A RELATION BETWEEN ULTRASPHERICAL AND JACOBI POLYNOMIAL SETS

FRED BRAFMAN

1. Introduction. The Jacobi polynomials may be defined by

$$
P_{n}^{(\alpha, \beta)}(x)=\frac{(1+\alpha)_{n}}{n!}{ }_{2} F_{1}\left[\begin{array}{r}
-n, 1+\alpha+\beta+n ; \tag{1}\\
1+\alpha ;
\end{array} \begin{array}{r}
2-x
\end{array}\right],
$$

where $(a)_{n}=a(a+1) \ldots(a+n-1)$. Putting $\beta=\alpha$ gives the ultraspherical polynomials $P_{n}^{(\alpha, \alpha)}(x)$ which have as a special case the Legendre polynomials $P_{n}(x)=P_{n}^{(0,0)}(x)$.

Now the Jacobi polynomials can be expressed in terms of the simpler ultraspherical polynomials of course by a relation such as

$$
P_{n}^{(\alpha, \beta)}(x)=\sum_{k=0}^{n} c_{k} P_{k}^{(\alpha, \alpha)}(x)
$$

where the c_{k} may be found by the orthogonality properties of the $P_{k}^{(\alpha, \alpha)}(x)$. In general, the c_{k} will be very complicated.

This paper will show that a Jacobi polynomial may also be formed by summing across a set of sets of ultraspherical polynomials.

Let

$$
\begin{align*}
& f_{j, 0}=P_{j}^{\left(\frac{1}{2}(\alpha+\beta) \cdot \frac{1}{3}(\alpha+\beta)\right)}(x), j=0,1,2, \ldots, \\
& f_{j, 2 k}=\frac{(-1)^{k} \frac{\left(\frac{\beta-\alpha}{2}\right)_{k}\left(\frac{\alpha-\beta}{2}\right)_{k}}{2^{2 k} k!\left(\frac{1}{2}\right)_{k}} P_{j}^{\left(\frac{1}{\xi}(\alpha+\beta)+k, \frac{3}{3}(\alpha+\beta)+k\right)}(x),}{} \quad k=1,2,3, \ldots, \tag{2}\\
& f_{j, 2 k+1}=\left(\frac{\alpha-\beta}{2}\right) \frac{(-1)^{k}\left(\frac{\beta-\alpha+1}{2}\right)_{k} \frac{\left(\frac{\alpha-\beta+1}{2}\right)_{k}}{k!\left(\frac{3}{2}\right)_{k}} 2^{2 k} P_{j}^{\left(\frac{1}{2}(\alpha+\beta+1)+k, \frac{3}{3}(\alpha+\beta+1)+k\right)}(x),}{} \quad k=0,1,2, \ldots .
\end{align*}
$$

Then consider the matrix

$$
\begin{equation*}
\| f_{j, k}| | \tag{3}
\end{equation*}
$$

where j is the column index and k is the row index, and where $j, k=0,1,2, \ldots$ Note that each row, given by fixed k with $j=0,1,2, \ldots$, represents a true ultraspherical polynomial set multiplied through by a common constant factor.

The result of this paper is that Jacobi polynomials may be formed from the diagonals of array (3), viz.,

$$
\begin{equation*}
P_{n}^{(\alpha, \beta)}(x)=\sum_{j=0}^{n} f_{j, n-j}=\sum_{k=0}^{n} f_{n-k, k} . \tag{4}
\end{equation*}
$$

Received October 18, 1951; in revised form September 1, 1952.

Note that for the special case, $\beta=\alpha$, of the ultraspherical polynomials,

$$
\begin{array}{ll}
f_{j, k}=0 & k=1,2,3 \ldots \tag{5}\\
f_{j, 0}=P_{j}^{(\alpha, \alpha)}(x) &
\end{array}
$$

The arrays corresponding to other special Jacobi polynomials have certain simplifications. For example, in the array for $P_{n}^{(\alpha, \beta)}(x)$ when $\beta=\alpha+2 m$ for m a positive integer, it happens that $f_{j, 2 k}=0$ for $m+1 \leqslant k$, that is, all evennumbered rows after a finite number vanish. Similar results hold for $\beta=\alpha-2 m$, $\beta=\alpha \pm(2 m+1)$.
2. Proof of results (4). First note

$$
\begin{equation*}
f_{0,0}=1=P_{0}^{(\alpha, \beta)}(x) . \tag{6}
\end{equation*}
$$

For $n \geqslant 1$, the result (4) will be proved in the form
(7) $P_{n}^{(\alpha, \beta)}(x)=P_{n}^{\left(\frac{\xi}{3}(\alpha+\beta), \frac{1}{3}(\alpha+\beta)\right)}(x)+\left(\frac{\alpha-\beta}{2}\right) \sum_{k=1}^{n} \frac{\left(\frac{\alpha-\beta+2-k}{2}\right)_{k-1} P_{n-k}^{\left(\frac{\xi}{3}\left(\alpha+\beta+k, \frac{\xi}{\xi}(\alpha+\beta+k)\right)\right.}(x)}{k!}$.

