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Computing isogenies between abelian varieties

David Lubicz and Damien Robert

Abstract

We describe an efficient algorithm for the computation of separable isogenies between
abelian varieties represented in the coordinate system given by algebraic theta functions.
Let A be an abelian variety of dimension g defined over a field of odd characteristic.
Our algorithm comprises two principal steps. First, given a theta null point for A and
a subgroup K isotropic for the Weil pairing, we explain how to compute the theta null
point corresponding to the quotient abelian variety A/K. Then, from the knowledge
of a theta null point of A/K, we present an algorithm to obtain a rational expression
for an isogeny from A to A/K. The algorithm that results from combining these two
steps can be viewed as a higher-dimensional analog of the well-known algorithm of
Vélu for computing isogenies between elliptic curves. In the case where K is isomorphic
to (Z/`Z)g for ` ∈ N∗, the overall time complexity of this algorithm is equivalent to
O(log `) additions in A and a constant number of `th root extractions in the base field
of A. In order to improve the efficiency of our algorithms, we introduce a compressed
representation that allows us to encode a point of level 4` of a g-dimensional abelian
variety using only g(g + 1)/2 · 4g coordinates. We also give formulas for computing the
Weil and commutator pairings given input points in theta coordinates.

1. Introduction

The general problem of computing separable isogenies between abelian varieties can be split
into different computational sub-problems depending on the expected input and output of the
algorithm. These problems are as follows.

– Given an abelian variety Ak over a field k and an abstract finite abelian group K, compute
all the abelian varieties Bk such that there exists an isogeny Ak→Bk whose kernel is
isomorphic to K, and give rational expressions for the corresponding isogenies.

– Given an abelian variety Ak and a finite subgroup K of Ak, recover the quotient abelian
variety Bk =Ak/K as well as a rational expression for an isogeny Ak→Bk.

– Given two isogenous abelian varieties Ak and Bk, compute a rational expression for an
isogeny Ak→Bk.

In the present paper, we are concerned with the first two problems. In the case where the
abelian variety is an elliptic curve, efficient algorithms have been described that solve all the
aforementioned problems [Ler97]. In particular, an algorithm proposed by Vélu [Vél71] takes as
input a finite subgroup G of cardinality ` of an elliptic curve Ek, and returns the equation of the
quotient Ek/G at the cost of O(`) additions in Ek. The algorithm of Vélu also gives a rational
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expression for the isogeny Ek→ Ek/G in the coordinate system provided by the Weierstrass
form of elliptic curves.

For higher-dimensional abelian varieties, much less is known. Richelot’s formulas [Ric36,
Ric37] can be used to compute (2, 2)-isogenies between abelian varieties of dimension two. The
paper [Smi08] also introduces a method for computing certain isogenies of degree eight between
the Jacobians of curves of genus three. In this paper, we present an algorithm for computing
(`, . . . , `)-isogenies between abelian varieties of dimension g represented in the coordinate system
provided by algebraic theta functions, for any `> 2 and g > 1, when the characteristic of k is
odd and relatively prime to `.

Possible applications of our algorithm include:

– transfer of the discrete logarithm from an abelian variety to another abelian variety where
the discrete logarithm is easy to solve [Smi08];

– the computation of isogeny graphs to obtain a description of the endomorphism ring of an
abelian variety [FM02, Koh96];

– the computation of Hilbert class polynomials [CKL08, GHKRW06].

We now give a more detailed description of the main results of this paper. Let n ∈ N be
such that 2 | n and n> 4. Let n= (n, n, . . . , n) ∈ Zg and Z(n) = Zg/nZg. We denote by Mn

the modular space of marked abelian varieties which parametrizes triples (Ak,L ,ΘAk
) where

L is a totally symmetric ample line bundle on Ak and ΘAk
is a symmetric theta structure

of type Z(n) for L (see [Mum66, § 2]). In the following, a theta structure of type Z(n) will
also be called a theta structure of level n. The modular space Mn is well-suited for computing
modular correspondences, since the algebraic systems which play the same role in this space as
the classical modular polynomials have their coefficients in {1,−1} and are therefore much more
amenable to computations than their counterparts using the j-invariant in genus 1 or the Igusa
invariants in genus 2. In the article [FLR11], we defined a modular correspondence

ϕ :M`n→Mn ×Mn, (ai)i∈Z(`n) 7→
(

(ai)i∈Z(n),

( ∑
j∈Z(`)

ai+nj

)
i∈Z(n)

)
for ` ∈ N∗ prime to n, which can be seen as a generalization of the classical modular
correspondence X0(`)→X0(1)×X0(1) for elliptic curves (see, for instance, [Koh03]). To be
more precise, let p1 and p2 be the first and second projections of Mn ×Mn, respectively,
and let ϕ1 = p1 ◦ ϕ and ϕ2 = p2 ◦ ϕ. The map ϕ1 :M`n→Mn is such that the (x, ϕ1(x)) for
x ∈M`n(k) are modular points corresponding to `-isogenous abelian varieties. In fact, consider
(ai)i∈Z(`n) ∈ ϕ

−1
1 ((bi)i∈Z(n)). The modular point (ai)i∈Z(`n) defines a triple (Ak,L ,ΘAk

), and
the classical isogeny theorem for algebraic theta functions [Mum66, Theorem 4] gives an explicit
isogeny π :Ak→Bk. As a consequence, the fiber of ϕ1 over a geometric point of Mn is the
exact analog of the zeros of the univariate polynomial that we obtain by evaluating the classical
modular polynomial ψ` at a given j-invariant.

Note that the classical isogeny theorem for theta functions is not sufficient for the purpose of
computing isogenies between abelian varieties. Although it is effective, the isogeny theorem can
only be used to compute isogenies from a marked abelian variety of level ` to a marked abelian
variety of level n where n divides `, so it only provides us with a way to compute isogenies by
‘going down’ the level of the theta structures. At some point, we need a way to compute isogenies
by ‘going up’ the level, and this is precisely what Theorem 1.1 provides.
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We denote by π̂ :Bk→Ak the isogeny that makes the following diagram commutative.

x ∈Ak
[`] //

π
%%KKKKKKKKK z ∈Ak

y ∈Bk
π̂

99ttttttttt

The main result of this paper is the following.

Theorem 1.1. Let Bk be a g-dimensional marked abelian variety. Let (T1, . . . , Tg)⊂Bk[`] be a
basis of a maximal subgroup K of Bk[`] that is isotropic for the Weil pairing. Let π̂ :Bk→Bk/K
be the corresponding isogeny. One can compute the compressed coordinates of the modular point
(ai)i∈Z(`n) corresponding to π̂ with O(log(`)) addition chains in Bk and O(1) `th roots of unity

extractions. Once we have (ai)i∈Z(`n), we can compute the compressed coordinates of the image

of a point in Bk under π̂ with O(log(`)) addition chains in Bk. Taking the generic point of Bk,
we obtain, in particular, a rational expression for the isogeny π̂.

This theorem relies in an essential manner on the notion of addition chains, the precise
meaning of which will be made clear later in the paper. Broadly speaking, the addition chain is
a form of addition on the abelian variety that uses Riemann theta relations to keep track of the
projective factors. We remark that we use in this theorem a point compression representation
which allows us to represent a point of level `n with only ng · g(g + 1)/2 coordinates. This is
especially useful when ` is large, since it enables us to keep a compact representation of the
points given by the theta coordinates of level `n. Another application of addition chains will be
given in § 6, where we explain how the projective factors that we are using it to keep track of
allow us to compute the commutator pairing with the coordinates given by theta functions.

A proof of Theorem 1.1 is given in §§ 4.2 and 5.1. It should be remarked that this result
constitutes a higher-dimensional analog of the classical Vélu algorithm, since by combining the
two conclusions of the theorem, we obtain an efficient algorithm which takes as input an abelian
variety Bk and a maximal subgroup K of Bk[`] isotropic for the Weil pairing, and computes a
rational expression for the isogeny Bk→Ak =Bk/K.

Once we have computed an isogeny π̂ :Bk→Ak, it is possible to compose π̂ with an
isogeny π2 :Ak→ Ck given by the isogeny theorem such that π2 ◦ π̂ is an `2-isogeny (see
[FLR11, § 3] or § 2.2). In fact, let Ck be the abelian variety associated to the modular point
(ci)i∈Z(n) = ϕ2((ai)i∈Z(`n)); then we have the following diagram.

Bk

[`]

��

π̂

!!BB
BB

BB
BB

Ak
π

}}||
||

||
|| π2

  BB
BB

BB
BB

Bk Ck

The isogeny π2 ◦ π̂ is then an `2-isogeny between Bk and Ck, which are two marked abelian
varieties with a theta structure of level n.

For actual implementations of the algorithm, we want to use the smallest possible n to get
a compact representation of the points and fast addition chains. In fact, it is possible to tweak
Theorem 1.1 to make it work for n= 2. This case is very important in practice: along with the
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aforementioned gains for point representation and the efficiency of addition chains (for instance,
we gain a factor of 2g in space compared with n= 4 for point representation), it reduces the
most time-consuming part of our algorithms, namely the computation of the points of `-torsion,
since there are half as many such points on the Kummer variety associated to an abelian variety.
For each algorithm that we use, we give an explanation of how to adapt it to the type-Z(2) case:
see § 3.2.1 and the end of §§ 4.2, 5.1, 5.3 and 6.

We end this introduction with two remarks about the algorithms presented in this paper.
First, the assumption that n be prime to ` is not essential. There is, nonetheless, one noticeable
difference if we drop this hypothesis. Suppose that we are given Bk[`]. Since Bk is given by a
theta structure of level n, we can recover Bk[n] by using the action of the theta group on the
theta null point (bi)i∈Z(n) (as explained in § 2.1). If ` is prime to n, this gives us Bk[`n], and we
can use the first assertion of Theorem 1.1 to obtain a modular point of type Z(`n). If ` is not
prime to n, we have to compute Bk[`n] directly. Although we only consider the case of (`, . . . , `)-
isogenies, it is also possible to compute more general types of isogenies with our algorithms. We
sketch in § 4.2 the adaptations to be made to the definition and main results of this paper to
treat more general isogenies.

The paper is organized as follows. In § 2, we recall the isogeny theorem and study the
relationship between isogenies and the action of the theta group. We recall the addition relations,
which play a central role in this paper, in § 3. We then explain in § 4 how to compute the isogeny
associated to a modular point. If the isogeny is given by theta functions of type Z(4`), it requires
(4`)g coordinates. We give a point compression algorithm in § 4.1, showing how to express such
an isogeny with only g(g + 1)/2 · 4g coordinates. In § 5 we give a full generalization of Vélu’s
formulas, constructing an isogenous modular point with prescribed kernel. This algorithm is more
efficient than the special Gröbner basis algorithm from [FLR11]. There is a strong connection
between isogenies and pairings, and we use the above work to explain, in § 6, how one can
compute the commutator pairing and how it relates to the usual Weil pairing.

2. Modular correspondences and theta null points

In this section, we fix some notation that we will use in the rest of the paper. In § 2.1, we recall the
definition of a theta structure and the projective embedding (see [Mum66, § 1]) deduced from it.
In § 2.2, we recall the isogeny theorem, which relates the theta functions of two isogenous abelian
varieties with compatible theta structures. In § 2.3, we study the connection between isogenies
and the action of the theta group on the affine cone of the projective embedding given by the
theta structure.

2.1 Theta structures

Let Ak be a g-dimensional abelian variety over a perfect field k. Let L be an ample totally
symmetric line bundle of degree d on Ak. We suppose, moreover, that d is prime to the
characteristic of k. Denote byK(L ) the kernel of the isogeny ϕL :Ak→ Âk, defined on geometric
points by x 7→ τ∗xL ⊗L −1 where τx is translation by x. Let δ = (δ1, . . . , δg) be the sequence
of integers satisfying δi | δi+1 and such that, as group schemes, K(L )'

⊕g
i=1(Z/δiZ)2

k. We say
that δ is the type of L . In the following we let Z(δ) =

⊕g
i=1(Z/δiZ)k, let Ẑ(δ) be the Cartier

dual of Z(δ), and let K(δ) = Z(δ)× Ẑ(δ). If x ∈ Z(δ) and ` ∈ Ẑ(δ), we put 〈x, `〉 := `(x).

Let G(L ) and H(δ) be, respectively, the theta group of (Ak,L ) and the Heisenberg
group of type δ (see [Mum66, p. 294]). In this article, elements of G(L ) will be written
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as (x, ψx) with x ∈K(L ) and ψx : L → τ∗xL an isomorphism. We know that G(L ) and H(δ)
are central extensions of K(L ) and K(δ) by the multiplicative group Gm. By definition, a
theta structure ΘAk

on (Ak,L ) is an isomorphism of central extensions from H(δ) to G(L ).
We denote by eL the commutator pairing (see [Mum66, p. 203]) on K(L ) and by eδ the
canonical pairing on K(δ) = Z(δ)× Ẑ(δ). We recall that if (x1, x2) and (y1, y2) are in K(δ),
we have eδ((x1, x2), (y1, y2)) = 〈x1, y2〉/〈y1, x2〉. We remark that a theta structure ΘAk

induces
a symplectic isomorphism ΘAk

from (K(δ), eδ) to (K(L ), eL ). Let K(L ) =K1(L )×K2(L )
be the decomposition into maximal isotropic subspaces induced by ΘAk

.
The section K(δ)→H(δ) defined on geometric points by (x, y) 7→ (1, x, y) can be transported

by the theta structure to obtain a natural section sK(L ) :K(L )→G(L ) of the projection
κ :G(L )→K(L ). We denote by sK1(L ) (respectively, sK2(L )) the restriction of this section to
K1(L ) (respectively, K2(L )). Recall (see [Mum66, p. 291]) that a level subgroup K̃ of G(L ) is
a subgroup such that K̃ is isomorphic to its image by κ.

Let V = Γ(Ak,L ). There is an action of the theta group G(L ) on V by v 7→ ψ−1
x τ∗x(v) for

v ∈ V and (x, ψx) ∈G(L ). This action can be transported via ΘAk
to an action of H(δ) on V .

