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We numerically investigated the global linear instability and bifurcations in
electro-thermo-convection (ETC) of a dielectric liquid confined in a two-dimensional
(2-D) concentric annulus subjected to a strong unipolar injection. Seven kinds of
solutions exist in this ETC system due to the complex bifurcations, i.e. saddle-node,
subcritical and supercritical Hopf bifurcations. These bifurcation routes constitute at
most four solution branches. Global linear instability analysis and energy analysis were
conducted to explain the instability mechanism and transition of different solutions
and to predict the local instability regions. The linearized lattice Boltzmann method
(LLBM) for global linear instability analysis, first proposed by Pérez et al. (Theor.
Comput. Fluid Dyn., vol. 31, 2017, pp. 643-664) to analyse incompressible flows, was
extended here to solve the whole set of coupled linear equations, including the linear
Navier—Stokes equations, the linear energy equation, Poisson’s equation and the linear
charge conservation equation. A multiscale analysis was also performed to recover the
macroscopic linearized Navier—Stokes equations from the four different discrete lattice
Boltzmann equations (LBEs). The LLBM was validated by calculating the linear critical
value of 2-D natural convection; it has an error of 1.39% compared with the spectral
method. Instability with global travelling wave behaviour is a unique behaviour in the
annulus configuration electrothermohydrodynamic system, which may be caused by the
baroclinity. Finally, the chaotic behaviour was quantitatively analysed through calculation
of the fractal dimension and Lyapunov exponent.
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1. Introduction

Electrohydrodynamics (EHD) studies the complex interaction between an electric field
and a dielectric fluid of very low conductivity. This configuration has broad applications
in a range of industrial and biological devices. The EHD effects can be used to design
microscale EHD pumps (Bart et al. 1990; Darabi et al. 2002), to design devices and
drug delivery systems (Chakraborty et al. 2009) and DNA microarrays (Lee et al.
2006) and to design new strategies for active flow control (Bushnell & Mcginley 1989).
As one of the most important applications, EHD combining the thermal effect, called
electrothermohydrodynamics, has been applied to enhance heat transfer efficiency in
the past 30 years (Laohalertdecha, Naphon & Wongwises 2007), such as in boiling
and condensing systems (Cotton et al. 2005), drying and evaporating systems (Rashidi
et al. 2017) and solar energy systems (Ghalamchi et al. 2017). An excellent review
covering various aspects of electro-thermo-convection (ETC) can be found in Léal et al.
(2013). It is notable that most previous studies on this topic concerned the simplest
parallel-plane-electrode configuration. However, compared with the parallel geometry, the
concentric configuration is not subjected to the lateral-wall effect, and its experimental
set-up is more realizable, i.e. the concentrating solar collector receiver design (Togun
et al. 2014). In the literature, there are few numerical works (Fernandes et al. 2012;
Wu et al. 2016; Hassen et al. 2017; Li et al. 2019; He et al. 2021; Ma et al. 2022) on
ETC adopting the configuration of a concentric annulus, which solely focused on the
heat transfer enhancement. The fundamental fluid mechanics in this flow have not been
clearly revealed, potentially inhibiting a more extensive application of ETC. Therefore,
in this work, we systematically study the ETC in a concentric annulus, including its
global linear instability analysis, bifurcations, routes of transition to chaos and heat transfer
enhancement, to improve our general understanding of this complex flow. In the following,
we summarize the works on linear stability analysis and bifurcations analysis of ETC and
concisely discuss the position of the current work in the literature.

1.1. Linear instability analysis in ETC

As there is no work in the literature on the linear stability analysis of ETC in an
annulus, we summarize the well-studied configuration of two parallel-plane electrodes.
More specifically, we separately discuss ETC induced by the electric potential difference
plus a destabilizing thermal gradient or a stabilizing thermal gradient. In the parallel-plane
ETC with a destabilizing thermal gradient, Worraker & Richardson (1979) first considered
that a thermal gradient is superimposed upon a unipolar charge injection of arbitrary
strength by assuming that the ionic mobility varied linearly with temperature but that the
electric permittivity remained constant. Castellanos, Atten & Velarde (1984) subsequently
analysed the combined effect of Coulombic and polarization forces in the case of a weak
unipolar injection by considering temperature-induced linear variations in both mobility
and permittivity. Rodriguez-Luis, Castellanos & Richardson (1986) investigated the onset
of steady convection under charge injection strengths of any finite magnitude. Pontiga
& Castellanos (1994) comprehensively studied the flow stability in a parallel-plane ETC
based on the force balance and noted the effect of residual conductivity on the stability of
the liquid layer.

In the parallel-plane ETC with a stabilizing thermal gradient, Roberts (1969) initially
performed a linear instability study on the ETC by assuming the variation in dielectric
constant as a function of temperature. Pontiga, Castellanos & Richardson (1992) showed
that the overstability in electrothermohydrodynamics (ETHD) is caused by the restoring
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forces provided by a thermal gradient. The indirect coupling between the charge density
and the thermal field through mobility and permittivity induces the oscillation. Taraut
& Smorodin (2012) found that the flow system evolves from the monotonic mode to the
oscillatory mode via a transition in frequency. Mordvinov & Smorodin (2012) showed that
for relatively weak heating from above (low Rayleigh number Ra, the ratio of the buoyancy
to the viscous force), the initial perturbation either decays in an oscillatory manner (low
electric Rayleigh number 7, the ratio of Coulomb force to the viscous force) or grows
monotonically (large T). For a large Ra, oscillatory growth of the initial perturbation
occurs at large 7. More recently, Guan et al. (2021) observed a two-stage bifurcation for
overstability near the threshold Rayleigh number with a significant change in phase and
amplitude.

1.2. Bifurcations and chaos in ETC

Subcritical bifurcation (Félici 1971; Lacroix, Atten & Hopfinger 1975; Zhang 2016) is an
intrinsic property for EHD flow, which is characterized by an abrupt jump in the strength of
the flow motion from zero to a finite value when finite-amplitude perturbations are present.
Richardson (1980), Agrait & Castellanos (1990), Fernandes et al. (2013) and recently Wu
et al. (2014) studied the influences of the injection strength, the ratio of the inner cylinder
diameter D* to the gap width L* (A = D*/L*), and the mobility number M on T, in the
annulus geometry. Huang et al. (2021) numerically investigated the second bifurcation
for higher parameter flows. However, the types of bifurcation for natural convection in
an annulus are not fixed and rely on the Prandtl number and A. Yoo (1999) reported the
occurrence of dual solutions (two kinds of steady solutions under the same parameter)
at Rayleigh numbers larger than a critical value at A = 1.25. The hysteresis phenomenon
(indicative of a subcritical bifurcation) occurs for fluids of 0.3 < Pr <0.4, but it is not
observed for 0.5 < Pr < 1 (saddle-node bifurcation). Mizushima, Hayashi & Adachi (2001)
researched the influence of A on the bifurcation type and clarified the origin of the dual
solutions from the bifurcation analysis. Serrano-Aguilera, Blanco-Rodriguez & Parras
(2021) conducted abundant numerical investigations on dual solutions for values of the
Prandtl number between 0.01 and 1 and Rayleigh numbers between 10? and 5 x 10°.
Steady flow transition to oscillation (Hopf bifurcation) was also studied systematically. In
the case where both electrical and thermal effects are considered, Traoré et al. (2010) gave
an analytical model with a plane-electrode configuration to understand the appearance of
subcritical or supercritical bifurcations for ETHD depending on the value of the Prandtl
number and mobility parameter M. As we can see, for the annulus configuration, the
bifurcation of the ETC predicted is rather complex. One of the focuses of this work is
to further study the bifurcation in ETC and clarify the flow mechanisms underneath.
After the emergence of the ETC, as the strength of the electric field and thermal
field further increase, various successive flow bifurcations can take place, such as
periodic, quasiperiodic and even chaotic motions. The chaotic characteristics of the
electro-convection (EC) have been confirmed in some experiments. Atten, Lacroix
& Malraison (1980) showed that the EC became time dependent and chaotic above
the instability threshold, and one characteristic frequency and its subharmonic were
found in the power spectra of the total current fluctuations. Malraison & Atten (1982)
found two types of chaotic behaviours in the power spectra of intensity fluctuations,
namely, exponential decay in viscous-dominated flow and power-law decay in inertially
dominated flow. Furthermore, the trajectories in an n-dimensional phase space have
been reconstructed based on the experimentally obtained time series of the total current
fluctuations with a time-delay technique (Malraison et al. 1983), and the fractal dimension
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of the chaotic attractor was calculated based on the Grassberger—Procaccia method
(Grassberger & Procaccia 1983). However, this method becomes inapplicable when the
logarithm of the integral correlation function does not show a defined slope. In such
a case, Atten et al. (1984) concluded that the fractal dimension of the EC flow seems
to increase without limit. By extracting time series from numerical simulation, Chicén,
Pérez & Castellanos (2001) applied the algorithm proposed by Kantz & Schreiber (2004)
to obtain a linear function S(An) whose coefficient of proportionality was the desired
largest Lyapunov exponent. However, in these algorithms, some free parameters must be
introduced, such as the embedding dimension and delay time. To characterize the chaotic
motions in the EC in a more systematic way and avoid assigning free parameters, the
method of Wolf et al. (1985) has been widely used recently (Feng et al. 2021; Huang et al.
2021). Moreover, Li et al. (2020) first introduced this method to investigate the transition
process from laminar to chaotic flow in ETC.