Let the right side of (7) be denoted by $g_{n}(x)$. The remainder of this section will be devoted to showing that $g_{n}(x)=P_{n}^{(\alpha, \beta)}(x)$, for $n \geqslant 1$. By splitting the summation in (7) into even and odd indices and using definition (2), the reader may show easily that

$$
g_{n}(x)=\sum_{j=0}^{n} f_{j, n-j} .
$$

Then (4) will be proven once it is demonstrated that $g_{n}(x)=P_{n}^{(\alpha, \beta)}(x)$.
By using definition (1), it follows that
$g_{n}(x)=\frac{\left(\frac{2+\alpha+\beta}{2}\right)_{n}}{n!} \sum_{j=0}^{n} \frac{(-n)_{j}(1+\alpha+\beta+n)_{j}\left(\frac{1-x}{2}\right)^{j}}{\left(\frac{2+\alpha}{2}\right)_{j}}$
$+\left(\frac{\alpha-\beta}{2}\right) \sum_{k=1}^{n} \sum_{j=0}^{n-k} \frac{\left(\frac{\alpha-\beta+2-k}{2}\right)_{k-1}\left(\frac{2+\alpha+\beta+k}{2}\right)_{n-k}(-n+k)_{j}(1+\alpha+\beta+n)_{j}\left(\frac{1-x}{2}\right)^{j}}{k!(n-k)!\left(\frac{2+\alpha+\beta+k}{2}\right)_{j} j!}$
$=\frac{(-1)^{n}(1+\alpha+\beta+n)_{n}}{n!}\left(\frac{1-x}{2}\right)^{n}+\sum_{j=0}^{n-1}\left[\frac{\left(\frac{2+\alpha+\beta}{2}\right)_{n}(1+\alpha+\beta+n)_{j}\left(\frac{x-1}{2}\right)^{j}}{(n-j)!\left(\frac{(2+\alpha+\beta}{2}\right)_{j} j!}\right.$
$\left.+\left(\frac{\alpha-\beta}{2}\right) \sum_{k=1}^{n-j} \frac{\left(\frac{\alpha-\beta+2-k}{2-}\right)_{k-1}\left(\frac{2+\alpha+\beta+k}{2}\right)_{n-k}(1+\alpha+\beta+n)_{j}\left(\frac{x-1}{2}\right)^{j}}{k!j!(n-k-j)!\left(\frac{2+\alpha+\beta+k}{2}\right)_{j}}\right]$.
Thus

$$
\begin{align*}
g_{n}(x)=\frac{(-1)^{n}(1+\alpha+\beta+n)_{n}}{n!} & \left(\frac{1-x}{2}\right)^{n} \tag{9}\\
& +\sum_{j=1}^{n-1} \frac{(1+\alpha+\beta+n)_{j}\left(\frac{x-1}{2}\right)^{g}}{j!} Z_{n-j},
\end{align*}
$$

where
(10) $\quad Z_{p}=\frac{\left(\frac{2+\alpha+\beta}{2}+j\right)_{p}}{p!}$

$$
+\left(\frac{\alpha-\beta}{2}\right) \sum_{k=1}^{p} \frac{\left(\frac{\alpha-\beta+2-k}{2}\right)_{k-1}\left(\frac{2+\alpha+\beta+k}{2}+j\right)_{p-k}}{k!(p-k)!}, p=1,2,3, \ldots
$$

The functions Z_{p} will be simplified by means of a generating function. From (10), form

$$
\begin{align*}
& \sum_{p=1}^{\infty} Z_{p} t^{p}= \sum_{p=1}^{\infty} \frac{\left(\frac{2+\alpha+\beta}{2}+j\right)_{p} t^{p}}{p!} \tag{11}\\
& \quad+\left(\frac{\alpha-\beta}{2}\right) \sum_{p=1}^{\infty} \sum_{k=1}^{p} \frac{\left(\frac{\alpha-\beta+2-k}{2}\right)_{k-1}\left(\frac{2+\alpha+\beta+k}{2}+j\right)_{p-k} t^{p}}{k!(p-k)!} \\
&=-1+(1-t)^{-j-\frac{1}{k}(2+\alpha+\beta)} \\
& \quad+\left(\frac{\alpha-\beta}{2}\right) \sum_{k=1}^{\infty} \sum_{p=0}^{\infty} \frac{\left(\frac{\alpha-\beta+2-k}{2}\right)_{k-1}\left(\frac{2+\alpha+\beta+k}{2}+j\right)_{p} t^{p+k}}{k!p!}
\end{align*}
$$

or
(12)

$$
\begin{aligned}
\sum_{p=1}^{\infty} Z_{p} t^{p}=- & 1+(1-t)^{-j-\frac{1}{2}(2+\alpha+\beta)} \\
& +\left(\frac{\alpha-\beta}{2}\right)(1-t)^{-j-\frac{1}{2}(2+\alpha+\beta)} \sum_{k=1}^{\infty} \frac{\left(\frac{\alpha-\beta+2-k}{2}\right)_{k-1} t^{k}(1-t)^{-\frac{1}{k} k}}{k!}
\end{aligned}
$$

In (11), (12), and subsequently, it is intended that the branch of the power of ($1-t$) is the one which approaches +1 as t approaches zero.