It can be shown that there is a unique (up to a scalar factor) basis (ϑi)i∈Z(δ) of V such that this
action is given by

(α, i, j) · ϑΘAk
h = α · 〈−i− h, j〉 · ϑΘAk

h+i . (1)

If there is no ambiguity, in this paper we will sometimes drop the superscript ΘAk
from the

notation ϑ
ΘAk
h .

This basis gives a projective embedding ϕΘAk
:Ak→ Pd−1

k which is uniquely defined by the
theta structure ΘAk

. The point (ai)i∈Z(δ) = ϕΘAk
(0Ak

) is called the theta null point associated
to the theta structure. Mumford proved in [Mum66] that if 4 | δ, then ϕΘAk

(Ak) is the closed
subvariety of Pd−1

k defined by the homogeneous ideal generated by the Riemann equations.

Theorem 2.1 (Riemann equations). For all x, y, u, v ∈ Z(2δ) which are congruent modulo
Z(δ) and all χ ∈ Ẑ(2), we have( ∑

t∈Z(2)

χ(t)ϑx+y+tϑx−y+t

)
·
( ∑
t∈Z(2)

χ(t)au+v+tau−v+t

)

=
( ∑
t∈Z(2)

χ(t)ϑx+u+tϑx−u+t

)
·
( ∑
t∈Z(2)

χ(t)ay+v+tay−v+t

)
. (2)

The data of a triple (Ak,L ,ΘAk
) is called a marked abelian variety of type Z(δ). We denote

by Mδ the quasi-projective variety defined as the locus of all theta null points associated to
marked abelian varieties of type Z(δ). We recall (see [Kem89, Theorem 28]) that if n > 4, then
Mn is an open subset in the projective variety described by the following equations in P(k(Z(n))):( ∑

t∈Z(2)

χ(t)ax+tax+t

)
·
( ∑
t∈Z(2)

χ(t)au+tau+t

)

=
( ∑
t∈Z(2)

χ(t)az−x+taz−y+t

)
·
( ∑
t∈Z(2)

χ(t)az−u+taz−v+t

)
, (3)

ax = a−x

for all x, y, u, v, z ∈ Z(n) such that x+ y + u+ v = 2z and all χ ∈ Ẑ(2).
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2.2 Isogenies compatible with a theta structure
Let Ak be an abelian variety of dimension g over a perfect field k, and denote by K(Ak) its
function field. An isogeny is a finite surjective map of abelian varieties π :Ak→Bk. An isogeny
is said to be separable if the function field K(Ak) is a finite separable extension of K(Bk).
A separable isogeny is uniquely determined by its kernel, which is a finite subgroup of Ak(k).
In that case, the cardinality of the kernel is the degree of the isogeny. In this paper, we only
consider separable isogenies whose degree is prime to the characteristic of k. By an `-isogeny for
` > 0 we always mean a (`, . . . , `)-isogeny where (`, . . . , `) ∈ Ng.

Let (ai)i∈Z(δ) ∈Mδ be a theta null point associated to a triple (Ak,L ,ΘAk
). Let δ0 ∈ Zg

be such that 4 | δ0 | δ, and write δ = δ0 · δ′. In the following, we think of Z(δ0) as a subgroup
of Z(δ) via the map ϕ : (xi)i∈[1..g] ∈ Z(δ0) 7→ (δ′ixi)i∈[1..g] ∈ Z(δ). From now on, when considering
Z(δ0)⊂ Z(δ), we shall always refer to this map.

Let K ⊂K(L ) be any isotropic subgroup for eL such that we can write K =K1 ×K2 with
Ki ⊂Ki(L ). Let Bk =Ak/K and let π :Ak→Bk be the associated isogeny. Since K is isotropic,
K̃ := sK(L )(K) is a level subgroup, so by Grothendieck descent theory there exist a polarization
L0 on Bk and an isomorphism L ' π∗(L0). The theta group G(L0) is isomorphic to Z(K̃)/K̃
where Z(K̃) is the centralizer of K̃ in G(L ) (see [Mum66, Proposition 2]). We say that a theta
structure ΘBk

on (Bk,L0) is π-compatible with ΘAk
if it respects this isomorphism. The isogeny

theorem [Mum66, Theorem 4] then gives a way to compute (π∗(ϑ
ΘBk
i ))i∈Z(n) given (ϑ

ΘAk
i )i∈Z(`n).

Note that Θ−1
A (K) = Z1 × Z2; we call Z1 × Z2 the type of π. If Z1 = 0, we say that π is of type 1;

and if Z2 = 0, we say that π is of type 2. We note that Z⊥1 = {x ∈ Z(δ) | 〈x, Z2〉= 1}. Thus
there is a bijection between the set of π-compatible theta structures on (Bk,L0) and the set of
isomorphisms σ : Z⊥1 /Z1→ Z(δ0) (see [Mum66, Theorem 4]).

Since we are mainly interested in `-isogenies, we now specialize to the case where δ = `n
and δ′ = ` so that δ0 = n (recall that for n ∈ N∗, n= (n, . . . , n) ∈ Ng). Take K =Ak[`] ∩K2(L );
we then have Z1 = 0 and Z2 = Ẑ(`)⊂ Ẑ(`n) so that π :Ak→Bk is an `-isogeny of type 1. In
this case we have Z⊥1 = Z(n)⊂ Z(`n), and we always consider the compatible theta structure
on Bk corresponding to σ = Id (see [FLR11, § 3]). We recall the following proposition [FLR11,
Proposition 4].

Proposition 2.2 (Isogeny theorem for compatible theta structures). Let (ai)i∈Z(`n) be a

theta null point associated to a triple (Ak,L ,ΘAk
) and (bi)i∈Z(n) a theta null point associated to

(Bk,L0,ΘBk
). Let ϕ : Z(n)→ Z(`n) be the canonical embedding. Then (bi)i∈Z(n) = (aϕ(i))i∈Z(n)

if and only if there is an `-isogeny π of type 1 such that ΘBk
is π-compatible with ΘAk

. In this

case, let (ϑ
ΘAk
i )i∈Z(`n) (respectively, (ϑ

ΘBk
i )i∈Z(n)) be the canonical basis of L (respectively, of

L0) associated to ΘAk
(respectively, to ΘBk

); then there exists some ω ∈ k∗ such that for all
i ∈ Z(n),

π∗(ϑ
ΘAk
i ) = ωϑ

ΘBk

ϕ(i) . (4)

It is easy to describe `-isogenies of type 2 from Proposition 2.2. In fact, let I0 be the
automorphism of the Heisenberg group H(`n) that permutes Z(`n) and Ẑ(`n): I0(α, x, y) =
(α, y, x). We define IAk

= ΘAk
◦ I0 ◦Θ−1

Ak
, where IAk

is the automorphism of the theta group of
Ak that permutes K1(L ) and K2(L ). (There is a similar automorphism IBk

of the theta group
of Bk; we will usually denote these automorphisms simply by I, since the theta group is clear from
the context.) If π2 is a compatible isogeny of type 2 between (Ak,L ,ΘAk

) and (Bk,L0,ΘBk
),
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then π2 is a compatible isogeny of type 1 between (Ak,L , IAk
◦ΘAk

) and (Bk,L , IBk
◦ΘBk

).
Since the action of I is given by

ϑ
IAk
◦ΘAk

i =
∑

j∈Ẑ(`n)

e(i, j)ϑ
ΘAk
j (5)

(see [FLR11, § 5]), we see that for all i ∈ Z(n),

π∗(ϑ
ΘBk
i ) =

∑
j∈Z(`)

ϑ
ΘAk
i+nj . (6)

Applying (4) and (6) to 0̃Ak
yields the formulas for the modular correspondence ϕ :M`n→

Mn ×Mn from § 1 (see also [FLR11, § 4]).

2.3 The action of the theta group on the affine cone and isogenies
Let π : (Ak,L ,ΘAk

)→ (Bk,L0,ΘBk
) be an `-isogeny of type 1 between compatible theta

structures. The action by translation, ρL , from K(L ) on Ak descends to an action on Bk:
if x ∈K(L ), the induced action on Bk is simply translation by π(x). The situation is more
interesting if we consider the action of G(L ). Since G(L ) is a central extension of K(L ) by
Gm, it is natural to let G(L ) act on an algebraic line bundle over Ak with fiber Gm. More
precisely, let V = Γ(Ak,L ) and let pAk(V ) : Ak(V )→ Pk(V ) be the canonical projection. Let
Ãk = p−1

Ak(V )(Ak) be the affine cone of Ak. The action of G(L ) on V given by (1) induces an

action ρ̃L on Ãk. This action is compatible with the action of K(L ) on Ak in the following
way: if κ :G(L )→K(L ) is the projection, pAk(V ) ◦ ρ̃L = ρL ◦ κ. Similarly, we let B̃k denote
the affine cone of Bk and ρ̃L0 the action of G(L0) on B̃k.

We say that a coordinate system (ϑ̃
ΘAk
i )i∈Z(`n) on Ãk lifts the projective system (ϑ

ΘAk
i )i∈Z(`n)

on Ak if for all j ∈ Z(`n), on the principal open set defined by ϑ
ΘAk
j we have p∗Ak(V )(ϑ

ΘAk
i /ϑ

ΘAk
j ) =

ϑ̃
ΘAk
i /ϑ̃

ΘAk
j . Obviously, such a coordinate system (ϑ̃i)i∈Z(`n) is defined up to an action of Gm,

and we fix a choice of this action for the rest of the paper. In the same manner, we denote by
(ϑ̃

ΘBk
i )i∈Z(n) a coordinate system on B̃k that lifts the coordinate system (ϑ

ΘBk
i )i∈Z(n). We will

usually replace (ϑ̃
ΘAk
i )i∈Z(`n) (respectively, (ϑ̃

ΘBk
i )i∈Z(n)) by (ϑ̃i)i∈Z(`n) (respectively, (ϑ̃i)i∈Z(n))

when no confusion is possible.
Since L is symmetric, there is an action of the morphism [−1] on V given by f ∈ V 7→ Φ(ι∗f)

where ι :Ak→Ak maps x to −x and Φ is the normalized symmetry isomorphism ι∗L →L .
This action extends to an action on Ãk, which we also denote by [−1] : x̃ ∈ Ãk(k) 7→ −x̃. Now,
since ΘAk

is a symmetric theta structure, we have [−1]∗ϑ̃i = ϑ̃−i (see [Mum66, p. 331]); so if
x̃= (x̃i)i∈Z(`n), then −x̃= (x̃−i)i∈Z(`n).

Let π̃ : Ãk→ B̃k be the morphism such that π̃∗(ϑ̃
ΘBk
i ) = ϑ̃

ΘAk
i for i ∈ Z(n). Note that π̃ is

just a lift to the affine cone of the isogeny π :Ak→Bk, so the following diagram commutes.

Ãk
pAk //

π̃
��

Ak

π

��
B̃k

pBk // Bk

We call π̃ the lift of π compatible with the choice of affine coordinates on Ãk and B̃k.
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We now study the link between the action ρ̃L of G(L ) on Ãk and the morphism π̃. To
simplify the notation, if (α, i, i) ∈H(δ) and x̃ is a geometric point of Ãk, we let (α, i, j) · x̃ :=
ρ̃L (ΘAk

((α, i, j))) · x̃. Let Kπ = ΘAk
(Ẑ(`)) be the kernel of the isogeny π :Ak→Bk and recall

(see § 2.2) that G(L0) = Z(K̃π)/K̃π.

Proposition 2.3. Let g ∈ Z(K̃π) and let g be its image in Z(K̃π)/K̃π. Then we have ρ̃L0(g) =
π̃ ◦ ρ̃L (g).

Proof. This is an immediate consequence of the fact that the two theta structures ΘAk
and ΘBk

are π-compatible. 2

For i ∈H(`n), we can define a mapping π̃i : Ãk→ B̃k given on geometric points by x̃ 7→
π̃(ρ̃L (ΘAk

(i)) · x̃). If ΘAk
(i) ∈ Z(K̃π), Proposition 2.3 shows that π̃i = ρ̃L0(ΘAk

(i)) ◦ π̃, hence
π̃i can be recovered from π̃ and the action ρ̃L0 . Since Z(K̃π)⊃ sK(L )(K2(L )), the interesting
mappings to study are then π̃i := π̃(1,i,0) for i ∈ Z(`n). They are given on geometric points by

π̃i((ϑ̃j(x̃))j∈Z(`n)) = (ϑ̃i+`·j(x̃))j∈Z(n).

Corollary 2.4. Keeping the notation from above, the following hold.

(i) Let S be a subset of Z(`n) such that S + Z(n) = Z(`n). Then x̃ ∈ Ãk(k) is uniquely
determined by {π̃i(x̃)}i∈S .

(ii) Let ỹ ∈ Ãk(k) be such that π̃(ỹ) = π̃(x̃). Then there exists j ∈ Ẑ(`)⊂ Ẑ(`n) such that
ỹ = (1, 0, j) · x̃ and

π̃i(ỹ) = e`n(i, j)π̃i(x̃).

In particular, π̃i(ỹ) and π̃i(x̃) differ by an `th root of unity.

Proof. (i) Since π̃i((ϑ̃j(x̃))j∈Z(`n)) = (ϑ̃i+`·j(x̃))j∈Z(n), from {π̃i(x̃)}i∈S one can obtain the values

{ϑ̃j(x̃)}j∈S+Z(n). If S + Z(n) = Z(`n), this shows that we can recover x̃= (ϑ̃j(x̃))j∈Z(`n).

(ii) If π̃(ỹ) = π̃(x̃), then pAk
(ỹ)− pAk

(x̃) ∈Kπ. So there exists j ∈ Ẑ(`) and α ∈ k∗ such that
ỹ = (α, 0, j) · x̃. Hence ϑ̃i(ỹ) = αe`n(i, j)ϑ̃i(x̃). Since π̃(x̃) = π̃(ỹ), we have α= 1. Moreover, as
j ∈ Ẑ(`), e`n(i+ k, j) = e`n(i, j) if k ∈ Z(n) so that π̃i(x̃) = e`n(i, j)π̃i(ỹ). 2

Corollary 2.4 shows that ρ̃L descends to an action on B̃k/µk(`) where µk(`) is the group
scheme of `th roots of unity on k.