1.3. The position and structure of the current work

The present work was motivated to investigate the bifurcation phenomena and transition
routes to chaos in the ETHD system with an annulus configuration. Instability
mechanisms can be explained by global linear instability analysis and energy analysis.
The implementation of global linear instability analysis is based on a linearized lattice
Boltzmann method (LLBM), which was first proposed by Pérez, Aguilar & Theofilis
(2017). This method is extended to solve the coupled linear Navier—Stokes equations, linear
thermal equation, linear charge potential equation and linear charge density equation in this
work. With the instability and bifurcation mechanisms being illustrated clearly, we have
also discussed the heat transfer enhancement in the ETHD flow in the annulus, which will
help the expansion the applications of ETHD in engineering.

The remainder of the present paper is organized as follows. In § 2, we state the physics
problem to be studied, the non-dimensional governing equations, derivations of our
mathematical method and the basics of the global linear instability analysis. Section 3
is devoted to a detailed presentation of the model treatment. The numerical results are
presented and discussed in § 4. The conclusions are presented in the last section.

2. Problem statement and governing equations
2.1. Governing equations

Figure 1 shows a schematic diagram of ETC in a two-dimensional concentric annulus due
to charge injection and thermal buoyant force. The system consists of an outer cylinder
with radius R,, within which an inner cylinder with radius R; is located in the centre,
and the aspect ratio is fixed: A = 1.25. The inner and outer cylinders are kept at different
constant temperatures 6 ,,; and 60 .o1q (A0 = Onor — O cold), respectively, and a radial direct
current electric field is established by applying a voltage difference A¢g to the two
electrodes. In this work, we assume that the fluid is incompressible, Newtonian, perfectly
insulating and under the Boussinesq approximation. The free charges are only generated
at the inner electrode and are then injected into the bulk of the liquid. A unipolar injection
of the free charges is considered. It is also assumed that the injection is autonomous and
homogenous (Laohalertdecha et al. 2007), which means that the injected charge density
qo at the inner cylinder remains constant and uniform.

The governing equations describing this problem include the Navier—Stokes equations,
the temperature equation, the Poisson equation describing the electric potential and the
charge conservation equation describing the charge transport. To further simplify the
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Figure 1. Schematic diagram of ETC in a two-dimensional concentric annulus with A = 1.25. Red, yellow
and blue are different regions divided.

modelling, the viscous thermal dissipation, the magnetic effects and Joule heating are
assumed to be negligible (Castellanos 1998). We introduce dimensionless quantities,
denoted with a star, as follows:

x>'k = ia uik == La t* = L’ q* = 17 ¢* = iv
L ! v/L L?)v q0 Ado 1)
« _ Ei *:9_0)’ef p*zﬁ p*: p ' )
" Ago/L Ady Lo’ po(v/L)>

where L =R, — R; is the length scale. If we drop the superscript stars for clarity, the
resulting governing equations of this ETC system are (Traoré et al. 2010)

V-u=0, (2.2)
du ,  Ra T\?
m +V.(uu)=—-Vp+Viu+ ﬁeey + (1\_4) qCE, (2.3)
90 + V. (0u) ! V29 (2.4)
— «(Qu) = — , .
ot Pr
Vi¢ = —Cq, (2.5)
E=-V¢, (2.6)
aq T T 5
o +V. [(WE-i_ u) q:| = Wav q. (2.7)

In the above equations, u = (uy, uy) is the velocity, E = (E, Ey) is the electric field and
ey is the vertical direction. The scalars p, 6, ¢ and g denote the fluid density, temperature,
electric potential and charge density, respectively. Six dimensionless parameters appear in
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governing equations, defined as

ABL3 A L2 1 172
Ra— SPADL v _eAd o ol M=_<i) ,
VX X nK eAdo K\ po
b (2.8a-f)
o= ———", .8a—
K Ao

where the symbols i, x, ¢, K, B and D represent the dynamic viscosity, thermal diffusivity,
electrical permittivity, ionic mobility, thermal expansion coefficient and charge diffusion
coefficient, respectively. The Rayleigh number Ra and electric Rayleigh number T are
the two driving parameters of the system. They represent the ratio of the buoyancy and
Coulomb force to the viscous force, respectively. The Prandtl number Pr is defined as the
ratio of the momentum diffusivity to the thermal diffusivity. The injection parameter C
measures the strength of the charge injection. The dimensionless mobility parameter M is
defined as the ratio of the so-called hydrodynamic mobility and the true mobility of the
ions; « is the dimensionless ion diffusion number and the typical values of « are between
10~* and 103 (Pérez & Castellanos 1989).
In addition, to characterize the heat transfer in the flow, Nusselt numbers are defined

R,\ 90

, Nu,=R,In|— ) — (2.9a,b)
r=R; ’ ’ (Ri) ar

R,\ 96
Nl/t,' = Rl' In{ — ) —
R,‘ ar

b
r=R,

in which Nu; and Nu,, denote local Nusselt numbers at the surfaces of the inner and outer
cylinders. Then, the mean Nusselt number on each cylinder is computed by integration

271 1

- 1 o 2]‘[
Nuj=— | Nui8)ds, Nu,=— / Nuy(8) ds, (2.10a,b)
21 0 21 0

where 8 is the angle (see figure 1). Theoretically, the values of Nu; and Nu,, should be equal
to each other due to energy conservation. However, a slight difference may be induced by
the numerical error, so the final mean Nusselt number is defined as the average value of
Nu; and Nu,, i.e. Nu = (Nu; + Nu,) /2.

