimate

Pik){Z(k) e «4(«)} for 2 G «3(Jk).

Since supp p is compact it is easy to see by (Ax) and (Bi) of § 1 that there exists
a constant M > 0 such that for any z e

W(X(k)z)-

for all / = 1 ,2 , . . . and k big enough.
Therefore if Z(k) e %4(5) then there exist two positive integers / <j < n such that

log k/S a H/(Z!fc)) > log jk/® — AST, Z}fc) e <tt4(fi)
and zSk ) G <%i(/t) for all / = /, i + 1 , . . . , / - 1 .

Hence employing the Markov property we get by (4.11) for any z e %3(fc) that

(=1 y=i+i

and Z{fc) e <a,(ik) for all / = 1,1 + 1 , . . . , /}

"l £
i = l ; = i + l

Zi*1 e ̂ x(fc) for all / = i, i +1,..., /}

where £(
z

k) is the expectation under the condition Zofc) = 2 and /C2 is a constant
independent of k and «.

Now for any z£ °U(k, C) u cU3(k) and each integer n satisfying (4.29) one obtains
by (4.30)-(4.32) and the strong Markov property that

P[k){Z(
n

k) eW4(8)}

<Pik){02 A 63 a n and Z(k) e aU4{S)}+Pik){62 A # 3 = S2}

+P(
z
k){d2*03 = e3<n andZik) eqi4(8)}

= Plk){e2 A 63 a « and Zlfc) G ^4(5)}+JPifc){6>2 A 63 = 6>2}

-(logS(c/C+3JVM)/TJV (logC/S)/>Af . . (log k/83l)/yN.

(4.33)
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Taking C big enough such that
. UogC/3))/yN

£i(|) <e (4-34)

and then k big enough so that
. . -(log«fc/C+3iVJVf)/ylV

r, [_lAk)/2N]l P\ - 11 ~r\
Lp I ' l l C (4.JJJ

and
(log k/83»/yN

<e (4.36)

one obtains (4.27) for zf£%(k, C) by (4.32)-(4.36).
At last, for ze<ft(k, C) we have by (4.26), (4.32)-(4.36) and the strong Markov

property that
j(k) r^lfe) _ fit, (sW ^- D ' * ) <a -~^ IT 1 (U\\ _L D<fc) la ~~ zr I II.\ „_A T(k)P(k){Z\kJk) e%4(S)}^P[k){d1>KMk)}+Pik){d1^KMk) andZ\kJk) e<

= p(k){e1>KMk))}
+ Eik)X{e^KMk»Pz>e\<{Z\kJk)-gi €^4(5)}<4e, (4.37)

provided k is big enough so that

hW-KMV^liik).
That completes the proof of (4.27). •

Now we are able to prove the theorem. By (4.3) it follows (see also (3.14)-(3.16))
that

M%4(5)) = J vki{dz)P{k'){ZitA) e ^4(5)} (4.38)

and so by (4.27),

vki{^{S))<Ae (4.39)

for all sufficiently large kt.
Since %4(5) is an open set, (4.2) implies (see theorem 2.1 of [1])

lim inf ffc.(<%4(S)) > v(%4(5)).
i-»oo

Therefore by (4.39),

and since e is arbitrarily small,

u(%4(S)) = 0. (4.40)

Now (4.40) and (3.3) give (4.1), completing the proof of our theorem. •

5. Discussion and examples
First we discuss assumptions (Bi)-(B3) on perturbations. The counterexample of
§ 2 in [9] shows that some such assumption as (Bi) is necessary to make the
perturbations local. We have already discussed condition (B3) in § 2. One can see
that it is not necessary for the assertion of our theorem but some such assumption
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is necessary to prove that from (4.2) and (4.3) follows (4.1), i.e. that all limits of
invariant measures of the process Z^} are concentrated on TmaxnS.

Now we consider certain examples of measures fx, satisfying (Ai)-(A3).

PROPOSITION 1. Let the support of p. be compact and the minimal closed subgroup
G^ containing supp ju. be commutative. Then (Ai)-(A3) are satisfied.

Proof. Since G^ is a commutative subgroup of SL (m, R), it is known (see [2, chapter
1, § 4]) that there exists a matrix A e SL (m, R) such that for any g e G^,

AgA~1 = gugd, (5.1)

where gu is an unipotent matrix, i.e. an upper triangular matrix with the diagonal
elements all equal to one and gd is a diagonal matrix. The representation (5.1) is
unique and all gt, gt, g2, gt commute for any gi, g2eG)t.

Let Xi, X2,... be independent random matrices with the common distribution
H and

v - A~1vuvdA d 7)

be the unique decomposition (5.1) for Xt.
Since this decomposition is unique, the matrices X", i = 1, 2 , . . . are independent

with the same distribution /x", and also Xf, / = 1, 2 , . . . are independent with
common distribution fid.