Example 2.5. (i) If ` is prime to n, the canonical mappings Z(n)→ Z(`n) and Z(`)→ Z(`n)
induce an isomorphism Z(n)× Z(`) ∼→ Z(`n), and one can take S = Z(`) in Corollary 2.4.

(ii) If ` is not prime to n, a possible choice for S is

S =
{ ∑
i∈[1..g]

λiei

∣∣∣ λi ∈ [0..`− 1]
}
.

3. The addition relations

In this section we study the addition relations and introduce the notion of addition chain on
the affine cone of an abelian variety. These addition chains will be a basic tool in the isogeny
computation algorithm presented in § 4 and the Vélu-like formulas of § 5.
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In § 3.1 we use the action of G(L ) on the affine cone and the canonical section sK(L ) :
K(L )→G(L ) to introduce some canonical affine lifts on the affine cone. In § 3.2 we prove
in the framework of Mumford’s theory a particular presentation of the Riemann relations, and
we deduce from them the addition relations. In § 3.3 we use the results of § 2.3 to study the
properties of addition chains.

3.1 The canonical lift of the action of K(L ) to the affine cone
In the rest of this article we suppose that we are given a modular point (bi)i∈Z(n) corresponding

to a triple (Bk,L0,ΘBk
). We choose a coordinate system (ϑ̃

ΘBk
i )i∈Z(n) on B̃k and a 0̃Bk

∈
p−1
Bk

(0Bk
). We remark that a choice of 0̃Bk

∈ p−1
Bk

(0Bk
)⊂ B̃k is nothing but a choice of evaluation

isomorphism ε0 : L (0)' k. In this section and § 4 we also suppose that we are given a modular
point (ai)i∈Z(`n) corresponding to a triple (Ak,L ,ΘAk

) such that ϕ1((ai)i∈Z(`n)) = (bi)i∈Z(n),
where ϕ1 :M`n→Mn is the first projection of the modular correspondence introduced in § 1.
By Proposition 2.2 we then have an `-isogeny π of type 1 between Ak and Bk. We choose a
coordinate system (ϑ̃

ΘAk
i )i∈Z(`n) on Ãk and denote by 0̃Ak

the unique point in p−1
Ak

(0Ak
) such

that 0̃Bk
= π̃(0̃Ak

), where π̃ is given by π̃∗(ϑ̃
ΘBk
i ) = ϑ̃

ΘAk
i for i ∈ Z(n).

We recall that the theta structure ΘAk
defines a section sK(L ) :K(L )→G(L ), so that the

map x ∈K(L ) 7→ sK(L )(x) · 0̃Ak
∈ Ãk induces a section K(L )→ Ãk of the map pAk

: Ãk→Ak.
Thus, once we have chosen 0̃Ak

, we have a canonical way to fix an affine lift for any geometric
point in K(L ). For i ∈ Z(`n), let P̃i = (1, i, 0) · 0̃Ak

; and for j ∈ Ẑ(`n), let Q̃j = (1, 0, j) · 0̃Ak
.

We also put R̃i = π̃(P̃i) = π̃i(0̃Ak
) and Ri = pBk

(R̃i). We remark that {Ri}i∈Z(`) is the kernel Kπ̂

of π̂, which is the isogeny we want to compute. This explains the important role that the points
R̃i will play in the rest of this paper.

3.2 The general Riemann relations
The Riemann relations (3) for M`n and the Riemann equations (2) for Ak are all particular
cases of more general Riemann relations, which will be used to obtain the addition relations on
Ak. An analytic proof of (a partial Fourier transform) of these relations can be found in [Igu72,
p. 137, Theorem 1].

Theorem 3.1 (Generalized Riemann relations). Let (Ak,L ,ΘAk
) ∈Mn and suppose that

2 | n. Let x1, y1, u1, v1, z ∈Ak(k) be such that x1 + y1 + u1 + v1 = 2z. Let x2 = z − x1, y2 =
z − y1, u2 = z − u1 and v2 = z − v1. Then there exist x̃1 ∈ p−1

Ak
(x1), ỹ1 ∈ p−1

Ak
(y1), ũ1 ∈ p−1

Ak
(u1),

ṽ1 ∈ p−1
Ak

(v1), x̃2 ∈ p−1
Ak

(x2), ỹ2 ∈ p−1
Ak

(y2), ũ2 ∈ p−1
Ak

(u2) and ṽ2 ∈ p−1
Ak

(v2) that satisfy the following

relations: for any i, j, k, l, m ∈ Z(`n) such that i+ j + k + l = 2m, let i′ =m− i, j′ =m− j,
k′ =m− k and l′ =m− l; then for all χ ∈ Ẑ(2),( ∑

t∈Z(2)

χ(t)ϑ̃i+t(x̃1)ϑ̃j+t(ỹ1)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃k+t(ũ1)ϑ̃l+t(ṽ1)
)

=
( ∑
t∈Z(2)

χ(t)ϑ̃i′+t(x̃2)ϑ̃j′+t(ỹ2)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃k′+t(ũ2)ϑ̃l′+t(ṽ2)
)
. (7)

Proof. If x= y = u= v = 0A, the preceding result gives the algebraic Riemann relations, a proof
of which can be found in [Mum66, p. 333]. We just need to adapt the proof of Mumford to the
general case.
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Let p1 and p2 be the first and second projections from Ak ×Ak to Ak. Let M = p1
∗(L )⊗

p2
∗(L ). The theta structure ΘAk

induces a theta structure ΘAk×Ak
for (Ak ×Ak,M ) such

that for (i, j) ∈ Z(`n)× Z(`n) we have ϑ
ΘA×A

i,j = p∗1(ϑ
ΘAk
i )⊗ p∗2(ϑ

ΘAk
j ) (see [Mum66, p. 323,

Lemma 1]). Consider the isogeny ξ :Ak ×Ak→Ak ×Ak, (x, y) 7→ (x+ y, x− y). We have
ξ∗(M ) = M 2. Since ΘAk

is a symmetric theta structure, there exists a theta structure ΘL 2

on L 2 such that ΘL 2
and ΘL are compatible in the sense of Mumford; see [Mum66, p. 317].

The theta structure ΘL 2
then induces a product theta structure ΘM 2

on M 2. One can check that
this theta structure is compatible with the isogeny ξ (see [Mum66, p. 325]). Applying the isogeny
theorem (see [Mum66, p. 324]), we obtain that there exists λ ∈ k∗ such that for all i, j ∈ Z(`n),

ξ∗(p∗1(ϑL
i )⊗ p∗2(ϑL

j )) = λ
∑

u,v∈Z(2ln)
u+v=i
u−v=j

(p∗1(ϑL 2

u )⊗ p∗2(ϑL 2

v )). (8)

Considering this equation on the affine cone, we can always choose affine lifts such that
taking the evaluation at these lifts yields λ= 1; in what follows, we assume that this is the case.
Using (8), we compute the following for all i, j ∈ Z(2`n) which are congruent modulo Z(`n), all
χ ∈ Ẑ(2) and x̃, ỹ ∈ Ãk(k):∑

t∈Z(2)

χ(t)ϑ̃L
i+j+t(x̃+ y)ϑ̃L

i−j+t(x̃− y) =
∑
t∈Z(2)

u,v∈Z(2ln)
u+v=i+j+t
u−v=i−j+t

χ(t)ϑ̃L 2

u (x̃)ϑ̃L 2

v (ỹ)

=
∑

t1,t2∈Z(2)

χ(t1 + t2)ϑ̃L 2

i+t1(x̃)ϑ̃L 2

j+t2(ỹ)

=
( ∑
t∈Z(2)

χ(t)ϑ̃L 2

i+t(x̃)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃L 2

j+t(ỹ)
)
. (9)

So we have( ∑
t∈Z(2)

χ(t)ϑ̃L
i+j+t(x̃+ y)ϑ̃L

i−j+t(x̃− y)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃L
k+l+t(ũ+ v)ϑ̃L

k−l+t(ũ− v)
)

=
( ∑
t∈Z(2)

χ(t)ϑ̃L 2

ĩ+t
(x̃)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃L 2

j̃+t
(ỹ)
)

·
( ∑
t∈Z(2)

χ(t)ϑ̃L 2

k̃+t
(ũ)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃L 2

l̃+t
(ṽ)
)

=
( ∑
t∈Z(2)

χ(t)ϑ̃L
i+l+t(x̃+ v)ϑ̃L

i−l+t(x̃− v)
)

·
( ∑
t∈Z(2)

χ(t)ϑ̃L
k+j+t(ũ+ y)ϑ̃L

k−j+t(ũ− y)
)
. (10)

Now if we let x= x0 + y0, y = x0 − y0, u= u0 + v0 and v = u0 − v0, we have x+ y + u+ v =
2(x0 + u0); hence we can choose z = x0 + u0, so that z − x= u0 − y0, z − y = u0 + y0, z − u=
x0 − v0 and z − v = x0 + v0. By performing the same change of variable for i, j, k and l, we see
that the theorem is just a restatement of (10); see [Mum66, p. 334]. 2
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From the generalized Riemann relations it is possible to derive addition relations.

Theorem 3.2 (Addition formulas). Suppose that 4 | `n. Let x, y ∈Ak(k) and suppose that
we are given x̃ ∈ p−1

Ak
(x), ỹ ∈ p−1

Ak
(y) and x̃− y ∈ p−1

Ak
(x− y). Then there is a unique point

x̃+ y ∈ Ãk(k) such that for i, j, k, l, m ∈ Z(`n) satisfying i+ j + k + l = 2m,( ∑
t∈Z(2)

χ(t)ϑ̃i+t(x̃+ y)ϑ̃j+t(x̃− y)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃k+t(0̃Ak
)ϑ̃l+t(0̃Ak

)
)

=
( ∑
t∈Z(2)

χ(t)ϑ̃−i′+t(ỹ)ϑ̃j′+t(ỹ)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃k′+t(x̃)ϑ̃l′+t(x̃)
)
, (11)

where i′,j′, k′ and l′ are defined as in Theorem 3.1. We have pAk
(x̃+ y) = x+ y.

Thus the addition law on Ak extends to a pseudo-addition law on Ãk. We call it an addition
chain and we put x̃+ y = chain add(x̃, ỹ, x̃− y).

Proof. We apply the Riemann relations (7) to x+ y, x− y, 0A, 0A. We have 2x= (x+ y) +
(x− y) + 0A + 0A, −y = x− (x+ y), y = x− (x− y), x= x− 0A, x= x− 0A; so Theorem 3.1
shows that there exists a point x̃+ y ∈ Ãk(k) satisfying the addition relations (11). (Remember
that (ϑi(−y))i∈Z(`n) = (ϑ−i(y))i∈Z(`n); see § 2.3.)

It remains to show that this point is unique. For this, it is enough to prove that for all
i, j ∈ Z(`n) and all χ ∈ Ẑ(2), there exist k′, l′, m′ ∈ Z(`n) such that i+ j + k′ + l′ = 2m′ and∑

t∈Z(2) χ(t)ϑ̃k′+t(0̃Ak
)ϑ̃l′+t(0̃Ak

) 6= 0. Then, by summing over the characters χ ∈ Ẑ(2) the first

bracket of the left-hand side of (11) (which is uniquely determined by the knowledge of ϑ̃j(x̃)
and ϑ̃j(ỹ) for j ∈ Z(`n)), we obtain the products ϑ̃i+t(x̃+ y)ϑ̃j+t(x̃− y) for i, j ∈ Z(`n). From
these products and the data of ϑ̃j(x̃− y) for j ∈ Z(`n), we can recover the coordinates of the
point x̃+ y.

Now let k, l, m ∈ Z(`n) be such that i+ j + k + l = 2m, and let k1, l1 ∈ Z(2`n) be such that
k = k1 + l1 and l = k1 − l1. Using formula (9), we get∑

t∈Z(2)

χ(t)ϑ̃L
k1+l1(0̃Ak

)ϑ̃L
k1−l1(0̃Ak

) =
( ∑
t∈Z(2)

χ(t)ϑ̃L 2

k1+l(0̃Ak
)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃L 2

l1+t(0̃Ak
)
)
. (12)

Using [Mum66, p. 339, Equation (∗)], we obtain that for all χ ∈ Ẑ(2) there exist k′1 ∈ k1 + Z(`n)
and l′1 ∈ l1 + Z(`n) such that( ∑

t∈Z(2)

χ(t)ϑ̃L 2

k1+l(0̃Ak
)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃L 2

l1+t(0̃Ak
)
)
6= 0.

By taking k′ = k′1 + l′1 and l′ = k′1 − l′1 we obtain the result. 2

In order to develop an efficient algorithm to compute addition chains, we first reformulate the
addition formulas (see [Mum66, p. 334]). Let H = Z(`n)× Ẑ(2), and for (i, χ) ∈H define

ũi,χ(x̃) =
∑
t∈Z(2)

χ(t)ϑ̃i+t(x̃).
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Then for all i, j, k, l, m ∈H such that 2m= i+ j + k + l we have that

ũi(x̃+ y)ũj(x̃− y)ũk(0̃Ak
)ũl(0̃Ak

)

=
1

22g

∑
ξ∈H,2ξ=∈Z(2)×0

(m2 + ξ2)(2ξ1)ũi−m+ξ(ỹ)ũm−j+ξ(ỹ)ũm−k+ξ(x̃)ũm−l+ξ(x̃). (13)

It is easy to see that (ϑ̃i(x̃))i∈Z(`n) is determined by (ũi(x̃))i∈H .

Algorithm 3.3 (Addition chain).

Input x̃, ỹ and x̃− y such that pAk
(x̃)− pAk

(ỹ) = pAk
(x̃− y).

Output x̃+ y = chain add(x̃, ỹ, x̃− y).

: (Step 1) For all i ∈ Z(`n), χ ∈ Ẑ(2) and X ∈ {x̃+ y, x̃, ỹ, 0̃Ak
} compute

ũi,χ(X) =
∑
t∈Z(2)

χ(t)ϑ̃i+t(X).