2.2. Linearization and global stability analysis

The linear problem is formulated following the work of He & Zhang (2021) based on
Reynolds’ decomposition N = N + n’, where N represents any flow variable discussed
above, N is the base state and n’ is the perturbation. After substituting the decompositions
into the governing equations, subtracting from them the governing equations for the base
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states and retaining the terms of the first order, the linear system reads

V.u =0, (2.11)
2
8—"’+V (u’U+Uu’)——V/+v2’+@9/ +C r (JE+ Q€), (2.12)
ot ' - e m) ¢ =
36’ A 1
> TV W6 +Ub) = Evze’, (2.13)
Vi = -Cq, (2.14)
d=—V¢, (2.15)
dq T . T - T
8_qt V. [(We' + u'> 0+ (WE + U) q’} = —5avly, (2.16)

where U, @, ® and Q are the base states of velocity, temperature, electrical potential and
charge density, respectively, and v, 0, ¢’, ¢’ are the corresponding perturbation fields. The
boundary condition for the fluctuations on the two impermeable isothermal walls given by

u,|}’=R,‘ = 0’ 9/|r:R,~ = Oa ¢,|r:Ri = Oa q/|r=R,’ = 07
dq’ (2.17)
u,|r:Ro = 07 e/|r:Rg = Oa ¢/|r:Rg = 0» W

r=R,

In the linear stability analysis, it is a common practice to rewrite the fluid system in
the form of a matrix; see the work of He & Zhang (2021). Therefore, (2.11)—(2.16) can be
written in a compact manner as

on’ ,

— =Mn, (2.18)

ot
where M represents the linearized Navier—Stokes operator for the ETC in the annulus
andn’ = (v, 1/, ¢',6")T, v’ and n’ are the wall-normal velocity and wall-normal vorticity,
respectively. In the temporal stability analysis, a wave-like solution (Schmid, Henningson
& Jankowski 2002) n’ = n(x, y) e ' is assumed, leading to an eigenvalue problem that
reads as

—iwn = Mn, (2.19)

where —iw is the eigenvalue and 7 is the corresponding eigenvector. The complex-valued
w is the circular frequency of the perturbation, with its real part w, representing the phase
speed and its imaginary part w; representing the growth rate of the linear perturbation.
If w;j=0 when w, vanishes, it is said that an exchange of stabilities occurs, and the
flow makes a transition to another steady state. Such a transition can be classified into
pitchfork bifurcations, saddle-node bifurcations and transcritical bifurcations according
to bifurcation theory (Crawford 1991). If w, #0 when w; vanishes, the steady solution
is unstable to an oscillatory disturbance (this behaviour was named ‘overstability’ by
Eddington 1920), and it makes a transition to a periodic solution with the angular velocity
. Such a transition is called a Hopf bifurcation.

To solve the eigenvalue problem, the matrix-free method (Theofilis 2011) is engaged by
using time-stepping methods, which employ temporal integrations of the perturbations
using the linear Navier-Stokes equations, d;n’ = Mn’, from 0 to r. This is equivalent

to applying the exponential operator exp( fot M dr) to the perturbation n’. Thus, the
966 A13-7
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eigenvalue problem to be solved using the time-stepping method is defined by the
exponential operator of the linearized version of the equations. The leading eigenvalue of
the exponential operator to which the power method converges is usually the most unstable
eigenvalue of the linearized operator.

2.3. Linearized lattice Boltzmann methods

To discover the full bifurcation diagram of the annular ETC, we need to simultaneously
solve the fully coupled nonlinear equations (2.2)—(2.7) and linearized equations
(2.11)—(2.16). Instead of directly solving the governing equations at the macroscopic level,
here, we perform both the direct numerical simulation (DNS) and global linear stability
analysis in the framework of the mesoscopic lattice Boltzmann method (LBM). As the
LBM for the DNS of this problem has been well studied (Luo et al. 2016a,b; Lu, Liu &
Wang 2019), we focus on the derivation of a LLBM solver for the linearized governing
equations. In our LLBM model, a standard Bhatnagar—Gross—Krook scheme (Guo, Shi
& Wang 2000) was employed for all fields, including the perturbation flow, perturbation
electric potential, perturbation charge density and perturbation temperature.

For the perturbation flow and perturbation temperature, the LLBM equations have been
built for the global linear stability analysis of incompressible flows (Pérez ef al. 2017) and
thermal convective flows (Jiang et al. 2022), under D2Q9 (two-dimensional nine-velocity)
velocity discretization, and are formulated as follows:

filx + e At t + At — fi(x, 1) = —Ti[fi(x, N —fi1(x, 0] + AtFi(x, 1), (2.20)

1
litx + €At t + AD) — li(x, 1) = ——[li(x, 1) — [ (x, 1)], (2.21)
To

where f and [ are the distribution functions of the perturbation fluid density and
perturbation temperature, respectively. The relaxation times t, and ty are defined as

3v L 1 3% 1
= —_— —_ T = —— -
T2 2

: 2.22a.b
2Ar 2 (2.22a,)

Ty

The corresponding equilibrium distributions ffq and lfq, and the source terms F; in
(2.20) and (2.21) are formulated (Pérez et al. 2017; Jiang et al. 2022) as

" _ e -u ei-u)(e-U WU
ffq:pffieq'i'pwi[ 1 5 +(l )il )_ > i|’ (2230)
P Cy Cq Cs
e U (-0 U
1= pwi [1 e —2} , (2.23b)
CS CS CS
o _ - e Ve - U T
£ = 21 + Ow, [e’ e (ei - u )ie’ ) _ ¥ . ] (2.244)
e cs cy Ccs
e U (e U)2 (_]2
L7 = Ow {1 ‘- —2}, (2.24b)
cs lop Ccs
1 {gBlpo + p'(O — O 'E + Q¢
Fi = w; (] _ _) ei{gBlp0" + p'( . ref)] + g E+ Qe }, (2.25)
21, cs
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and the macroscopic quantities are calculated through (2.26), as follows:

_ a At L o
pl=2 fo W U=} eifi+ (gBlAV + 'O = Brp) + ¢ E+ 0,
l

]

0'=31 (2.26)

The electrical part equations, including the Poisson equation for perturbation electric
potential ¢’ and Nernst-Plank equation for the perturbation charge density ¢’, are also
modelled by LLBMs. Here, the improved lattice Boltzmann model for the Poisson equation
proposed by Chai & Shi (2008) is used to solve ¢’, and the corresponding lattice
Boltzmann equation (LBE) can be given as

gilx + eAt, t + Ar) — gi(x, 1) = —%[g,-(x, f — gfq(x, )] + AtwRD,, 2.27)
where g, e, 74, R and D,, are distribution functions, microscopic velocity, relaxation time,
source term and artificial diffusion coefficient, respectively. The D2Q5 (two-dimensional
five-velocity) velocity discretization is adopted for the electric potential, with the
equilibrium distribution function gfq and the corresponding weight coefficients @ and @
being expressed as

eq, _ [(wo—1.0)¢" i=0 o i=0
8i (x’t)_{wiq&/ i=1-4> “T|1/4 i=1-4°
0 i=0
wi={1/4 i 1_a (2.28a—c)

The relaxation time 74 and source term R can be computed from

Da + ! R=C (2.29a,b)
THh == ———— -, = . . a,
= 82Ar 2 i

The artificial diffusion coefficient D, (D, > 0) is chosen to be D, = 1/2 to balance the
evolution speed and numerical stability. The coefficient 8 has been derived to be 1/2 by the

Chapman—Enskog expansion (Chai & Shi 2008). Finally, the electric potential and charge
density can be evaluated as

P (2.30)

=1—a)
0 =1

The LLBM for perturbation charge density ¢’ is more complex because (2.16) is
inherently nonlinear as the electric field E is a function of g. It is noticed that (2.16) has the
form of a convection—diffusion equation (CDE). In the adoption of LBM for solving the
CDE (Shi & Guo 2009; Chai & Shi 2020; Zhao et al. 2020; Chen et al. 2021; Wang et al.
2021a; Chai, Shi & Zhan 2022), the nonlinear charge mobility term can be treated as a
cross-diffusion term (Wang et al. 2021a) or a convective term (Chai et al. 2022); these two
models show almost no difference in this problem. Here, we can build the LLBM for ¢’ by
treating the nonlinear charge mobility term inspired by the work of Wang et al. (2021a).