Denote by d\!) the y-th diagonal element of Xt. Without loss of generality we
suppose that

E log \d[1]\ = • • • =E log \dT\ >E log |rfi'+1)| > • • • > £ log |rfim)|. (5.3)

Let fmM be the subspace of Rm generated by all vectors having last (m-l)
coordinates equal to zero and f min the subspace of all vectors with first / coordinates
equal to zero.

We need

LEMMA 5. The matrix

0

0 Elog\d[m)\

commutes with all matrices from supp fiu, where /uu is the distribution o/AT" in (5.2).

Proof. Let

d

g =
0

0
\
\
\am

e supp J

and

g =
0 1

6 SUpp jll
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then gugd = gdgu iff aibij = ajbij. Hence if gagd = gdg" then also gulog|gd| =
(log |gd|)gu, where

log |aa| 0
log |gd| =

0 Slog \an

This implies the assertion of lemma 5.
From (5.3) we see that fmax and fmin are spectral invariant subspaces of the

matrix 31. By lemma 5 we conclude that f max and f min are invariant with respect
to all matrices from supp n" and, of course, from supp /u.d.

Set rmax = A'Tmax and rmin = A~1rmin. Then (5.1) implies that rmax and rmin are
invariant with respect to any g e G^.

Now we check (A2). Let z e rmax and ||z|| = 1. Then y = Az e fmax and by (5.2),

||ATn • • • xlZ\\ = HA- 1 * ; ; • • • x\xd
n • • • * d

y | | >

where ftmax = A nmaxA "1.
From [10] it follows that

lim n'1 \og\\iXly1 • • • (XiT^O. (5.6)

By the strong law of large numbers and (5.3),

lim «-1log||nmax(Xd)-1 • • • {Xi)-^ = -Elog\d(^\. (5.7)

Since the right hand side of (5.5) does not depend on z, (5.5)-(5.7) imply (A2)

In the same way as above (A3) follows using inequality

\\nminxn • • • X^WA^W • \\nminx
u
n • • • ATY|| • | |nminA:d • • • xd\\ • \\A\\. (5.8)

Indeed, by[10]

lim n-1 log \\IlminX
u
n • • • XI\\ = 0 (5.9)

and by the strong law of large numbers

lim n1 log ||riminA'd • • • Xd\\ = E log \d\+ )\ < A(/x), (5.10)
n-*oo

gives (A3) and completes the proof of proposition 1. •

Remark. The condition (A2) also follows from the stronger assumption

lim AT1 log Hn^ATI1 • • • X-11| = -A(ji),
n-»oo

since

\\nmaxx^ •••x-1\\-\\umsaxn • • • xlZ||>||nmaxz||.

Another relationship among our conditions is provided in the following statement.

PROPOSITION 2. Suppose (Ax) and (A3) hold and the distribution fimta of Um!aXi
on GL (dim (rmax), R) has a density p(g) with respect to the Haar measure such that
pig) is positive on some open subset of SL (m, R). Then (A2) is also true.
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Proof. Set 5max = {z e rmax: ||z|| = 1} and define the Markov chain Zn on 5max in the
same way as in (3.12) i.e.

Zn=XnZn^\\XnZn-ll
l and Z o er m a x . (5.11)

From the assumption on rmax one can see that there exist some functions q(n, z, y)
such that for any z e 5max and Borel set ax

1e(?}= f q(n,z,y)dy, (5.12)

and there exist /? > 0 and a positive integer N such that

q(N,z,y)>/3>0 (5.13)

for all z, y e Smax, where dy is an element of the volume on Smax.
It is known (see [4, chapter 5, § 5]) that (5.12) and (5.13) imply that there exist

a positive function q(y) and positive numbers C and a such that

\q(n, z, y) -q(y)| < C • exp (-on/N) (5.14)

where q(y) is the density of the invariant measure of Zn on Smax i.e.

| q(z)Pz{ZneQ}dz=^ q(y)dy. (5.15)

From (3.24), (5.12), (5.14) and (5.15) one obtains easily that for any /<n ,

sup P^1 log\\Xn • ••X1Z\\<A(UL)-S}

< sup Pz{n-1log\\Xn---Xi+1Zi\\<A(n)-8+tM}

= sup f p\n-1log\\Xn---Xi+1y\\<A(n)-8+J-M\q(j,z,y)dy

" /" . (5.16)

Letting n^oowe see by [7] that the last integral in (5.16) tends to zero and
since / is arbitrarily large one obtains (A2), completing the proof of proposition 2.

During this work Y. Kifer was supported by a grant from the U.S.-Israel Binational
Science Foundation (B.S.F.), Jerusalem, Israel.
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