: (Step 2) For all i ∈ Z(`n), choose j, k, l ∈ Z(`n) such that i+ j + k + l = 2m, ũj(x̃− y) 6= 0,
ũk(0̃Ak

) 6= 0, ũl(0̃Ak
) 6= 0 and compute

ũi(x̃+ y) =
1

22gũj(x̃− y)ũk(0̃Ak
)ũl(0̃Ak

)

·
∑

ξ∈H,2ξ=∈Z(2)×0

(m2 + ξ2)(2ξ1)ũi−m+ξ(ỹ)ũm−j+ξ(ỹ)ũm−k+ξ(x̃)ũm−l+ξ(x̃). (14)

: (Step 3) For all i ∈ Z(`n), output

ϑ̃i(x̃+ y) =
1
2g

∑
ξ∈Ẑ(2)

ũi,χ(x̃+ y).

Complexity Analysis 3.4. As ũi+t,χ = χ(t)ũi,χ, we only need to consider (`n)g coordinates,
and the linear transformation between ũ and ϑ̃ can be computed at the cost of (2n`)g additions
in k. We also have ũi,χ(−x̃) = ũ−i,χ(x̃).

Using the fact that for t ∈ Z(2), the right-hand terms of (14) corresponding to ξ = (ξ1 + t, ξ2)
and to ξ = (ξ1, ξ2) are the same up to a sign, one can compute the left-hand side of (14) with
4 · 4g multiplications and 4g additions in k. In total, one can compute an addition chain at the
cost of 4 · (4`n)g multiplications, (4`n)g additions and (`n)g divisions in k. We remark that in
order to compute several additions using the same point, there is no need to convert back to the
ϑ̃ at each step, so we only need to perform Step 2.

The addition chain formula forms a basic step for all the algorithms to be presented later in
this paper. We will use it as a convenient unit of time for all our running-time analyses.

Remark 3.5. In some cases it is possible to greatly speed up this computation. See, for instance,
[Gau07], which uses the duplication formula between theta functions to speed up the addition
chain of level two. See also § 4.1, where it is explained how to employ isogenies to compute the
addition chains for a general level by using only addition chains of level two, so that we can take
advantage of the speed-up of [Gau07] in general regardless of the level of the theta structure.

The addition chain law on Ãk induces a scalar multiplication law which reduces via pAk
to the

scalar multiplication deduced from the group law of Ak. Let x̃, ỹ ∈ Ãk and x̃+ y ∈ p−1
Ak

(x+ y);
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then we can compute 2̃x+ y := chain add(x̃+ y, x̃, ỹ). More generally, there is a recursive
algorithm to compute, for every m> 2,

m̃x+ y := chain add( ˜(m− 1)x+ y, x̃, ˜(m− 2)x+ y).

We put chain multadd(m, x̃+ y, x̃, ỹ) := m̃x+ y and define

chain mult(m, x̃) := chain multadd(m, x̃, x̃, 0̃Ak
).

We have pAk
(chain mult(m, x̃)) =m · pAk

(x̃). We call chain multadd a multiplication chain.

Algorithm 3.6 (Multiplication chain).

Input m ∈ N and x̃+ y, x̃, ỹ ∈ Ãk.
Output chain multadd(m, x̃+ y, x̃, ỹ).

: (Step 1) Compute the binary decomposition of m :=
∑I

i=0 bi2
i.

Set m′ := 0, xy0 := ỹ, xy−1 := chain add(ỹ,−x̃, x̃+ y), x0 := 0̃Ak
and x1 := x̃.

: (Step 2) For i := I to 0 step −1 do
If bi = 0 then compute

x2m′ := chain add(xm′ , xm′ , x0)
x2m′+1 := chain add(xm′+1, xm′ , x1)
xy2m′ := chain add(xym′ , xm′ , xy0)

m′ := 2m′.

Else compute

x2m′+1 := chain add(xm′+1, xm′ , x1)
x2m′+2 := chain add(xm′+1, xm′+1, x0)
xy2m′+1 := chain add(xym′ , xm′ , xy−1)

m′ := 2m′ + 1.

: (Step 3) Output xym.

Correction and Complexity Analysis 3.7. It is not completely trivial to see that m̃x+ y does not
depend on the Lucas sequence used to compute it. We prove this in Corollary 3.13, where we
show that multiplication chains are associative. In order to do as few divisions as possible, we use
a Montgomery ladder (see [ACDFLNV06, Algorithm 9.5]) for our Lucas sequence, hence the
algorithm.

We see that a multiplication chain requires O(log(m)) addition chains. Here, the use of the
O-notation reflects possible improvements upon the length of the Lucas sequence used to compute
the multiplication chain for specific values of m. An overall worst-case time complexity of the
multiplication chain is given by 3 log(m) addition chains.

3.2.1 The case of n= 2. Let L0 be a symmetric principal line bundle on Ak. Then L = L 2
0

has degree two and for all i ∈ Z(2) we have that (−1)∗ϑi = ϑi, where (−1) is the inverse
automorphism on Ak. As a consequence, L gives a projective embedding of the Kummer variety
KA =Ak/± 1.

There is no properly defined group law on KA, but the group law of Ak endows KA(k) with
an action of Z. To explain that, we use the following suggestive notation: if x ∈Ak(k), we denote
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by ±x the image of x under the canonical projection Ak(k)→KA(k). Note that we have, in
particular, ±x=±(−x) for all x ∈Ak(k).

Let x, y ∈Ak(k). From ±x ∈KA(k) and ±y ∈KA we may compute ±(x+ y) and ±(x− y),
which gives two points on KA. However, if we are also given ±(x− y) ∈KA(k), then we can
identify ±(x+ y) ∈ {±(x+ y),±(x− y)}. Thus the addition chain law from Theorem 3.2 gives a
pseudo-addition on the Kummer variety which, by composition as in the algorithm chain mult,
allows us to compute m(±x) for all m ∈ N and ±x ∈KA(k).

Let x, y ∈Ak(k). It is possible to obtain the set {±(x+ y),±(x− y)} from the knowledge
of ±x and ±y in the following way. Let X = (Xi)i∈Z(2) and Y = (Yi)i∈Z(2) be two formal points
with coordinates being the variables Xi and Yi for i ∈ Z(2). The relations obtained by writing
the formal chain addition X = chain add(x, y, Y ) describe an algebraic system of degree two
whose solutions are {±(x+ y),±(x− y)}. It is possible to solve this system at the expense of a
square-root extraction in k. (The preceding claims are proved in [LR10, Lemma 3].) We call this a
normal addition. Coming back to the computation of isogenies, it means that when working with
n= 2, we have to avoid computing normal additions since they require a square-root extraction
and are much slower than addition chains.

Finally, to make our algorithms work with n= 2, we have to introduce the notion of
compatible additions. Suppose that we are given ±x,±y,±z ∈KA, together with ±(x+ y)
and ±(y + z). Using a normal addition, we can compute {±(x+ z),±(x− z)}; we want to
find ±(x+ z). If we apply the normal addition to ±(x+ y) and ±(x+ z), we find {±(2x+
y + z),±(y − z)}, while the normal addition applied to ±(x+ y) and ±(x− z) produces the
set {±(2x+ y − z),±(y + z)}. This allows us to identify ±(x+ z) if we suppose that 2x 6= 0,
2y 6= 0, 2z 6= 0 and 2(x+ y + z) 6= 0. We call this the compatible addition ±(x+ z) with ±(x+ y)
and ±(y + z).

3.3 Theta group and addition relations

The aim of this section is to prove the associativity of chain additions, which is a key ingredient in
establishing the correctness of Algorithm 3.6. For this, we first show that the Riemann relations
are compatible with isogenies. Then, we study the action of the theta group on the addition
relations. From the previous results, we deduce addition relations linking the coordinates of the
points (R̃i)i∈Z(`n) on B̃k. By considering different modular points (ai)i∈Z(`n) ∈ ϕ

−1
1 ((bi)i∈Z(n))

and the associated isogenies π :Ak→Bk, we conclude with Corollary 3.13. We begin with two
easy lemmas.

Lemma 3.8. Suppose that x̃1, ỹ1, ũ1, ṽ1, x̃2, ỹ2, ũ2, ṽ2 ∈ Ãk(k) satisfy the general Riemann
relations (7). Then:

– for every g ∈G(L ), g · x̃1, g · ỹ1, g · ũ1, g · ṽ1, g · x̃2, g · ỹ2, g · ũ2, g · ṽ2 also satisfy the
Riemann relations;

– for every type-1 `-isogeny π : (A,L ,ΘAk
)→ (B,L0,ΘBk

), the points

π̃(x̃1), π̃(ỹ1), π̃(ũ1), π̃(ṽ1), π̃(x̃2), π̃(ỹ2), π̃(ũ2), π̃(ṽ2) ∈ B̃k

also satisfy the Riemann relations.

Proof. This is an immediate computation. 2
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Lemma 3.9. Let (α, i, j) ∈H(`n) and x̃ ∈ Ãk. Then we have −(α, i, j) · x̃= (α,−i,−j) · (−x̃)
and π̃(−x̃) =−π̃(x̃).

In particular, −(α, i, j) · 0̃Ak
= (α,−i,−j) · 0̃Ak

.

Proof. If x̃= (xi)i∈Z(`n), recall that we have defined −x̃= (x−i)i∈Z(`n). The relation −(α, i, j) ·
x̃= (α,−i,−j) · (−x̃) is a direct consequence of the fact that the coordinates (ϑ̃i)i∈Z(`n) of x̃
are the theta functions associated to a symmetric theta structure. We can also check this with
a direct computation: if u ∈ Z(`n), then we have by (1) that ((α, i, j) · x̃)−u = α〈u− i, j〉x−u+i

and ((α,−i,−j) · x̃)u = α〈−u+ i,−j〉x̃u−i. The rest of the lemma is trivial. 2

We now turn to the action of H(`n) on Ãk. Since H(`n) is generated by Gm, Z(`n) and
Ẑ(`n) (where we embed Z(`n) and Ẑ(`n) in H(`n) with the section sK(L )), it is enough to
study separately the action of these subgroups on the addition relations. The action of Gm is
immediate.

Lemma 3.10. For λx, λy, λx−y ∈ k
∗

and x̃, ỹ ∈Ak(k), we have

chain add(λxx̃, λyỹ, λx−yx̃− y) =
λ2
xλ

2
y

λx−y
chain add(x̃, ỹ, x̃− y), (15)

chain multadd(n, λx+yx̃+ y, λxx̃, λyỹ) =
λ
n(n−1)
x λnx+y

λn−1
y

chain multadd(n, x̃+ y, x̃, ỹ), (16)

chain mult(n, λxx̃) = λn
2

x chain mult(n, x̃). (17)

Proof. Formula (15) is an immediate consequence of the addition formulas (11). The rest of the
lemma follows by an easy recursion argument. 2

A more interesting result is the compatibility between the addition formulas and the action
of Z(`n) on Ãk.

Proposition 3.11 (Compatibility of the pseudo-addition law). For x̃, ỹ, x̃− y ∈ Ãk(k) and
i, j ∈ Z(`n), we have

(1, i+ j, 0) · chain add(x̃, ỹ, x̃− y) = chain add((1, i, 0) · x̃, (1, j, 0) · ỹ, (1, i− j, 0) · x̃− y).
(18)

In particular, if we set P̃i = (1, i, 0) · 0̃Ak
, we have

P̃i+j = chain add(P̃i, P̃j , P̃i−j).

Proof. Let x̃+ y = chain add(x̃, ỹ, x̃− y). By Theorem 3.2, for all a, b, c, d, e ∈ Z(`n) with
a+ b+ c+ d= 2e we have that( ∑

t∈Z(2)

χ(t)ϑ̃a+t(x̃+ y)ϑ̃b+t(x̃− y)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃c+t(0̃)ϑ̃d+t(0̃)
)

=
( ∑
t∈Z(2)

χ(t)ϑ̃−e+a+t(ỹ)ϑ̃e−b+t(ỹ)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃e−c+t(x̃)ϑ̃e−d+t(x̃)
)
. (19)
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Applying (19) to a′ = a+ i+ j, b′ = b+ i− j, c′ = c, d′ = d, e′ = e+ i, we get( ∑
t∈Z(2)

χ(t)ϑ̃i+j+a+t(x̃+ y)ϑ̃b+i−j+t(x̃− y)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃c+t(0̃)ϑ̃d+t(0̃)
)

=
( ∑
t∈Z(2)

χ(t)ϑ̃−j−e+a+t(ỹ)ϑ̃j+e−b(ỹ)
)
·
( ∑
t∈Z(2)

χ(t)ϑ̃i+e−c+t(x̃)ϑ̃i+e−d+t(x̃)
)
. (20)

Thus (1, i+ j, 0) · x̃+ y, (1, i, 0) · x̃, (1, j, 0) · ỹ and (1, i− j, 0) · x̃− y satisfy the addition
relations. 2

By applying π̃, we obtain the following corollary.

Corollary 3.12. For x̃, ỹ, x̃− y ∈ Ãk(k) and i, j ∈ Z(`n), we have

π̃i+j(chain add(x̃, ỹ, x̃− y)) = chain add(π̃i(x̃), π̃j(ỹ), π̃i−j(x̃− y)).

Proof. Remember that, by definition, π̃i(x̃) = π̃((1, i, 0) · x̃). The corollary is then an immediate
consequence of Proposition 3.11 and Lemma 3.8. 2

We remark that by setting x̃= ỹ = 0̃Ak
in Corollary 3.12, we find

R̃i+j = chain add(R̃i, R̃j , R̃i−j).

By considering different isogenies π :Ak→Bk, we can use Corollary 3.12 to study the
associativity of chain additions.

Corollary 3.13. Let x ∈Bk[`] and y ∈Bk(k). Choose any affine lifts x̃, ỹ and x̃+ y of x, y
and x+ y, respectively.

(i) For all n ∈ N∗, put ñx= chain mult(n, x̃) and ñx+ y = chain multadd(n, x̃+ y, x̃, ỹ).
Then for all n1, n2 ∈ N∗ such that n1 > n2, we have

˜(n1 + n2)x+ y = chain add( ˜n1x+ y, ñ2x, ˜(n1 − n2)x+ y). (21)

In particular, we see that ñx+ y and ñx do not depend on the particular sequence of chain add
used to compute them.