966 A13-9


https://doi.org/10.1017/jfm.2023.353

https://doi.org/10.1017/jfm.2023.353 Published online by Cambridge University Press

K. Luo, H.-K. Jiang, J. Wu, M. Zhang and H.-L. Yi
Under D2Q9 (two-dimensional nine-velocity) velocity discretization, we have
1
hi(x + €At t + A — hi(x, 1) = ——[hi(x, 1) — B/ (x, )] + AtG; + AtS;,  (2.31)
Tq

where hfq is the equilibrium distribution function, G; is the term to recover the
cross-diffusion term and S; is the correction term to eliminate the additional terms
appearing in the recovered macroscopic equations (Wang et al. 2021a,b). We further have

/ ’ 3
eq _ Y9 7eq | A €i-U Teq A e-U o alv 1
hi _Ehl + Ow; C% , hi —QWZ|:1+ 2 ], ‘Eq—lm+§,
(2.32a—c)
T\ QV¢ +q Vo e
G—_ (LYo +aVe . _we o (2.33a)
M? T, At 2
1 ym =, wie;
S=\1-=)a@Q+Ugq), Si=-—5 -85, (2.33b)
21, 3
and the charge density is evaluated from
qd =) h (2.34)
J

Theoretically, we need to recover the linearized governing equations by
Chapman-Enskog (CE) expansion. Pérez et al. (2017) first recovered the linearized
Navier—Stokes equation without an external force from the LBE by a CE analysis.
Recently, we have extended Pérez’s model for the global instability analysis of thermal
convection (Jiang et al. 2022) with the CE expansion. Besides, the CE analysis of
Poisson-type perturbation charge potential equation can be found in the work of Chai &
Shi (2008). Finally, the CE analysis of perturbation charge density equation is provided in
Appendix A.

2.4. Fractal dimension and Lyapunov exponent

In this paper, the fractal dimension and Lyapunov exponent are adopted to further test the
chaos quantitatively. The fractal dimension d, measures the degrees of freedom associated
with hydrodynamics, given by

PR (- (10)

s—0  log(s) 2.35)

where correlation function Cj(s) represents the minimum number of hyper cubes (of size
s) covering a given set of points in a p-dimensional space, divided by N2 (N being the
number of samples), and is defined as

N
o1
Cpls) = lim el Zl h(s — | X; — X;1), (2.36)
1,j=
i £

in which / is the Heaviside function, X; and X are a pair of given data points. The straight
part of the curves for C,(s) as a function of s on log—log scale will tend to have a constant
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slope as p increases. In particular, the slope of the periodic flow is close to 1, the slope of
the quasi-periodic flow is close to 2 and the slope of the chaos is a real number greater
than 2 (Grassberger & Procaccia 1983).

The algorithm of Wolf et al. (1985) is used for estimating the maximum Lyapunov
exponent from time traces of the temperature at sampling point P. Since the
implementation of this algorithm is relatively complicated, only a simple description is
given here. For more details of this algorithm, interested readers can refer to Wolf et al.

(1985). Generally, for a given time series {x1, x2, ..., Xk, ... }, its reconstructed phase space
(dimension N) can be described as
Y(@) = [x(6), x(ti + 70), - .., X(6; + (naim — D70)], i=1,2,...,N, (2.37)

in which ngj,, is the number of embedding dimensions, Ty represents the delay time. We
follow the evolution in time of the initial point Y(zg) of the trajectory and its nearest point
Yo(tp) belonging to a different portion of the trajectory. Then, the distance between these
two points changes continuously over time. At time 71, the distance between these two
points changes from L(fp) = |Y(¢9) — Yo(to)| to L(t1) = |Y(¢1) — Yo(¢1)|, then another point
Y1 (#1) of the trajectory is selected to keep the distance |Y1(¢1) — Yo(¢1)| = L(to). Repeat the
above process until Yz(tg) reaches the end of the time series; at this time, the total number
of iterations is E. If the value of E is large enough, then the maximum Lyapunov exponent
can be obtained by
E

A = —— 3 H (2.38)

tg — to = L(to)

It should be noted that the corresponding dynamical system is chaotic when the
maximum Lyapunov exponent A4, is positive (Rempel & Chian 2007). The larger the
positive exponent, the more chaotic the system is.

2.6. Numerical method

Both the DNS and the solving of linear Navier—Stokes equations of the ETC are performed
using the computational fluid dynamics solver Palabos (Latt et al. 2021), which is well
known for its efficient parallelization and second-order accuracy. In the current work, the
time step At is determined by the Courant-Friedrichs—Lewy condition with the target
Courant number being 0.005. The mesoscopic boundary conditions of non-equilibrium
extrapolation (Guo, Zheng & Shi 2002a,b) are used.

3. Validation

The grid independence test and basic validation results of DNS are shown in Appendix B.
Here, the accuracy of the solution of the linear equations (2.17)—-(2.22) using the
LLBM solver was tested by calculating the linear stability criteria. Figure 2(al,a2)
shows the spatial distribution of the base flow and the leading global mode for natural
convection (without the electric effect) at Pr=0.0733, Ra=1608.8 and A = 1.25. It was
detected that the change of sign of the exponent w; occurs approximately at the critical
value Ra. =2472. Our numerical results are in fairly good agreement with the data of
Serrano-Aguilera et al. (2021) (Ra. = 2438 by a spectral method), with a relative error of
1.39%.

Then, we verified the linear critical T, of pure electric convection for both the first
bifurcation and the second bifurcation. Figure 3 shows the neutral curve of the first
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Figure 2. Base flows (first row) and their corresponding most unstable mode (second row). (a) Natural
convection at Pr=10.0733, Ra = 1608.8 and A = 1.25; (b) electrohydrostatic state at 7' =120, k=8 and A =2;

(¢) electroconvection state at 7= 120 and A = 2.

160
—L— =6
150 —o—k=7
—r— k=8
140 | —4—k=9
T, 130
cl
\7\ ;/
120 | T~ =
110
100 1 1 1 1
0.40 0.44 0.48 0.52 0.56 0.60
A/(A+2)

Figure 3. Linear critical values 7,.; of modes k=06, 7, 8 and 9 as a function of A/(A +2) ata = 1073.

bifurcation for modes k=6, 7, 8 and 9 as a function of A at C=10, M =10 and
o = 1073, At the same parameter condition, Wu ef al. (2014) obtained the linear criterion
as T.1 = 122 for mode k =8 with A =2 and o = 0. We find that the current 7,1 = 119.8 at
A =2 is lower than the linear stability criterion. Figure 2(b1) shows the electrohydrostatic
state at 7= 120 and figure 2(b2) gives the leading mode for k=8, which is similar to
the results of Pérez et al. (2014). After the emergence of EC, due to the competition
between the ionic velocity and fluid velocity (Castellanos, Atten & Perez 1987), the flow
is characterized by eight pairs of charge-void regions (where the value of ¢ is almost
zero in figure 2c1). As T continues to increase, the second bifurcation occurs. There has
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Figure 4. Effect of « on the criteria T, of (a) the first bifurcation at A =2 and M = 10; (b) the second
bifurcation at A=2 and M =5.

been no linear instability analysis of the second instability, and only DNSs were used to
calculate the criterion by Huang et al. (2021), who obtained 7, = 213 for eight cells under
parameters A=2, M =5, C = 10 and o = 0. We obtain the linear results as 7;.» =242 with
o = 1073 (the eigenfunction g of the most unstable mode is shown in figure 2¢2).

We find that the current 7,; and 7., are lower and higher than the linear stability
criterion obtained from the finite volume method, which neglected the charge diffusion
effect. Here, we attribute this discrepancy to the effects of charge diffusion. Zhang et al.
(2015, 2016) analysed the linear and weakly nonlinear stability of EC of dielectric liquids
subjected to strong unipolar injection with the charge diffusion effect considered. It was
found that the charge diffusion can destabilize the linearized EC but stabilizes the flow in
an early phase of the nonlinear development of the disturbance, which means that weaker
charge diffusion leads to greater T, and smaller 72, consistent with the comparison here.
The quantitative effects of o on T, for the first and second bifurcations are shown in
figure 4. This dual effect of charge diffusion has also been discussed by Castellanos, Pérez
& Atten (1989) in their DNS of such flows.

4. Results and discussion

4.1. DNS
These parameters are fixed for all following cases: A =1.25, C =10, Pr=10, M =5 and
o =1073. To study the effect of the radial electric field on the pure thermal convection
in the concentric annulus, the first problem to be addressed is the determination of
steady-state solutions in a Ra—T map, as shown in figure 5. To obtain this map, we visited
the different positions of Ra € [0, 3 x 10*] and T € [0, 220] by dividing the map into 30
and 22 points, respectively. Therefore, this study aimed to provide a steady solution for 660
cases in the range of Ra and T investigated. Here, Ra is fixed and we increase T from zero;
we solve for the steady-state solution by means of the Newton—Raphson iteration using as
the initial guess the final-time result obtained from the previous simulations at lower 7. As
shown in figure 5, the solution region is divided into three flow states (seven subregions).
The number of thermal plumes ‘Px’, the number of charge-void regions ‘Cx’ and the
stable/unstable flow state ‘S/U’ constitute the name of every subregion, i.e. the P1-CO-S
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Figure 5. Map of flow patterns for ETC in a two-dimensional concentric annulus.

solution represents steady convection with a main thermal plume at the top of the annulus
without a charge-void region. Chaos is represented by the yellow dot region.

From the dimensionless momentum equation (2.2), the total destabilizing effect from
electric and thermal forces along the radial direction is

F, = |CT? PrqE + M*Raf cos(8)|. 4.1)

Compared with the plate—plate configuration, the electrothermo-convective phenomenon
in the cylindrical configuration is much more complex. This is partially due to the
differences in the directions of the driving forces and the basic flow patterns. From (4.1),
the Rayleigh—Bénard thermal instability can be enhanced by destabilizing the electric field
occurring in the top part of the thermally unstable region (red shadow region with § < 45°);
hydrodynamic instability can occur in the vertical section (yellow shadow regions with §
near 90°), which is called ‘natural convection heated from sidewalls’; and the instability
caused by the baroclinic torque at the bottom of the annulus (red shadow region), as shown
in figure 1. Therefore, instability of ETC in the annulus may be a combination of these
mechanisms.

4.1.1. Bifurcations and multiple solutions with Ra

We keep T constant but different from zero (select three cases: 7'=150, 100 and 150)
and vary the Rayleigh number in such a way as to cross the critical line in a direction
parallel to the Ra axis. Yoo (1999) first researched the saddle-node bifurcation for natural
convection in an annulus when Pr > 0.5. The P1-CO-S solution tends to be excited more
easily at zero-field initial conditions, and the P2-C1-S solution branch can be obtained
with the help of artificial numerical disturbances, which were introduced during a short
initial period (¢ < 0.01) to enhance the separation of the boundary layer from a point other
than the top of the inner cylinder for one plume case. Saddle-node bifurcation occurs at
Ra > Rag = 2024 for the case of T = 50, where the P1-CO-S solution branch and P2-C1-S
solution branch are independent of each other, as shown in the bifurcation diagram in
figure 6(a). As Ra continues to rise, the P2-C1-S solution transitions to an oscillatory state
at Ra. = 15 423; however, the P1-CO-S solution remains stable.
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Figure 6. The mean Nu changes over Ra for three different T'; (@) T = 50 (dotted lines represent the oscillation),
(b) T =100 with red coloured lines (increasing Ra), blue coloured lines (decreasing Ra) and T = 150 with green
coloured lines (green points represent the chaos state).

Figure 7. Four solutions at Ra = 5000 and 7' = 100. Panels (a—d) are the finite-amplitude solutions
corresponding to the P5-C5-S, P5-C4-S, P3-C2-S and P1-CO-S solution branches, respectively.

Figure 6(b) shows the relation between Nu and Ra at T=100 and 7 =150. The
saddle-node bifurcation disappears and is replaced by subcritical bifurcation at these
two electric Rayleigh numbers. At 7= 150, the P5-C5-S solution remains steady until
Ra > Ra. = 12435, just like the case shown in figure 7(a). Then, infinite local maximum
and minimum amplitudes of Nu indicate that steady convection transitions to the disorder
state. Complex transition processes and hysteresis phenomena occur in the case of 7 = 100,
and we summarize them as follows:

966 A13-15


https://doi.org/10.1017/jfm.2023.353

https://doi.org/10.1017/jfm.2023.353 Published online by Cambridge University Press

®

(ii)

(iii)

(iv)

4.1.2.

K. Luo, H.-K. Jiang, J. Wu, M. Zhang and H.-L. Yi

The P5-C5-S solution possesses a symmetrical distribution along the vertical
centreline at Ra < Ra.1 = 5468, as shown in figure 7(a). The value of F, decreases
as Ra increases when § > 90° from (4.1). At Ra = Ra.1, the strength of the electric
plume does not maintain the existence of a charge-void region in the bottom of the
annulus, and the P5-C5-S solution bifurcates to the P5-C4-S solution, as shown in
figure 7(b).

The intensity of the main plume Py, (one plume with maximum flow intensity)
continually increases with Ra and squeezes the room taken by secondary thermal
plumes Pg (other plumes except Pp), so charge-void regions Cg (corresponding
to Pg) move along the —y-direction for the P5-C4-S solution. Identically, these
two charge-void regions will disappear once the magnitude of F is less than the
critical finite amplitude at Ra > Ra.» = 7066. Figure 7(c) shows the distribution of
the P3-C2-S solution after this transition.

Different from the former two processes, no plume suffers from the inhibition of the
stabilizing buoyancy force for the P3-C2-S solution. Two large charge-void regions
Cm (corresponding to Pg) are stable and fixed at their location with increasing Ra
(<Rac3). Figure 6(a) indicates that multiple plume structures are more unstable than
a single plume. When Ra > Ra 3 = 17 323, the P3-C2-S solution is broken and then
convection transitions to the P1-CO-S state (in figure 7d) through a phase of chaos.
The hydrodynamic behaviours of this ETHD system with continually decreasing Ra
can be understood as a reverse process of increasing Ra. The magnitude of F) rises
with the decline in Ra, and new charge-void regions occur at a special Ray at the
bottom of the annulus. Therefore, the P5-C4-S and P3-C2-S solutions bifurcate to the
P5-C5-S state at Rasy =2506 and Ray, =712, respectively. The P1-CO-S state first
transitions to the P3-C2-S solution at Ray3 = 2820 and then returns to the P5-C5-S
solution at Ray».

Bifurcations and heat transfer enhancement with T

The next research question is investigation of the hydrodynamics of this ETC by varying
T instead of Ra. We consider the case of Ra = 5000; to more clearly depict the subcritical
feature, the bifurcation diagram is drawn in figure 8. Three hysteresis loops can be
observed. The explanations are as follows:

®

(ii)

(iii)

The P1-CO-S solution can be obtained from the zero-field initial condition at 7 = 0.
Increasing T until T > T.1 =122, the instability exchange and the flow transition
to the P5-C5-S solution branch (in figure 7a). An interesting transition occurs at
T =187, where the P5-C5-S solution loses its stability and all charge-void regions
travel clockwise. We discuss this instability mechanism in the next section. However,
the P5-C5-S state bifurcation to a P6-C6-S state is shown in the enlarged inset of
figure 8 at 7= 192. Then, the P6-C6-S solution transitions to the travelling wave
state when 7' > T.5 = 201.

Saddle-node bifurcation is proven in the ETHD system with a low electric Rayleigh
number, as shown in figure 6(a), and we also obtain a P2-C1-S solution branch
at T=0. This P2-C1-S state is more stable than P1-CO-S, which bifurcates to the
P5-C5-S solution at 7 > T.» = 129.

The P6-C6-S solution transitions to the P3-C2-S state (in figure 7c¢) with the
disappearance of four charge-void regions at 7' < Ty} =99. These two charge-void
regions cannot be maintained when T <7y =62 and the flow returns to the
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Figure 8. The mean Nu over T at Ra = 5000. The shaded area shows the enhanced heat transfer caused by the
P6-C6-S solution compared with the P1-CO-S solution. The blue lines represent decreasing 7' continually.