(ii) For all n ∈ N∗, −ñx+ y = chain add(n,−(x̃+ y),−x̃,−ỹ).

Proof. First, to prove assertion (i), let K̂ be a subgroup of Bk[`] containing x which is maximal
and isotropic for the Weil pairing. Consider the isogeny π̂ :Bk→Dk =Bk/K̂ and let π :Dk→Bk
be the contragredient isogeny. We choose any theta structure on (Dk, π

∗L0) compatible with π.
Let ỹ′ be any point in π̃−1(ỹ).

There exist i ∈ Z(`) and λ1, λ2, λ3 ∈ k
∗ such that x̃= λ1π̃i(0̃Dk

), ỹ = λ2π̃(ỹ′) and x̃+ y =
λ3π̃i(ỹ′). A simple computation using Lemma 3.10 shows that (21) does not depend on the
chosen affine lifts of x̃, ỹ and x̃+ y. As a consequence, it is enough to prove the assertion for
λ1 = λ2 = λ3 = 1. By Corollary 3.12, we have for all natural integers n1 > n2 that

π̃n1.i+n2.i(chain add(ỹ′, 0̃Dk
, ỹ′)) = chain add(π̃n1.i(ỹ

′), π̃n2.i(0̃Dk
), π̃n1.i−n2.i(ỹ

′)). (22)

Now, chain add(ỹ′, 0̃Dk
, ỹ′) = ỹ′, and an easy recursion using (22) for n2 = 1 shows that for all

n ∈ N, π̃n·i(ỹ′) = ñx+ y. Thus (22) with n1 and n2 being positive integers gives the result.
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Next, we prove assertion (ii). Once again, let ỹ′ be any point in π̃−1(ỹ). Let i ∈ Z(`) and
λ1, λ2 ∈ k

∗ be such that x̃= λ1π̃i(0̃Dk
); by homogeneity we may suppose that λ1 = 1. By

Corollary 3.12 and Proposition 3.11, we have ñx+ y = π̃((1, n · i, 0) · ỹ′). Now, by Lemma 3.9,
we have

−ñx+ y = π̃(−(1, n · i, 0) · ỹ′) = π̃((1,−n · i, 0) · −ỹ′) = chain add(n,−(x̃+ y),−x̃,−ỹ). 2

The next remark concerning Corollary 3.12 will be a useful fact for studying the case where
` is not prime to n.

Remark 3.14. Let x̃ ∈ Ãk, i ∈ Z(`n) and ỹ = π̃(x̃). Let m ∈ Z be such that ` |m. By
Proposition 3.11 and Corollary 3.12, we have

π̃((1, mi, 0) · x̃) = chain multadd(m, π̃i(x̃), R̃i, ỹ).

But if ` |m, then mi ∈ Z(n)⊂ Z(`n). By Proposition 2.3 we have π̃((1, mi, 0) · x̃) = (1, mi, 0) · ỹ,
and (1, mi, 0) · ỹ can be computed with the formulas (1). Hence

(1, mi, 0) · ỹ = chain multadd(m, π̃i(x̃), R̃i, ỹ).

To gain a complete picture of the action of H(`n) on Ãk, we have yet to describe the action
of Ẑ(`n) on Ãk. In order to do so, we recall from § 2.2 that I is the automorphism of the theta
group that permutes K1 and K2. Since sK2(L ) = I ◦ sK1(L ) ◦ I, we just have to describe the
action of I on the addition relations.

Proposition 3.15. Suppose that x, y, u, v, x′, y′, u′, v′ ∈ Ãk(k) satisfy the general Riemann
equations (7). Then I.x, I.y, I.u, I.v, I.x′, I.y′, I.u′, I.v′ also satisfy (7).

Proof. If x= (xi)i∈Z(`n), we recall (see (5)) that

I.x=
( ∑
j∈Z(`n)

e(i, j)xj

)
i∈Z(`n)

where e= eL is the commutator pairing.

By hypothesis, for i, j, k, l ∈ Z(`n) with i+ j + k + l = 2m we have that( ∑
t∈Z(2)

ϑ̃i+t(x)ϑ̃j+t(y)
)
·
( ∑
t∈Z(2)

ϑ̃k+t(u)ϑ̃l+t(v)
)

=
( ∑
t∈Z(2)

ϑ̃i′+t(x′)ϑ̃j′+t(y′)
)
·
( ∑
t∈Z(2)

ϑ̃k′+t(u′)ϑ̃l′+t(v′)
)
. (23)

Let Aχ,x,y,i,j = (
∑

t∈Z(2) χ(t)ϑ̃i+t(x)ϑ̃j+t(y)). If I, J, K, L ∈ Z(`n) are such that I + J +K +
L= 2M , then

Aχ,I.x,I.y,I,J =
∑

T∈Z(2)

χ(T )
( ∑
i∈Z(`n)

e(I + T, i)ϑ̃i(x)
)( ∑

j∈Z(`n)

e(J + T, j)ϑ̃j(x)
)

=
∑

T∈Z(2),i,j∈Z(`n)

χ(T )e(T, i+ j)e(I, i)e(J, j)ϑ̃i(x)ϑ̃j(y),
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Aχ,I.x,I.y,I,JAχ,I.u,I.v,K,L

=
∑

T1,T2∈Z(2)

i,j,k,l∈Z(`n)

χ(T1 + T2)e(T1, i+ j)e(T2, k + l)e(I, i)e(J, j)e(K, k)e(L, l)ϑ̃i(x)ϑ̃j(y)ϑ̃k(u)ϑ̃l(v)

=
∑

i,j,k,l∈Z(`n)

e(I, i)e(J, j)e(K, k)e(L, l)ϑ̃i(x)ϑ̃j(y)ϑ̃k(u)ϑ̃l(v)

·
( ∑
T1,T2∈Z(2)

χ(T1 + T2)e(T1, i+ j)e(T2, k + l)
)
.

But ( ∑
T1,T2∈Z(2)

χ(T1 + T2)e(T1, i+ j)e(T2, k + l)
)

=

{
4g if e(·, i+ j) = e(·, k + l) = χ,
0 otherwise,

and e(·, i+ j) = e(·, k + l) (as characters on Z(2)) if and only if there exists m ∈ Z(`n) such
that i+ j + k + l = 2m. Now, since I + J +K + L= 2M , we have e(I + J, ·) = e(K + L, ·) and
therefore

λ
∑

t1,t2∈Z(2)

e(I, i+ t1)e(J, j + t1)e(K, k + t2)e(L, l + t2)ϑ̃i+t1(x)ϑ̃j+t1(y)ϑ̃k+t2(u)ϑ̃l+t2(v)

= λe(I, i)e(J, j)e(K, k)e(L, l)

·
∑

t1,t2∈Z(2)

e(I + J, t1)e(K + L, t2)ϑ̃i+t1(x)ϑ̃j+t1(y)ϑ̃k+t2(u)ϑ̃l+t2(v)

= λe(I, i)e(J, j)e(K, k)e(L, l)

·
∑

t1,t2∈Z(2)

e(I + J, t1)e(K + L, t2)ϑ̃i′+t1(x′)ϑ̃j′+t1(y′)ϑ̃k′+t2(u′)ϑ̃l′+t2(v)

= λe(I ′, i′ + t1)e(J ′, j′ + t1)e(K ′, k′ + t2)e(L′, l′ + t2)

·
∑

t1,t2∈Z(2)

ϑ̃i′+t1(x′)ϑ̃j′+t1(y′)ϑ̃k′+t2(u′)ϑ̃l′+t2(v)

where λ= 4g if i+ j + k + l = 2m and λ= 0 otherwise. By combining these relations, we find
that

Aχ,I.x,I.y,I,JAχ,I.u,I.v,K,L =Aχ,I.x′,I.y′,I′,J ′Aχ,I.u′,I.v′,K,L,

which concludes the proof. 2

Corollary 3.16. Let x̃, ỹ, x̃− y ∈ Ãk(k), and let i, j ∈ Z(`n) and k, l ∈ Ẑ(`n). Then we have

(1, i+ j, k + l) · chain add(x̃, ỹ, x̃− y)
= chain add((1, i, k) · x̃, (1, j, l) · ỹ, (1, i− j, k − l) · x̃− y). (24)

Proof. By Propositions 3.11 and 3.15 we have

(1, 0, k + l) · chain add(x̃, ỹ, x̃− y) = chain add((1, 0, k) · x̃, (1, 0, l) · ỹ, (1, 0, k − l) · x̃− y).
(25)

Now, since (1, i, k) = (1, 0, k)(1, i, 0), we conclude by combining (18) and (25). 2

Using Proposition 3.15, we can prove that the addition relations are compatible with any
isogeny.
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Corollary 3.17. Suppose that x̃1, ỹ1, ũ1, ṽ1, x̃2, ỹ2, ũ2, ṽ2 ∈ Ãk satisfy the Riemann rela-
tions (7). If π : (A,L ,ΘAk

)→ (B,L0,ΘBk
) is an isogeny such that ΘBk

is π-compatible with

ΘAk
, then π̃(x̃1), π̃(ỹ1), π̃(ũ1), π̃(ṽ1), π̃(x̃2), π̃(ỹ2), π̃(ũ2), π̃(ṽ2) ∈ B̃k also satisfy the general

Riemann relations. In particular, for all x̃, ỹ, x̃− y ∈ Ãk, we have

π̃(chain add(x̃, ỹ, x̃− y) = chain add(π̃(x̃), π̃(ỹ), π̃(x̃− y)).

Proof. It is easy to see that Lemma 3.8 is valid for any compatible isogenies of type 1 (it is
not restricted to `-isogenies). By Proposition 3.15, we can apply Lemma 3.8 also in the case
of compatible isogenies of type 2. We conclude by observing that every compatible isogeny is a
composition of isogenies of type 1 or 2. 2

4. Application of the addition relations to isogenies

In this section we apply the results of § 3 to the computation of isogenies (see § 4.2). More
precisely, we present an algorithm to compute the isogeny π̂ :Bk→Ak from knowledge of the
modular point 0̃Ak

. In § 5 we will give algorithms to compute 0̃Ak
from the kernel of π̂.

First, however, we remark that since the embedding of Ak that we consider is given by a
theta structure of level `n, a point π̂(x) is given by (`n)g coordinates. When ` is large, this
representation quickly becomes impractical. In order to mitigate this problem, in § 4.1 we give
a point compression algorithm which enables us to represent points of level `n with only ng

coordinates.
Recall that in § 3.1 we chose 0̃Ak

= (ai)i∈Z(`n) such that π̃(0̃Ak
) = 0̃Bk

and defined, for i ∈ Z(`),

R̃i = (ai+j)j∈Z(n) ∈ B̃k(k).

4.1 Point compression
Suppose that ` is prime to n. We know that x̃ ∈ Ãk(k) can be recovered from (π̃i(x̃))i∈Z(`), using
the fact that for i ∈ Z(`) and j ∈ Z(n) we have (x̃)ni+`j = (π̃i(x̃))j . Actually, if (d1, . . . , dg) is
a basis of Z(`), we are going to prove that x̃ can easily be computed from just (π̃di

(x̃))i∈[1..g]

and (π̃di+dj
(x̃))i,j∈[1..g]. If (e1, . . . , eg) is the canonical basis of Z(`n), in the following we take

(di = nei)i∈[1..g] as a basis of Z(`).

Proposition 4.1. Let x̃ ∈ Ãk(k) and i, j ∈ Z(`n). We have

π̃i+j(x̃) = chain add(π̃i(x̃), R̃j , π̃i−j(x̃)).

Proof. We apply Corollary 3.12 with ỹ = 0̃Ak
and x̃− y = x̃, so that we have chain add(x̃, ỹ,

x̃− y) = x̃. We obtain

π̃i+j(x̃) = chain add(π̃i(x̃), π̃j(0̃Ak
), π̃i−j(x̃)). 2

Definition 4.2. Let S ⊂G be a subset of a finite abelian group G such that 0G ∈ S. We denote
by S′ the smallest subset of G (for the inclusion) such that S′ ⊃ S and S′ = S′ ∪ {x+ y | x ∈ S′,
y ∈ S′, x− y ∈ S′}. We say that S is a chain basis of G if S′ =G.

Example 4.3. Let G= Z(`). Let (e1, . . . , eg) be the canonical basis of G. If ` is odd, a chain
basis of G is given by

S = {0G, ei, ei + ej}i,j∈[1..g],i<j .
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If ` is even, a chain basis of G is given by

S = {0G, ei1 , ei1 + ei2 , . . . , ei1 + · · ·+ eig}i1,...,ig∈[1..g],i1<···<ig .

In each case, the chain basis S is minimal, and we call it the canonical chain basis S(G) of G.

Recall that, in Example 2.5, we defined a subset S ⊂ Z(`n) such that S + Z(n) = Z(`n).
To S we associate a canonical chain basis S⊂ S as follows: if ` is prime to n, then S =
Z(`)⊂ Z(`n) and we define S = S(Z(`)) = {d1, . . . , dg, d1 + dg, . . . , dg−1 + dg}; otherwise we
take S = S(Z(`n)).

Theorem 4.4 (Point compression). Let x̃ ∈ Ãk(k). The point x̃ is uniquely determined by 0̃Ak

and {π̃i(x̃)}i∈S. Moreover, 0̃Ak
is uniquely determined by {π̃i(0̃Ak

)}i∈S = {R̃i}i∈S.

Proof. By Proposition 3.11 we have π̃i+j(x̃) = chain add(π̃i(x̃), π̃j(0̃Ak
), π̃i−j(x̃), 0̃Bk

). So by
induction, from {π̃i(x)}i∈S we can compute every {π̃i(x)}i∈S′ where S′ is the smallest subset of
S (for the inclusion) such that S′ ⊃S and S′ = S′ ∪ {x+ y | x ∈S′, y ∈S′, x− y ∈S′}.

Since S′ = S (or contains S if n is not prime to `), Corollary 2.4 shows that x̃ is
entirely determined by {π̃i(x)}i∈S and {π̃i(0̃Ak

)}i∈S. In particular, 0̃Ak
is entirely determined

by {π̃i(0̃Ak
)}i∈S. But π̃i(0̃Ak

) = R̃i by Proposition 2.3 and we are done. 2

In the description of the algorithms, we suppose that ` is prime to n, so that S = Z(`)⊂ Z(`n).

Algorithm 4.5 (Point compression).

Input x̃= (ϑ̃i(x̃))i∈Z(`n) ∈ Ãk(k).

Output The compressed coordinates (π̃i(x̃))i∈S.

: (Step 1) For each i ∈S, output (π̃i(x̃)) = (ϑ̃ni+`j(x̃))j∈Z(n).

Algorithm 4.6 (Point decompression).

Input The compressed coordinates π̃(x̃)i∈S of x̃.

Output x̃= (ϑ̃i(x̃))i∈Z(`n) ∈ Ãk(k).

: (Step 1) Set S ′ := S.

: (Step 2) While S ′ 6= S.

• Choose i, j ∈ S ′ such that i+ j ∈ S\S ′ and i− j ∈ S ′.
• Compute π̃i+j(x̃) = chain add(π̃i(x̃), R̃j , π̃i−j(x̃)).

• S ′ := S ′
⋃
{i+ j}.

: (Step 3) For all i ∈ Z(`n), write i= ni0 + `j and output ϑ̃i(x̃) = (π̃i0(x̃))j .

Correction and Complexity Analysis 4.7. By using repeatedly the formula of Proposition 3.11,

π̃i+j(x̃) = chain add(π̃i(x̃), R̃j , π̃i−j(x̃), 0̃Bk
),

we recover in Step 2 every π̃i(x̃) for i ∈ Z(`), since S is a chain basis of Z(`). We then obtain the
coordinates of x̃ in Step 3 by applying a permutation on the coordinates of the {π̃i(x̃) | i ∈ Z(`)}
(see § 2.4). To recover x̃, we need to do #S −#S =O(`g) chain additions. The compressed point
{π̃i(x̃)}i∈S is given by #S× ng coordinates.
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If `n= 2n0 and n0 is odd, we see that we can store a point in Ãk(k) with 2g(1 + g(g + 1)/2)
coordinates (4g if n0 is even) rather than (2n0)g.

4.1.1 Addition chains with compressed coordinates. We remark that in order to carry out an
addition chain, we do not need to use the decompression algorithm as it is possible to compute the
addition chain more effectively directly with compressed coordinates. In fact, let x̃, ỹ, x̃− y ∈ Ãk.
Suppose that we have the compressed coordinates (π̃i(x̃))i∈S, (π̃i(ỹ))i∈S and (π̃i(x̃− y))i∈S. Then,
if i ∈S, we have by Corollary 3.12 that

π̃i(x̃+ y) = chain add(π̃i(x̃), π̃0(ỹ), π̃i(x̃− y)),

and hence we may recover the compressed coordinates of x̃+ y.

We can compare the running times of an addition chain with the full coordinate representation
(of level `n) and one with the compressed representation. By the formulas from Theorem 3.2, since
2 | n and the formulas sum over points of 2-torsion, we see that we are doing #S addition chains
in Bk using representations of level n. The addition chains with the compressed representation
run much faster than the addition chains with the full representation, since we need only do
#S addition chains of level n. In particular, since we can compute the multiplication by m with
addition chains, we see that the cost of a multiplication by m is O(#S log(m)) addition chains
of level n (and a point decompression if we want to recover the full coordinates).

Since we can take n= 2, the addition formulas of level 2 allow us to compute addition chains
of any level. In particular, the speed-up method for these formulas given by [Gau07] can be used
for all levels.

4.2 Computing the dual isogeny

Recall that we have the following diagram.

x ∈Ak(k)
[`] //

π
&&MMMMMMMMMM

z ∈Ak(k)

y ∈Bk(k)
π̂

88qqqqqqqqqq

Let ỹ ∈ p−1
Bk

(y) and let x̃ ∈ Ãk(k) be such that π̃(x̃) = ỹ. In this section, we describe an
algorithm to compute π̃i(` · x̃), for i ∈ Z(`), efficiently from the knowledge of ỹ and 0̃Ak

(that
is, without using x̃, which may be hard to compute). Let (di)i∈[1..g] be the basis of Z(`)
defined in § 4.1. By using this algorithm for i ∈ {d1, . . . , dg, d1 + d2, . . . , dg−1 + dg}, we can
recover π̂(y) = pAk

(` · x̃) (see Theorem 4.4). We know that for all i ∈ Z(`), πi(x) = y +Ri where
x= pAk

(x̃). For i ∈ Z(`), we choose a point πai (x) ∈ p−1
A (y +Ri)(k) so that for each i ∈ Z(`)

there exists λi ∈ k
∗ such that π̃i(x̃) = λiπ

a
i (x). If x̃′ is another point in π̃−1(ỹ), then we have

π̃i(x̃′) = λ′iπ
a
i (x) with λ′i = ζλi, where ζ is an `th root of unity by Corollary 2.4. As a consequence,

it is possible to recover λi only up to an `th root of unity, but this information is sufficient for
computing π̃i(` · x̃).

Theorem 4.8. Let ỹ ∈ B̃k(k) and let x̃ ∈ Ãk(k) be such that π̃(x̃) = ỹ. For all i ∈ Z(`),

π̃i(` · x̃) = λ`i chain multadd(`, πai (x), ỹ, R̃i)),
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where λ`i is determined by

ỹ = λ`i chain multadd(`, πai (x), R̃i, ỹ).

Proof. By Proposition 3.11 and Lemma 3.10, we have

π̃i(` · x̃) = chain multadd(`, π̃i(x̃), π̃(x̃), π̃(P̃i)) = λ`ichain multadd(`, πai (x), ỹ, R̃i).

Now we only need to find the λ`i for i ∈ Z(`). But by Proposition 3.11 and an easy recursion,
we have x̃= sK1(L )(i)` · x̃, so that by Corollary 3.12 and Lemma 3.10,

π̃(x̃) = chain multadd(`, π̃i(x̃), R̃i, ỹ) = λ`i .chain multadd(`, πai (x), R̃i, ỹ). 2

Remark 4.9. We can use the preceding theorem to recover the equations of the isogeny by taking
for y the generic point of Bk.

Algorithm 4.10 (The image of a point by the isogeny).

Input y ∈Bk(k).

Output The compressed coordinates of π̂(y) ∈Ak(k).

: For each i ∈S

• (Step 1) Compute y +Ri and choose an affine lift yi of y +Ri.
• (Step 2) Compute ylRi := chain multadd(`, yi, R̃i, y0).

Let λi be such that y0 = λiylRi.
• (Step 3) Output λi chain multadd(`, yi, y0, R̃i)).

Correction and Complexity Analysis 4.11. Let ỹ = y0, let x̃ ∈ Ãk(k) be such that π̃(x̃) = ỹ,
and let z̃ = `x̃. Then pAk

(z̃) = π̂(y), and we put z̃ = π̂(ỹ). Theorem 4.8 shows that we
compute π̃i(π̂(ỹ)) = λ`i chain multadd(`, yi, y0, R̃i)), since λ`i is given in Step 2 by y0 =
λ`i chain multadd(`, yi, R̃i, ỹ).

We can easily recover π̂(y) from the π̃i(π̂(ỹ)), i ∈ Z(`), but we note that it is faster to compute
the π̃i(π̂(ỹ)) only for i ∈S (with the notation of Example 4.3 in the preceding section) and then
use Algorithm 4.6 to obtain the full coordinates of π̂(y). This last step is unnecessary if we only
need the compressed coordinates of π̂(y).

To compute π̃i(π̂(ỹ)), we need to do two multiplication chains of length `. We obtain the
compressed coordinates of ` · x after g(g + 1)/2 such operations. In total, we can compute the
compressed coordinates of a point with O(g(g + 1) log(`)/2) additions in Bk (with g(g + 1)ng/2
divisions in k) and the full coordinates with O(`g) additions in Bk.

The kernel of the isogeny. We know that the kernel of the isogeny π̂ :Bk→Ak is the
subgroup K generated by (Rdi

)i∈[1..g]. For y ∈Bk[`], let ỹ ∈ p−1
Bk

(y). Up to a projective factor,
we may suppose that chain mult(`, ỹ) = 0̃Bk

. Then y is in K if and only if for all i ∈ Z(`)
we have π̃i(π̂(ỹ)) = R̃i. Let ỹ +Ri be any affine point above y +Ri. Since y and Ri are points of
`-torsion, for all i ∈ Z(`) there exist αi, βi ∈ k

∗ such that chain multadd(`, ỹ +Ri, ỹ, R̃i)) = αiR̃i

and chain multadd(`, ỹ +Ri, R̃i, ỹ) = βiỹ. By Theorem 4.8, we know that π̃i(π̂(ỹ)) = (αi/βi)R̃i.
In particular, y ∈K if and only if αi/βi = 1 for all i ∈ Z(`n). In fact, we show in § 6 that
αi/βi = eL `

0
(y, Ri) where eL `

0
is the commutator pairing on L `

0 . This is consistent with the
fact that y is in K if and only if eL `

0
(y, Ri) = 1 for i ∈ {d1, . . . , dg}.
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The case of (n, `)> 1. In this case, we have to take S = {e1, . . . , eg, e1 + e2, . . .}. If i ∈S, R̃i
is a point of `n-torsion and we have by Remark 3.14 that

(1, `i, 0) · ỹ = λ`i chain multadd(`, πai (x), R̃i, ỹ),

so we can still recover λ`i .

The case of n= 2. The only difficult part here is the ordinary additions y +Ri (see § 3.2.1),
since the addition chains work with n= 2. In particular, we first choose one of the two points
±(x̃± R̃e1), which requires a square root. Now, since we have 0̃Ak

given by a theta structure of
degree `n > 2, we have the coordinates of R̃e1 + R̃i on Bk. This means that we can compute the
compatible additions x̃+ R̃i from x̃+ R̃e1 and R̃e1 + R̃i.

Adaption for more general isogenies. Although we only consider the case of (`, . . . , `)-isogenies,
it is also possible to compute more general types of isogenies with our algorithm. With the
notation of § 2, let δ0 = (δ1, . . . , δg) be a sequence of integers such that 2 | δ1 and δi | δi+1,
and let (bi)i∈Z(δ0) ∈Mδ0 be a modular point corresponding to an abelian variety Bk. Let
δ′ = (`1, . . . , `g) (where `i | `i+1) and define δ = (δ1`1, . . . , δg`g). Let (ai)i∈Z(δ) ∈Mδ be such
that ϕ1((ai)i∈Z(δ)) = (bi)i∈Z(δ0) where ϕ1 is the natural inclusion of Z(δ0) into Z(δ). The theta
null point (ai)i∈Z(δ) corresponds to an abelian variety Ak such that there is a (`1, . . . , `g)-isogeny
π :Ak→Bk, which can be computed by the isogeny theorem [Mum66, Theorem 4] (see § 2.2).
We consider the contragredient isogeny π̂ :Bk→Ak of type (`g/`1, `g/`2, . . . , 1, `g, `g, . . . , `g).
Using the modular correspondence ϕ1 to go back to a modular point of type Z(δ0) (see § 1)
gives an isogeny whose type is (`g/`1, `g/`2, . . . , 1, `1`g, `2`g, . . . , `g`g). We leave to the reader
the easy generalization of Algorithm 4.10.

5. The computation of a modular point

We recall that (Ak,L ,ΘAk
) and (Bk,L0,ΘBk

) are marked abelian varieties and we let π :
Ak→Bk be an isogeny of type 1. In § 5.1, we explain how to compute the theta null point 0̃Ak

from knowledge of the kernel K of π̂, the contragredient isogeny of π. This section introduces
the notion of an excellent point of `-torsion, which is an affine lift of a point of `-torsion that
satisfies (29). We study this notion in § 5.2, and use it in § 5.3 to compute all (or just one of
the) modular points corresponding to marked abelian varieties (Ak,L ,ΘAk

) such that there is
an isogeny π̂ :Bk→Ak with kernel K.

5.1 An analog of Vélu’s formulas

We have seen in § 4.2 how to use the addition formula to compute the isogeny π̂ :Bk→Ak. The
theta null point (ai)i∈Z(`n) corresponding to (Ak,L ,ΘAk

) is an input of this computation. In this
section we explain how to recover the theta null point (ai)i∈Z(`n), given the kernel K̂ = {Ti}i∈Z(`)

of π̂, by using only the addition relations. By combining this result with the algorithm of § 4.2,
we obtain an analog of Vélu’s formulas for higher-dimensional abelian varieties, since we are able
to compute an isogeny from the data of its kernel just by using addition relations. Because in the
algorithm we have to take `th roots in k, we suppose that k is algebraically closed. (If k = Fq,
with ` | q − 1 so that the `th roots of unity are in k, we only have to work over an extension of
degree ` of k.)
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Let (Td1 , . . . , Tdg) be a basis of K̂. Let (ai)i∈Z(`n) be the theta null point corresponding to any
theta structure on Ak that is π-compatible with the theta structure of (Bk,L0,ΘBk

). We recall
that one can associate to 0̃Ak

= (ai)i∈Z(`n) the points (R̃i)i∈Z(`) = π̃i(0̃Ak
), and Corollary 2.4

shows that this correspondence is one-to-one. By [FLR11, Proposition 7], we can recover all the
theta null points of the π-compatible theta structures on Ak by acting over 0̃Ak

= (R̃i)i∈Z(`) by

(R̃i)i∈Z(`) 7→ (R̃ψ1(i))i∈Z(`), (26)

(R̃i)i∈Z(`) 7→ (e(ψ2(i), i)R̃i)i∈Z(`), (27)

where ψ1 is an automorphism of Z(`) and ψ2 is a symmetric endomorphism of Z(`). We remark
that the results of § 4.1 show that 0̃Ak

is completely determined by {R̃di
, R̃di+dj

}i,j∈[1..g] where
d1, . . . , dg is a basis of Z(`).