P1-CO-S state. Moreover, the P3-C2-S solution can be a saddle-node bifurcation
solution branch, which bifurcates to the P5-C5-S solution at 7.3 = 111.

In summary, this ETHD system consists of saddle-node bifurcations, subcritical
bifurcations and supercritical bifurcations. Two conclusions can be drawn about the heat
transfer from these determined bifurcation routes. First, the Nusselt number decreases
with increasing Ra when thermal plumes exist in the lower part of the annulus. Second,
the heat transfer efficiency is connected to the number of plumes under the same drive
parameters, as shown in figures 6 and 8. Six plumes had the largest Nusselt number
Nu=2.90; however, the Nusselt number was only equal to 1.70 when only one plume
existed, as shown in figure 7. Moreover, we can enhance the heat transfer in a determined
manner: with the zero-field initial condition, we first increase the electric Nusselt number
until 7 > T,; and then decrease T to the value that we need.

4.2. Global linear instability analysis

The transition of multiple plume solutions (more than two plumes) is explained by
analysing the magnitude of F, at the bottom of the annulus successfully. However, it
cannot explain the transition behaviour of the single and two-plume solutions (P1-CO-S
and P2-C1-S) on the saddle-node bifurcation branches shown in figures 6(a) and 8. In
this section, we carry out a global linear instability analysis by analysing the spectrum of
the eigenvalues of the operator M. Due to the symmetry of the boundary condition, the
two-dimensional base flow admits the symmetry property about the x =0 line, i.e. ®p(x,
v, 1) =®p(—x, y, t) with ® =[u, v, 6, g, ¢]. Solutions ¢ of the linearized Navier—Stokes
equations admit the following two types of symmetry with respect to the x =0 plane:

S-mode ¢@(x,y,1) = @(—x,y,1), 4.2)
A-mode (p(x7 Vs t) = _(p(_xa Vs t) (43)

Figure 9(a,b) illustrates the behaviour of eigenvalues in figure 6(a) with
T=50 and Rae[14500, 15300]. Eigenpairs are extracted by adding a random
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Figure 9. Variation in the growth rate w; and the frequency w, with Ra and 7. (a,b) Varying Ra from 14 500 to
15300 with 7'=150; (c,d) varying T between 114 and 122 with Ra = 5000. The red line represents the P1-C0O-S
solution, the blue line is the P2-C1-S solution, the solid line is the S-mode and the dotted line is the A-mode.

symmetry/anti-symmetry perturbation about the x=0 line as the initial condition. We
only give the S-mode (leading mode) solution here because the A-mode has a too rapid
damping rate with time to be extracted. The P1-CO-S solution reflects a rapid decline with
monotonic instability in this parameter range. However, this instability of the P1-CO-S
solution will be replaced with overstability because the flow is thermally dominant, where
the magnitude of buoyancy is approximately 4.5 times larger than the electric force from
(4.1). Therefore, instability of the P1-CO-S solution is similar to the case of pure thermal
convection discussed by Serrano-Aguilera et al. (2021), who proved that the S-mode is
the most unstable mode and the bifurcation is Hopf type, which is consistent with our
conclusion. For the P2-C1-S solution, it shows an overstability with a critical angular
frequency w, = 12.07 at Ra, = 15423 and the corresponding distribution of eigenfunctions
0 and g are shown in figures 10(al) and 10(a2). The eigenfunction 6 has its maxima at an
approximate angle of 45° in the lower region of the ascending jets, so these parts will
be first destabilized and oscillate around the steady state. From these results, the A-mode
is more stable than the S-mode and steady convection losses its stability through a Hopf
bifurcation.

For the case of saddle-node bifurcation solution branches in figure 8 with T € [114, 122]
and Ra = 5000, figures 9(c) and 9(d) give the eigenvalues of the A-mode and S-mode for
the P1-CO-S and P2-C1-S solutions with 7, respectively. We first focus on the eigenvalue
of the P1-CO-S solution. Different from the conclusions above, the A-mode has a larger
increasing rate with 7" than the S-mode and it becomes the leading unstable mode instead
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Figure 10. (a) Critical mode of the P2-C1-S solution at Ra = 15423 and 7' = 50; (b,c) are the (s)-mode and
(a)-mode of the P1-CO-S solution at Ra = 5000 and 7" = 121.8, respectively.

of the S-mode when 7 > 115. Moreover, the leading A-mode plays a role of monotonic
instability, while the S-mode reflects the overstability. Instability exchange occurs at
T, =122, and the distribution of eigenfunctions # and g of these two modes are shown
in figures 10(b) and 10(c). The same conclusion emerges for the P2-C1-S solution at this
range of T. Therefore, the strength ratio of buoyancy and electric force tend to influence
the symmetry of the leading mode and the bifurcation types.

4.3. Energy analysis

To gain a deeper understanding of instability mechanisms from the global linear instability
results above, an energy analysis method was used. The energy analysis was first applied to
the EHD flow by Zhang et al. (2015) in local analysis. Here, we use this method to explain
the instability mechanism for the ETC. The hydrodynamic perturbation kinetic energy is
derived by multiplying the linearized (2.18) by the complex conjugate of the perturbation
velocity u*, i.e.

du; aU; _ Qu
u — +utu— +uf U—
Lot ! Xj i

ap 3%u; T\’ (3¢ 0%¢ a¢ %9 Ra
+ + i + +
=0 (2) (22 Y 00 e, (44
“i 0x; i 3)(]2 + i (M) 0x; Bx} + 0x; asz tu; Pr & “4.4)

where u;, ¢, 6 and p are perturbation values. By taking the complex conjugate of the
obtained equation and averaging the two equations, the rate of the perturbation energy
density is obtained. After discarding transport terms (which only redistribute the energy
inside the domain and do not contribute to the net energy rate in the case of no-penetration
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boundary conditions) and integrating the equation in the domain, we obtain the following:

oK IU; du du; 1 [ Ra . .
_——/ (u uj +u; u,) 7 98_);8_)g+§_/_(zﬁ(0ui +07"u;) - ey

Ky Ky Kp

STAOIE G
2 Jo \M ox; \ 0x; dx;  dx; Ox;
R (+a¢ a¢+>_ ¢

ax,ax] 0x; o 0x; 0x;0x;0x;

(Guf +¢* u,-)}

K.

1 0 + aul Bu
+= 8 (Uul )—(pu +p u)811+ u; _+ Ui——
2

2 ' ox; 0x;
T\%9¢ (9 A+
+ — _¢ _¢”?+ ¢ u;
M axi 8xj 3)6]'

Transport Terms

, 4.5)

where K = uf u;/2 is the perturbation energy density. The first term on the right-hand side
of (4.5) represents the interaction between the disturbance velocity and the base flow (K,),
the second term indicates the viscous dissipation of the disturbance energy (Ky), the third
to fifth terms are the energy transfer terms between the velocity fluctuation field and the
electric field (K,) and the last term describes the energy exchanged between the fluctuating
flow field and the thermal field, which is the rate of work done by buoyancy (Kj). Summing
the right-hand side terms, a positive sign means that the terms play a destabilizing role on
the flow, and vice versa.

Figure 11(a) shows the time evolution of various perturbed kinetic energies for the
P2-C1-S solution at Ra, = 15423 and T = 50. Immediately, one can make several direct
observations. First, viscous dissipation K is always negative for the hydrodynamics. The
terms that can lead to growth in the hydrodynamic disturbance energy density are linked
to the energy transfer from the electric field, K., K; and K,; K} is the leading term for
destabilizing, K, is the second important term and production K, can be neglected due to
its weak influence. The most efficient electric mechanism seems to be related to the term
K. 12, which represents the interaction between the x-direction perturbed electric field and
the vertical direction velocity under the constant effect of the vertical direction base flow
field. Figure 11(c) gives the local contribution of the perturbed energy budget over the
angle § from 0° to 180°, which indicates that the destabilized electric field enhanced the
Rayleigh—-Bénard instability at the top of the annulus for § <60°. There are two main
destabilized areas: 6 € [0°, 11.4°] with a peak value at 6 =0° and § € [32.4°, 46.8°] with
a peak value at § =40.8°, where plume cycles originate and return to the inner cylinder,
respectively. When § > 70°, all energy terms tend to zero, so these regions are stable.

Figure 12(a) shows the local spatial structures of various budget terms for this P2-C1-S
solution. The viscous dissipation term Kj; is proportional to the magnitude of the velocity
gradient, so the boundary layer and the excessive region of the jets are the main
perturbation energy dissipation (not given here). The energy budget representing buoyancy
K} is found around the jet region of the plume at the top of the annulus (in figure 12a2).
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Figure 11. Temporal evolution and spatial contributions to the local growth rate of the perturbed kinetic energy
through mechanisms of various budget terms. Panels (a,c) are the P2-C1-S solution at Ra = 15423 and T = 50,
respectively; panels (b,d) are the P1-CO-S solution at 7= 120 and Ra = 5000, respectively.

The electric field both stabilizes and destabilizes this flow in different areas, as shown in
figure 12(a3), where the main destabilizing region of K, is opposite to Kp.

Figure 11(b) shows the time series of the energy terms for the P1-CO-S solution at
Ra=5000 and T =120 (<T,), in which a transient energy rise is found at ¢ € [0, 0.05] by
adding a random perturbation of ¢ as the initial condition. Different from the overstability
shown in figure 11(a), the pitchfork bifurcation predicts a steady exponential decay for both
the electric term K, and the buoyancy term Kj. Figure 11(d) gives the local contributions
of the perturbed energy budget, and there are destabilizing areas § € [6.2°, 29.9°] with a
peak value of § =22.2° and a stabilized region at § < 6.2°. The local instability region
in figure 12(b) illustrates that the total destabilizing energy dK/dr concentrates in the
boundary layers around the outside circle, which mainly comes from the contribution
of K.. These destabilizing regions tend to excite a pair of charge-void regions that are
symmetric along the vertical midplane. Therefore, the P1-CO-S solution bifurcates to the
P3-C2-S solution and then continues to bifurcate the P5-C5-S state, as shown in the inset
of figure 11(d).

Here, we sought a quantitative energy guideline. Figure 13(a) shows the time evolution
of the two main destabilizing terms K, and K} for 7=95, 96, 97 and 98 at Ra = 5000
and 7> 1.7, i.e. the model instability phase. The leading role of K} is gradually replaced
by K. in this range, and K, is the largest destabilizing term when T > Top,rg, (critical
electric Rayleigh number with Kj = K.); Tepergy € [95, 98] is less than the linear critical
value T.=122. Figure 13(b) indicates the energy budget terms for different electric
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Figure 12. Contributions to the local growth rate of the perturbed kinetic energy through mechanisms of
various budget terms: (a) P2-C1-S solution at Ra = 15423, T =50; (b) P1-CO-S solution at Ra =5000 and
T =120.
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Figure 13. (@) Time evolution of K} and K, for four different 7=98, 97, 96 and 95 for the P1-CO-S solution
with Ra =5000; () is the perturbation kinetic energy contributions for the P1-CO-S solution at 7" € [114, 122]
and Ra = 5000.

Rayleigh numbers. We obtained these terms by using the most unstable mode with a
kinetic density k = 10 as the initial condition and then evolving it over time. The magnitude
of all terms increases with 7, and the most efficient terms seem to relate to K,11. The only
stabilizing term K, cannot offset the destabilizing effect of K, and K, which causes the
sign of dK/dt to change at T = 122. Therefore, the electric destabilizing mechanism may
be associated with the A-mode, while thermal mechanisms correspond to the S-mode.

4.4. Transition to oscillation and disorder

Energy analysis predicted the local instability region for the P2-C1-U solution at Ra,
and 7 =50. Therefore, we first investigated the instability features of this solution
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Figure 14. Time evolution of u for three different unstable solutions (¢1, f; and #3) and the Fourier
frequency spectrum of temperature at the sampling point. (@) One-frequency oscillation at Ra = 5000, T = 180;
(b) one-frequency oscillation for the P2-C1-S solution at Ra = 18 000, 7' = 50.

after Hopf bifurcation at Ra =18 000. Figure 14(a) shows the velocity time series and
the corresponding Fourier frequency spectrum at sampling point P=(0.1, 0.2). The
amplitude of the velocity fluctuation increases gradually and eventually maintains a stable
periodic oscillation. The dominant frequency of the oscillatory flow (f1 = 2.03) intuitively
illustrates this oscillation. In figure 15(a), we show snapshots of charge-void regions (green
line with ¢ = 0.05) and the temperature distribution at the special time points ?1, t> and #3
marked in figure 14(a2). The two-plume structure is still maintained but oscillates with
time along the vertical direction, and there is one pair of local maximum (Nu =2.46) and
minimum (Nu = 2.37) amplitudes in the time series. Moreover, the P1-CO-U solution in
figure 5 has the same instability behaviours.

There is another instability type, the global travelling wave from the P5-C5-U or
P6-C6-U solutions. Figures 14(b1) and 14(b2) display the time evolution of the velocity
u and its Fourier spectrum for the P5-C5-U solution at 7= 180 and Ra = 5000. The flow
shows a regular mono-periodic oscillation characterized by a main frequency f; =6.02
and its harmonics. To better understand this unsteady flow, three instantaneous snapshots
of the charge-void regions and temperature distribution corresponding to times 71, t> and 3
(labelled in figure 14b2) are shown in figure 15(b). It is clear that charge-void regions and
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Figure 15. Distributions of temperature fields and the charge-void region (green line with ¢ =0.05) at three
different times 1, > and 73.

thermal plumes rotate clockwise. Huang et al. (2021) found that all charge-void regions
were located on the clockwise side and then swung to the anticlockwise side in one period
for the second instability of the pure electroconvection. The baroclinic effect caused by the
stabilizing thermal effect at the bottom of the annulus may be responsible for the difference
between the ETC and EC. Moreover, part of the Coulomb force is used to drive the fluid’s
circumferential motion, which reduces the radial convective intensity. Therefore, the mean
Nusselt is lower than the steady state (i.e. Nu=4.2 at T =175) and slightly oscillatory
about Nu at approximately 3.61.

Finally, the routes of steady flow transition to chaos were investigated. In addition to
the basic analysis methods above, i.e. the bifurcation diagram analysis and the frequency
spectral analysis, the fractal dimension d,. and Lyapunov exponent A,,,,, were adopted to
quantitatively test the chaos based on our previous work (Li et al. 2020). The transition
route from steady to chaos through periodic and quasi-periodic phases for ETC has been
investigated by Li er al. (2020). Therefore, we focused on another route that occurs widely
in our present ETHD system, such as that in figures 6(b) and 5 with Ra > 24 000.

Figure 16 gives the time evolution of u at Ra=12500 and 7 = 150; to reduce the
computational time, this series used the P5-C5-S solution at Ra = 12400 as the initial
condition. Through a steady increasing phase occurring at ¢ < 7, irregular oscillation was
observed for a large time ¢ >10. A continuous broadband frequency spectrum (not shown
here) with a main frequency f| =2.73 indicates a typical chaos. Before computing the
Lyapunov exponents, the nonlinear equations (2.1) are first integrated for a long time
(t>50) to decay all initial transitions and let the flow enter the chaotic state without
such a disturbance. The values of A, and d. are listed in table 1. The maximum
Lyapunov exponents and fractal dimension are zero at Ra = 12400. At Ra=12430,d, > 1
and Aqy > 0 indicate a steady transition to chaos directly without suffering a periodic
and quasiperiodic phase. Around this transition criterion Ra. of chaos, the variation in
Ra is not significant, and these Lyapunov dimensions are found to be smaller than 4.
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Figure 16. Time evolution of u at Ra =12 500 and T = 150 for three different unstable solutions (¢1, #> and
t3). Chaos from the P5-C5-S solution.