Up to an action (26), we may suppose that 0̃Ak
is such that π̃di

(0̃Ak
) = Tdi

. Let i ∈ Z(`) and let
T̃i be any affine point above Ti; then we have R̃i = λiT̃i for λi ∈ k

∗. Write `= 2`′ + 1; since Ri =
pBk

(R̃i) is a point of `-torsion, we have (1, `′ + 1, 0) · R̃i =−(1, `′, 0) · R̃i. By Proposition 3.11
and Lemma 3.10, we have

chain mult(`′ + 1, R̃i) =−chain mult(`′, R̃i),

λ
(`′+1)2

i chain mult(`′ + 1, T̃i) =−λ`′2i chain mult(`′, T̃i),

λ`ichain mult(`′ + 1, T̃i) =−chain mult(`′, T̃i). (28)

Hence we may find λi up to an `th root of unity. If we apply this method for i ∈
{d1, . . . , dg, d1 + d2, . . . , dg−1 + dg}, we find R̃i up to an `th root of unity. But the action (27)
shows that every such choice of R̃i gives a valid theta null point 0̃Ak

via the correspondence of
Corollary 2.4.

Algorithm 5.1 (Vélu-like formula).

Input Td1 , . . . Tdg , a basis of the kernel K̂ of π̂.

Output The compressed coordinates of 0̃Ak
, the theta null point of level `n corresponding to π̂.

Let S = {d1, . . . , dg, d1 + d2, . . . dg−1 + dg}.
: (Step 1) Let `′ be such that `= 2`′ + 1.
: (Step 2) For i, j ∈ [1..g] compute the points Tdi

+ Tdj
.

: (Step 3) For each i ∈S.
• Choose any affine lift T ′i of Ti and compute (βij)j∈Z(n) := chain mult(`′, T ′i ) and

(γij)j∈Z(n) := chain mult(`′ + 1, T ′i ).
• Compute αi such that (γij)j∈Z(n) = αi(βi−j)j∈Z(n).
• Output R̃i := (αi)1/` · T ′i .

Correction and Complexity Analysis 5.2. The output of the algorithm is R̃i, one of the `
affine lifts of Ti such that chain mult(`′ + 1, R̃i) =−chain mult(`′, R̃i). Then (R̃i)i∈S are the
compressed coordinates of 0̃Ak

, and we can recover 0̃Ak
by doing a point decompression (see

Algorithm 4.6).
To find R̃i, we need to do two chain multiplications of length `/2 and then take an `th

root. After g(g + 1)/2 such operations, we obtain the compressed coordinates of a valid 0̃Ak
,

and we may recover the full coordinates of the corresponding 0̃Ak
using the point decompression
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algorithm, Algorithm 4.6. We remark that we only need the compressed coordinates of 0̃Ak
to

compute the compressed coordinates of π̂. In total we need to compute g(g + 1)/2 `th roots and
O(g(g + 1) log(`)/2) additions in Bk to recover the compressed coordinates of 0̃Ak

. We can then
recover the full coordinates of 0̃Ak

at the cost of O(`g) additions in Bk.

Remark 5.3. Each choice of the g(g + 1)/2 `th roots of unity appearing in the preceding
algorithm gives a theta null point corresponding to the same abelian variety Ak =Bk/K with
a different marking. The corresponding theta structures on Ak induce different decompositions
of the `-torsion A[`] =K1(`)⊕K2(`). Since Bk =Ak/K2(`) and K2(`) =K is fixed, each point
gives a different K1(`). This means that if we put Ck =Ak/K1(`), we can recover the different
`2-isogeny Bk→ Ck from such choices (see § 2.2). More precisely, by looking at the action (27), we
see that there is a bijection between the `g(g+1)/2 choices of `th roots of unity and the `2-isogenies
whose kernel K⊂Bk is such that K[`] =K.

The case of (n, `)> 1. In this case, we once again have to recover R̃i for i ∈S =
{e1, . . . , eg, e1 + e2, . . . , e1 + eg}. Suppose that we have {Ti}i∈Z(`) and `g points of `n-torsion

such that ` · Ti = (1, `i, 0) · 0B. If i ∈S, we may suppose that R̃i = λiT̃i.
If `= 2`′ + 1 is odd, we have

λ`i chain mult(`′ + 1, T̃i) =−(1, `(n− 1), 0) · chain mult(`′, T̃i),

so that once again we can find λ`i .
The kernel of π̂ is then K̂ = {nTi}i∈Z(`). Even when K̂ is isotropic, it could be that the

{Ti}i∈Z(`) are not isotropic, so some care must be taken in choosing the {Ti}i∈Z(`).

If `= 2`′ is even, we have

λ2`
i chain mult(`′ + 1, T̃i) =−(1, `(n− 1), 0) · chain mult(`′ − 1, T̃i),

so that we can recover only λ2`
i . But every choice still corresponds to a valid theta null point

(ai)i∈Z(`n), because when 2 | `, we have to add to the actions (26) and (27) the action given by
the change of the maximal symmetric level structure [FLR11, Proposition 7].

The case of n= 2. The only difficulty lies in the standard additions. Using standard additions,
we may compute Re1 ±Re2 , . . . , Re1 ±Reg , making a choice each time. Then we can compute
Rei +Rej by doing an addition compatible with Re1 +Rei and Re1 +Rej .

5.2 Theta group and `-torsion

Let x̃ ∈ B̃k(k) be such that pBk
(x) is a point of `-torsion. We say that x is an excellent point of

`-torsion if x̃ satisfies

chain mult(`′ + 1, x̃) =−chain mult(`′, x̃). (29)

Remark 5.4. If x̃ is an excellent point of `-torsion, then by Lemma 3.10 so is λ · x̃ for any `th
root of unity λ.

We saw in the previous section the importance of taking lifts that are excellent points of
`-torsion. The aim of this section is to use the results of § 3.3 to show that the addition chain
of excellent points of `-torsion is again an excellent point of `-torsion. This result will be used in
§ 5.3 to compute excellent affine lifts of Bk[`] by taking as few `th roots as possible.
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Let M0 = [`]∗L0 on Bk. As L0 is symmetric, we have that M0 'L `2
0 (see [Mum70, p. 59])

and that K(M0), the kernel of M0, is isomorphic to K(`2n). Let ΘBk,M0 be a theta structure
on (Bk,M0) that is [`]-compatible with the theta structure ΘBk

on (Bk,L0). As in § 2.3, we can
define the affine cone B̃k

′
associated to the canonical sections of M0 defined by the theta structure

ΘBk,M0 . We choose a system of affine coordinates on B̃k
′

above the projective coordinates given
by ΘBk,M0 , and we let [̃`] : B̃k

′
→ B̃k be the lift to the affine cone of [`] compatible with these

coordinates. Finally, we denote by 0̃
B̃k
′ ∈ B̃k

′
the affine lift of the theta null point associated to

ΘBk,M0 such that [̃`]0̃
B̃k
′ = 0̃Bk

. Since M0 'L `2
0 , the natural action of G(M0) on H0(M0) gives

via ΘBk,M0 an action of H(`2n) on H0(M0).

Lemma 5.5. Let y ∈Bk[`], ỹ ∈ p−1
Bk

(y) and x̃ ∈ [̃`]
−1

(ỹ). Then there exists (α, ni, nj) ∈ k∗` ×
Z(`2n)× Ẑ(`2n) such that x̃= (α, ni, nj) · 0̃

B̃k
′ . Moreover, ỹ is an excellent point of `-torsion if

and only if α= λi,jµ where µ is an `th root of unity and λi,j = 〈i, j〉`′n(`−1).

We remark that if x̃′ ∈ B̃k
′
(k) is such that x̃′ ∈ [̃`]

−1
(ỹ), then x̃′ = (1, `i′, `j′) · x̃ where

(i′, j′) ∈ Z(`2n)× Ẑ(`2n)), so the class of α in k∗/k∗` does not depend on x̃ but only on ỹ.

Proof. Since p
B̃k
′(x̃) ∈Bk[`2], there is an element h ∈H(`2n) such that x̃= h · 0

B̃k
′ , with h=

(α, ni, nj). By Remark 5.4, we only need to check that [˜̀]((λi,j , ni, nj) · 0B̃k
′) is an excellent point

of `-torsion. For m ∈ Z, let x̃m = chain mult(m, x̃) and ỹm = chain mult(m, ỹ). By Corollary 24
we have x̃m = (λm

2

i,j , m · i, m · j) · 0B̃k
′ , and by Corollary 3.17 we have ỹm = [̃`](λm

2

i,j , m · i, m · j) ·
0
B̃k
′ . So by Lemma 3.9,

ỹ`′ = [̃`](λ`
′2
i,j , `

′ · i, `′ · j) · 0
B̃k
′ = [̃`](1, `n(`− 1)i, `n(`− 1)j)(λ`

′2
i,j , `

′i, `′j) · 0
B̃k
′

= 〈`′i, `n(`− 1)j〉[̃`](λ`′2i,j , (`′ + `n(`− 1)) · i, (`′ + `n(`− 1)) · j) · 0
B̃k
′

= λ`i,j [̃`](λ
(`′+1)2

i,j /λ`i,j ,−(`′ + 1) · i,−(`′ + 1) · j) · 0
B̃k
′

= [̃`](−x̃`′+1) =−ỹ`′+1. 2

Proposition 5.6. Let ỹ1, ỹ2, ỹ1 − y2 ∈ B̃k(k) be excellent points of `-torsion. Then ỹ1 + y2 :=
chain add(ỹ1, ỹ2, ỹ1 − y2) is an excellent point of `-torsion.

Proof. Let (α1, i1, j1) ∈H(`2n), (α2, i2, j2) ∈H(`2n) and (α3, i3, j3) ∈H(`2n) be such that

[̃`](α1, i1, j1) · 0
B̃k
′ = ỹ1, [̃`](α2, i2, j2) · 0

B̃k
′ = ỹ2, [̃`](α3, i3, j3) · 0

B̃k
′ = ỹ1 − y2.

By the remark at the end of Lemma 5.5, we may suppose that i3 = i1 − i2 and j3 = j1 − j2.
Since ỹ1, ỹ2 and ỹ1 − y2 are excellent points of `-torsion, by Remark 5.4 and Lemma 5.5 we may
suppose that α1 = λi1,j1 , α2 = λi2,j2 and α3 = λi1−i2,j1−j2 .

By Corollary 24 and Lemma 3.10, we have

ỹ1 + y2 =
λ2
i1,j1

λ2
i2,j2

λi1−i2,j1−j2
(1, i1 + i2, j1 + j2) · 0

B̃k
′ = (λi1+i2,j1+j2 , i1 + i2, j1 + j2) · 0

B̃k
′ ,

so ỹ1 + y2 is indeed an excellent point of `-torsion by Lemma 5.5. 2
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5.3 Improving the computation of a modular point

In [FLR11], the following algorithm is used to compute the modular points 0̃Ak
. Let 0̃Bk

=
(bi)i∈Z(n), and consider the algebraic system S defined by the Riemann and symmetry relations
(3) with (ai)i∈Z(`n) considered as the unknowns and where we put ai = bi for i ∈ Z(n). The
algebraic system S defines a zero-dimensional algebraic variety which contains the set of modular
points 0̃Ak

. In [FLR11], we presented an algorithm to compute efficiently a Gröbner basis of the
system S.

In this section we explain how, in order to improve the algorithm of [FLR11], by using the
‘Vélu-like formulas’ of § 5.1 it is possible to recover all the modular points 0̃Ak

, solving the system
S from knowledge of the `-torsion of Bk. We then discuss different methods for computing the
`-torsion in Bk.

Algorithm 5.7 (Computing all modular points).

Input T1, . . . , T2g, a basis of the `-torsion of Bk.

Output All `-isogenies.

We just outline the algorithm here, since a detailed explanation will be given in Example 5.8.
We suppose that we know how to compute eL `

0
on Bk[`] and postpone to the next section the

description of an algorithm to compute eL `
0

efficiently.

: (Step 1) Compute any affine excellent `-torsion lifts T̃1, . . . , T̃2g, T̃1 + T2, . . . , ˜Tg−1 + Tg,
and then use addition chains to compute affine lifts T̃ for every point T ∈Bk[`]. By
Proposition 5.6, T̃ is an excellent point of `-torsion.

: (Step 2) For every isotropic subgroup K ⊂Bk[`], take the corresponding lifts and use them
to reconstitute the corresponding theta null point 0̃Ak

(see § 5.1).

Example 5.8. Suppose that {T1, . . . , T2g} is a symplectic basis of Bk[`]. (A symplectic basis is
easy to obtain from a basis of the `-torsion; we just need to compute the discrete logarithms
of some of the pairings between the points, where the pairings can be computed with
Algorithm 6.3.)

Let ΘBk,M0 be any theta structure of level `2n on Bk that is compatible with ΘBk
, and let

0̃′Bk
be the corresponding theta null point (see § 5.2). We may suppose (see § 5.1) that

T̃1 = [̃`](1, (n, 0, . . . , 0), 0) · 0̃′Bk
,

T̃2 = [̃`](1, (0, n, . . . , 0), 0) · 0̃′Bk
, . . . ,

T̃g+1 = [̃`](1, 0, (n, 0, . . . , 0)) · 0̃′Bk
,

T̃g+2 = [̃`](1, 0, (0, n, . . . , 0)) · 0̃′Bk
, . . . ,

˜T1 + Tg+2 = [̃`](1, (n, 0, . . . , 0), (0, n, 0, . . . , 0)) · 0̃′Bk
, . . . .

Then by Corollary 24, we compute using Algorithm 5.7 the following affine lifts of the
`-torsion:

{[̃`](1, in, jn) · 0̃′Bk
| i, j ∈ {0, 1, . . . , `− 1}g ⊂ Z(`2n)}. (30)
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Now, if K ⊂Bk[`] is an isotropic group, then in the reconstruction process of Algorithm 5.1
we need to compute points of the form [̃`](1, in, jn) · 0̃′Bk

for i, j ∈ Z(`2n). But we have

[̃`](1, in, jn) · 0̃′Bk
= [̃`]ζ`βn·(i−`α)n(1, `αn, `βn) · (1, (i− `α)n, (j − `β)n) · 0̃′Bk

= [̃`]ζ`βn·(i−`α)n(1, (i− `α)n, (j − `β)n) · 0̃′Bk
,

where α, β ∈ Z(`2n) and ζ is a (`2n)th root of unity. As a consequence, we can always go back
to a point computed in (30) up to an `th root of unity.