Ra Flow state d, Amax
12400 Steady 0 0
12430 Chaos 2.5 3.3
12460 Chaos 2.6 3.2
12500 Chaos 2.6 3.2

Table 1. Summary of the flow state, fractal dimension and maximum Lyapunov exponent for different
electric Rayleigh numbers 7" and Rayleigh number Ra.

The distributions of the temperature fields and the charge-void regions with Ra = 12 500 at
11, tp and t3 are shown in figure 16, where regular flow patterns are broken and the Nusselt
number is slightly larger than 3.

5. Conclusion

Global linear instability and bifurcations in ETC of a dielectric liquid confined between
a two-dimensional concentric annulus subjected to a strong unipolar injection were
investigated numerically,. A LLBM was first proposed by Pérez er al. (2017) and
extended to solve the whole set of coupled linear equations, including the linear
Navier—Stokes equations, the linear energy equation, Poisson’s equation, and the linear
charge conservation equation. A multiscale analysis was also performed to recover the
macroscopic linearized Navier—Stokes equations from four different discrete LBEs. It was
validated by calculating the linear critical value of two-dimensional natural convection and
the LLBM had an error of 1.39% compared with the spectral method.

Seven kinds of solutions exist in this ETC system due to the complex bifurcations,
including saddle-node, subcritical and Hopf bifurcations. These bifurcation routes
constitute at most four solution branches. Force magnitude analysis, global linear
instability analysis and asymptotic energy analysis were used to explain the instability
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mechanism and transition of different solutions and predict the local instability regions.
Instability with global travelling wave behaviour is a unique behaviour in the annulus
configuration ETHD system, which may be caused by the baroclinity. Finally, the chaotic
behaviour was quantitatively analysed through the calculation of the fractal dimension and
Lyapunov exponent.
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Appendix A. The CE expansion for LLBM
Here, we provided the CE analysis of perturbation charge density equation. In (2.31), A;
and hfq satisfy

Z h; = Z h?=q, Z eih;! = Qu' +4'U, Z eiehi! =qcll.  (Ala—c)
i i i j

1

The corresponding cross-diffusion term G; and the correction term S; satisfy
Y Gi=0, ) eGi=G, Y Si=0 ) eSi=5. (A2a—d)
i i i i

With an expansion of the distribution function /; and terms G and S in time and space,
we obtain

hi = K+ ehl" + e2n, (A3a)
Gi=¢G", Si=es. (A3b)

Combining (A1) and (A3), we have
Yn"=0 @m=1), (Ada)

l
YaV=0, Y ec"=6D, Y sV=0 Y es’=sD. (a4
i i i i

By applying the Taylor expansion to (2.31), we obtain
1

D+ 2D 4 =
o Y

(hi — h;") + G; + Si, (AS)

where D; = 0; +¢; -V = €0, + 828t2 + ce; - V1. Setting D;; = 9,1 + ;- V1, then we
have D; = ¢D;; + 828t2. Inserting (A3) into (AS5), and by the scale analysis, we can obtain
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the following equations for ¢! and &

1
el Dk’ = ———n" + GV + 51,
T At
At
2 eq (1 @)
& 8t2hi +Di1hi +7Dllh = ‘[thhl .

Inserting (A6a) into (A6b), we can obtain

1
d, ! + Dan [(1 )h(“] + 2 Da 16 + 50 = ———n®.
27, 2

T, At !
Summing (A6a) and (A7) over i, we can obtain

aq' _ _
a_q +Vi-(Qu' +4U) =0,
5]

At
D Z ) (1) My _
8[2+ E tl |:< )h ]+_2 : et'Vl[Gi +Sl ]—0

The third term in (A8b) can be expressed as

At At
SIE viIG" + 5] = S V1160 + 501,

i

Consider the second term in (A8b),

[ 0 R (R

Using (A6a), we have

Zeh(l) —rqu[a,IZe,h +V12e,e,hq Zel GV Ze, (1)i|

= —1,At[31(Qu' + ¢ U) +c2Viq — GV — 5D,

Substituting (A11) from (A8b), we have

g’ 2 1 1
e 2K [cs (rq - 5) Atqu/:| — 7,AtGY.

Summing (A12) multiplied by 2 and (A8a) multiplied by &, we can obtain

(A6a)

(A6D)

(AT)

(A8a)

(A8D)

(A9)

(A10)

(A1)

(A12)

_ _ 1 T - _
g +V - (Qu +qU)=V. |:c? (rq — 5) AtV + W(QVd)/ + q/VQ)] , (A13)

and setting (T/Mz)a = c?(rq — 1/2) At, we can recover (Al4e).
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Resolutions 200 x 200 300 x 300 400 x 400 500 x 500
Nu 3.013 3.065 3.208 3.211

Table 2. Grid independency test for the ETC in annulus at 7= 100 and Ra =1 x 10°.

Finally, the LLBM equations can recover the linearized macroscopic equations
(Al4a—e) by CE expansion

ap’ oy
E+V-(pu +pU)=0, (Alda)
aﬁu’ - 7 —-—rr ! / ’ =
o7 + V. (puU+pUu)=—Vp +V - (uVu') + pogB® — 6o) + qE, (Aldb)
80/ ! rrn/ /
5tV @O+ U0 =V (xV6), (Aldc)
V3¢ = —Cq, € =-V¢, (Al4d)
dq' .7 = T 2 > =
E-I—V-(Qu —f—qU):WV-(onq—eQ—Eq). (Alde)

It is noted that (A14b) is obtained by subtracting the moment equation of the base
state and eliminating the high-order perturbation term (Pérez et al. 2017). As the
LLBM is an artificial compressible solver for incompressible ETC, under incompressible
conditions, p = p’ = constant and constant parameters, after non-dimensionalization, we
can obtained non-dimensional incompressible governing equations (2.11)—(2.16).

Appendix B. Validations for DNSs

In this section, we first present the result of the grid independency test. The mean Nusselt
number is computed at 7= 100 and Ra=1 x 10° under different grid resolutions, as
shown in table 2. The relative errors between resolutions of 400 x 400 and 500 x 500 are
less than 0.2%. Therefore, a resolution of 400 x 400 is applied in the following numerical
simulations considering both the accuracy and the computational efficiency.

Then, we verify the thermal module and electric module. The benchmark case for
natural convection at Pr =0.706 and Ra = 4.7 x 10* is considered. The radial temperature
distributions for three different angles § =0°, 90° and 180° and Nu at the inner and outer
surfaces are plotted in figures 17(a) and 17(b). Our results have a rather small error
compared with the result obtained by the spectral code (Serrano-Aguilera et al. 2021).
Finally, the hydrostatic solution is selected to validate the solving of Poisson’s equation
for the electric potential and charge conservation by LBM. There are analytical solutions
of hydrostatic state available for the concentric cylinder, which may be expressed as

)

uy = 10,01, qs(R) = AJSR* + B, EsR) = 23 [8(R? + B)1'/?, (Bla—c)
where § = 1 for the inner injections; A, and B, are two constants depending on I" = Ry/R;.
In the case of strong injection C = 10, the values for A, and B, can be found in Agrait &
Castellanos (1990). In figure 18(a,b), we validate our numerical steady solutions by DNS
against the analytical solutions equation (A1). The difference is 0.8% for ¢ and 0.183% for
E, in terms of the root-mean-square error for R =0.1, 0.3 and 0.5.
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Figure 17. Comparison of (@) radial temperature distribution and (b) local Nu between our numerical results
and results of Serrano-Aguilera et al. (2021) at Pr=0.706 and Ra =4.7 x 104,
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Figure 18. Comparison between the numerical and analytical solutions of hydrostatic state at Fe = 10*:
(a) electric field E, and (b) charge density g. Three cases corresponding to radius ratio 0.1, 0.3 and 0.5,
respectively, are considered.
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