We give a detailed example with g = 1, `= 3 and n= 4. Let Bk be an elliptic curve, with a
theta structure ΘBk

of level n. Let {T1, T2} be a basis of Bk[`], and choose excellent affine lifts
T̃1, T̃2, T̃1 + T2. Let ΘBk,M0 be any theta structure of level `2n compatible with ΘBk

, and let 0̃′Bk

be the corresponding theta null point (see § 5.2). We take ΘBk,M0 such that T̃1 = [̃`](1, n, 0) · 0̃′Bk
,

T̃2 = [̃`](1, 0, n) · 0̃′Bk
and T̃1 + T2 = [̃`](1, n, n) · 0̃′Bk

.

We have seen from (30) that in Algorithm 5.7 we compute the points [̃`](1, in, jn) · 0̃′Bk
for

i, j ∈ 0, 1, . . . , `− 1⊂ Z/`2nZ.

Now let T = [̃`](1, n, 2n) · 0̃′Bk
; K = 〈pBk

(T )〉 is an isotropic subgroup of Bk[`]. Let Ak =
Bk/K, choose a compatible theta structure ΘAk

on A, and let 0̃Ak
be the associated theta null

point.
As usual, we define R̃i = π̃i(0̃Ak

) if i ∈ Z/`Z ⊂ Z/`nZ, and we may suppose (see § 5.1) that
ΘAk

is such that R1 = T . More explicitly, if n= 4 we have (remembering that we always choose
0̃Ak

such that π̃(0̃Ak
) = 0̃Bk

):

0̃Ak
= (a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11),

π̃(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11) = (x0, x3, x6, x9),
R̃0 = (a0, a3, a6, a9) = 0̃Bk

,

R̃1 = (a4, a7, a10, a1),
R̃2 = (a8, a11, a2, a5).

Now, by Theorem 4.4 we know that 0̃Ak
is entirely determined by R̃1 (and 0̃Bk

); in fact, we have
R̃2 = chain add(R1, R1, 0̃Bk

). By Corollary 24, we have

R̃2 = [̃`](1, 2n, 4n) · 0̃′Bk
= [̃`]ζ2n·3n(1, 0, 3n) · (1, 2n, n) · 0̃′Bk

= ζ2n·3n [̃`](1, 2n, n) · 0̃′Bk
,

where ζ is a (`2n)th root of unity.

This shows that in the reconstruction step, we have to multiply the point [̃`](1, 2n, n) · 0̃′Bk

that we have already computed by the `th root of unity ζ2n·`n.

Complexity Analysis 5.9. To compute an affine lift T̃i, we have to compute an `th root of unity
(and do some addition chains; but we can reuse the results for the next step). Once we have
computed the `(2`+ 1)th root, we compute the whole (affine lifts of) `-torsion by using O(`2g)
addition chains. We can now compute the pairings e(Ti, Tj) with just one division, since we have
already computed the necessary addition chain (see § 6). From these pairings we can compute a
symplectic basis of Bk[`]. This requires the computation of the discrete logarithm of the pairings
and can be done in O(`) time. Using this basis, we can enumerate every isotropic subgroup
K ⊂Bk[`], and reconstruct the corresponding theta null point with O(`g) multiplications by an
`th root of unity.
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The case of (n, ` > 1). In this case, the only difference is that we have to compute Bk[`n] rather
than Bk[`], and when Ti is a point of `n-torsion, we compute an affine lift T̃i such that

chain mult(`′ + 1, T̃i) =−(1, `(n− 1), 0) · chain mult(`′, T̃i).

The case of n= 2. This works as in § 5.1; once we have computed the T̃e1 + T̃ei , we have to
take compatible additions to compute the T̃ei + T̃ej .

Computing the points of `-torsion in Bk. By applying the addition relations of § 3.2 to the
generic point of Bk, we obtain an algebraic system of equations of degree `2g in ng unknowns
defining Bk[`]. We can compute the solutions of this system by using the general-purpose Gröbner
basis computation algorithm.

In general, we prefer to work with Kummer surfaces (that is, with n= 2), since this cuts
the degree of the system by two. In genus 2, Gaudry and Schost [GS08] have an algorithm for
computing the `-torsion on the Kummer surface using resultants rather than a general-purpose
Gröbner basis algorithm. The points are given in Mumford coordinates, but we can use the results
of Wamelen [Wam98] to get them in theta coordinates. This algorithm is in Õ(`6) (where we use
the notation Õ to mean we forget about the log factors). The computation of the excellent affine
points of `-torsion from Algorithm 5.7 is in Õ(`4), and each of the O(`3) isogenies requires O(`2)
multiplications by an `th root of unity. In total we see that we can compute all (`, `)-isogenies
in Õ(`6) time in genus 2.

Isogenies graph. A possible application of the algorithms presented in this paper is the
computation of isogenies graphs. In fact, the Vélu-like algorithm of § 5.1 allows us to compute a
theta null point 0̃Ak

for a theta structure on Ak of level `n from a point corresponding to a theta
structure of level n. We can then use the modular correspondence described in § 2.2, taking an
isogeny, to obtain a theta null point 0̃Ck

corresponding to an abelian variety Ck with a marking
of level n. With this method, it is possible to compute `2-isogenies graphs.

In this manner, when we compute a sequence of `2-isogenies, it is possible to benefit from
the computation of the intermediate step 0̃Ak

: since 0̃Ak
is a theta null point of level `n, we can

recover from it all points in Ak[`]. Denote by π2 :Ak→ Ck the isogeny defined by the modular
correspondence. Then K2 := π2(Ak[`]) gives half the `-torsion of Ck (to get an explicit description
of K2, just apply I to the results of § 2.3). Since K2 is the kernel of the contragredient isogeny
of π2, we have a way to compute the graph of `2-isogenies where the composition of two such
isogenies gives an `4-isogeny and not, when g = 2 for instance, a (1, `2, `2, `4)-isogeny (it is enough
to consider the isotropic subgroups of Ck[`] that intersect K2 trivially).

The knowledge of K2 can also be used to speed up the computation of Ck[`]. In the following
section, we describe an algorithm to compute the Weil pairing eW on Ck[`]. Let (G1, . . . , Gg)
be a basis of K2, and consider the system of degree `g+1 given by the ideal of `-torsion and the
relations e(Gi, ·) = 1 (which have a rational expression) for i ∈ [2..g]. Let H1 be a point solution of
this algebraic system different from 〈G1〉 (which can be tested by verifying that eW (G1, H1) 6= 1).
We can now construct the system of degree `g given by the ideal of `-torsion and the relations
eW (Gi, ·) = 1 for i 6= 2 and eW (H1, ·) = 1, and look for a solution H2 such that e(G2, H2) 6= 1.
Continuing this process, we obtain an algorithm to construct a basis G1, . . . , Gg, H1, . . . , Hg of
Ck[`] by solving a system of degree `g+1, then a system of degree `g, . . . , and finally of degree
`2. This is faster than solving the ideal of `-torsion, which is a system of degree `2g.

1511

https://doi.org/10.1112/S0010437X12000243 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000243


D. Lubicz and D. Robert

6. Pairing computations

In this section, we explain how to use the addition chains introduced in § 3.2 to compute the
Weil and commutator pairings on abelian varieties. First, we recall how the commutator pairing
relates to the Weil pairing.

Since Bk[`]⊂K(L0)`, the commutator pairing eL `
0

gives a non-degenerate pairing on Bk[`] (if
n is prime to `), denoted by eL `

0
, which we will call the extended commutator pairing on Bk[`].

We can give another interpretation of this pairing, which is more suitable for computations.
Let M0 = [`]∗L0 on Bk. We know that K(M0) is isomorphic to K(`2n) (see § 5.2). As M0

descends to L0 via the isogeny [`], the commutator pairing eM0 induced by the polarization M0

is trivial on Bk[`]. For x1, x2 ∈Bk[`], let x′1, x
′
2 ∈Bk[`2] be such that ` · x′i = xi for i= 1, 2. The

extended commutator pairing is then eL `
0
(x1, x2) = eM0(x′1, x2) = eM0(x1, x

′
2) = eM0(x′1, x

′
2)`.

Indeed, by [Mum70, p. 228], we have eM0(x′1, x2) = eL `
0
(`x′1, x2) = eL `

0
(x1, x2).

The isogeny ϕL0 :Bk→ B̂k has kernel Bk[n], and by composing with ϕL0 on the right-hand
side of the pairing eL `

0
, we obtain a perfect pairing e′W :Bk[`]× B̂k[`]→ µ` where µ` is the

subgroup of `th roots of unity of k.
The following proposition is well known, and a proof can be found in [Mum70, p. 228].

Proposition 6.1. The pairing e′W is the Weil pairing eW .

Here, we explain how to compute the Weil pairing using addition chains. All known algorithms for
efficiently computing the Weil pairing on an abelian variety Bk are based on a Miller loop [Mil04],
which can be used only in the case where Bk is a Jacobian. We choose a theta structure ΘBk,M0

for M0 compatible with ΘBk
, and we let 0̃

B̃k
′ be an affine lift of the theta null point corresponding

to ΘBk
, as in § 5.2.

Proposition 6.2. Let x and y be geometric points of `-torsion in Bk, and let x̃, ỹ, x̃+ y ∈ B̃k
be affine lifts of x, y and x+ y. Let λ0

x, λ
0
y, λ

1
x, λ

1
y ∈ k

∗
be such that

chain mult(`, x̃) = λ0
x0̃
B̃k
′ ,

chain mult(`, ỹ) = λ0
y0̃B̃k

′ ,

chain multadd(`, x̃+ y, x̃, ỹ) = λ1
xỹ,

chain multadd(`, x̃+ y, ỹ, x̃) = λ1
yx̃.

Then

eL `
0
(x, y) =

λ1
yλ

0
x

λ1
xλ

0
y

.

Proof. Let x, y ∈Bk[`] and x′, y′ ∈Bk[`2] be such that ` · x′ = y and ` · y′ = y. There exist
(α1, α2), (β1, β2) ∈ Z(`2n)× Ẑ(`2n) such that (1, α1, α2) · 0̃

B̃k
′ is an affine lift of x′ and

(1, β1, β2) · 0̃
B̃k
′ is an affine lift of y′.

Since Lemma 3.10 shows that eL `
0

is homogeneous, we can assume that the lifts x̃, ỹ

and x̃+ y that we have chosen are given by x̃= [̃`](1, α1, α2)0̃
B̃k
′ , ỹ = [̃`](1, β1, β2)0̃

B̃k
′ and

x̃+ y = [̃`](1, α1 + β1, α2 + β2)0̃
B̃k
′ .
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We compute:

` · x̃= [̃`](1, `α1, `α2) · 0̃
B̃k
′ = 0̃Bk

.

So in this case, λ0
x = 1. We also have

chain multadd(`, x̃+ y, x̃, ỹ) = [̃`](1, `α1 + β1, `α2 + β2) · 0̃
B̃k
′

= 〈`α1,−β2〉[̃`](1, `α1, `α2) · (1, β1, β2) · 0̃
B̃k
′

= 〈`α1,−β2〉.ỹ

so that λ1
x = 〈`α1,−β2〉. In the same way, one can compute λ1

y = 〈`β1,−α2〉.
Finally, we have

λ1
yλ

0
x

λ1
xλ

0
y

=
〈`α1, β2〉
〈`β1, α2〉

= eL `
0
(x, y). 2

The preceding proposition gives us an algorithm to compute the pairing.

Algorithm 6.3 (Pairing computation).

Input P, Q ∈Bk[`].
Output eL `

0
(P, Q).

Let P, Q ∈Bk[`], and choose any affine lifts P̃ , Q̃ and P̃ +Q; we can compute the following
via addition chains:

0̃Bk
P̃ 2P̃ . . . `P̃ = λ0

P 0̃Bk

Q̃ P̃ +Q 2P̃ + Q̃ . . . `P̃ + Q̃= λ1
P Q̃

2Q̃ P̃ + 2Q̃
...

...
`Q̃= λ0

Q0̃Bk
P̃ + `Q̃= λ1

QP

: (Step 1) Specifically, we compute

`P̃ := chain mult(`, P̃ ) `Q̃ := chain mult(`, Q̃)

`P̃ + Q̃ := chain multadd(`, P̃ +Q, P̃ , Q̃) P̃ + `Q̃ := chain multadd(`, P̃ +Q, Q̃, P̃ )

: (Step 2) Then we have

eL `
0
(P, Q) =

λ1
Qλ

0
P

λ1
Pλ

0
Q

. (31)

Complexity Analysis 6.4. By using a Montgomery ladder, we see that we can compute eL `
0
(P, Q)

with four fast addition chains of length `; hence we need O(log(`)) additions. It should be
noted that we can reuse a lot of computations between the addition chains P, 2P, 4P, . . . and
P +Q, 2P +Q, 4P +Q, . . . , since we always add the same point at the same time between the
two chains.

The case of n= 2. Let ±P,±Q ∈KB; then we have eL `
0
(±P,±Q) = {eL `

0
(P, Q), eL `

0
(P, Q)−1}.

Thus the pairing on the Kummer variety is a bilinear pairing KB ×KB → k∗,± where k∗,± =
k∗/{x= 1/x}. We represent a class x ∈ k∗,± by x+ 1/x ∈ k, and we define the symmetric
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pairing e′s(±P,±Q) = eL `
0
(P, Q) + eL `

0
(P,−Q). We can use the addition relations to compute

P ±Q and then use Algorithm 6.3 to compute eL `
0
(P, Q) and eL `

0
(P,−Q).

7. Conclusion

We have described an algorithm for computing an isogeny between two abelian varieties. However,
the level of the modular space that we use for this algorithm depends on the degree of the
isogeny. Still, we can go back to a modular point of level n by using the modular correspondence
introduced in [FLR11]. This means that we can compute isogeny graphs if we restrict to `2-
isogenies.
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Ric36 F. Richelot, Essai sur une méthode générale pour déterminer la valeur des intégrales ultra-
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