Next, by splitting into summations over even and odd indices, it follows that
(13)

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{\left(\frac{\alpha-\beta+2-k}{2}\right)_{k-1} u^{k}}{k!} \\
& =u \sum_{k=0}^{\infty} \frac{\left(\frac{\alpha-\beta+1}{2}\right)_{k}\left(\frac{1+\beta-\alpha}{2}\right)_{k}}{\left(\frac{3}{2}\right)_{k} k!}\left(-\frac{u^{2}}{4}\right)^{k}-\sum_{k=1}^{\infty} \frac{\left(\frac{\alpha-\beta}{2}\right)_{k}\left(\frac{2-\alpha+\beta}{2}\right)_{k-1}}{\left(\frac{1}{2}\right)_{k} k!}\left(-\frac{u^{2}}{4}\right)^{k} \\
& =u_{2} F_{1}\left[\frac{\alpha-\beta+1}{2}, \frac{1+\beta-\alpha}{2} ;-\frac{u^{2}}{\frac{3}{2}} ;-\left(\frac{2}{\beta-\alpha}\right)\left\{{ }_{2} F_{1}\left[\begin{array}{c}
\frac{\alpha-\beta}{2}, \frac{\beta-\alpha}{2} ; \\
\frac{1}{2} ;
\end{array}-\frac{u^{2}}{4}\right]-1\right\}\right. \text {, }
\end{aligned}
$$

where, for $\beta=\alpha$, the indeterminate form vanishes. Substituting the results of (13) into (12) gives

$$
\begin{equation*}
\sum_{p=1}^{\infty} Z_{p} t^{p}=-1+(1-t)^{-j-\frac{1}{5}(2+\alpha+\beta)} \cdot Q \tag{14}
\end{equation*}
$$

with

$$
Q={ }_{2} F_{1}\left[\begin{array}{c}
\frac{\alpha-\beta}{2}, \frac{\beta-\alpha}{2} ; \frac{-t^{2}}{\frac{1}{2}} ; 4(1-t)
\end{array}\right]+\frac{\alpha-\beta}{2} \frac{t}{(1-t)^{2}{ }^{2}} F_{1}\left[\frac{\alpha-\beta+1}{2}, \frac{1+\beta-\alpha}{2} ; \frac{-t^{2}}{\frac{3}{2}} ; 4(1-t)\right] .
$$

Using the well-known relation

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=(1-z)^{-a}{ }_{2} F_{1}\left(a, c-b ; c ; \frac{z}{z-1}\right), \tag{15}
\end{equation*}
$$

it follows that

$$
\begin{align*}
Q= & {\left[\frac{(2-t)^{2}}{4(1-t)}\right]^{\frac{1}{2}(\beta-\alpha)}{ }_{2} F_{1}\left[\begin{array}{r}
\frac{\alpha-\beta}{2}, \frac{1+\alpha-\beta}{2} \\
\frac{1}{2}
\end{array}\left(\frac{t}{(2-t)}\right)^{2}\right] } \tag{16}\\
& +\left(\frac{\alpha-\beta}{2}\right) \frac{t}{(1-t)^{\frac{1}{3}}}\left[\frac{(2-t)^{2}}{4(1-t)}\right]^{\frac{1}{2}(\beta-\alpha-1)}{ }_{2} F_{1}\left[\frac{\alpha-\beta+1}{2}, \frac{2+\alpha-\beta}{2} ;\left(\frac{t}{2} ;\left(\frac{3}{2-t}\right)^{2}\right]\right.
\end{align*}
$$

or

$$
\begin{align*}
Q=\frac{(2-t)^{\beta-\alpha}}{[4(1-t)]^{7(\beta=\alpha)}} & \left\{{ } _ { 2 } F _ { 1 } \left[\begin{array}{r}
\frac{\alpha-\beta}{2}, \frac{1+\alpha-\beta}{2} ; \beta \\
\left.\frac{1}{2} ;\left(\frac{t}{2-t}\right)^{2}\right]
\end{array}\right.\right. \tag{17}\\
& +\frac{1}{2}(\alpha-\beta)\left(\frac{t}{2-t}\right){ }_{2} F_{1}\left[\frac{\alpha-\beta+1}{2}, \frac{2+\alpha-\beta}{2} ;\left(\frac{t}{2} ;\left(\frac{3}{2-t}\right)^{2}\right]\right\}
\end{align*}
$$

On expansion,

$$
\begin{align*}
Q=\frac{(2-t)^{\beta-\alpha}}{[4(1-t)]^{1(\beta-\alpha)}}\left[\sum_{n=0}^{\infty} \frac{(\alpha-\beta)_{2 n}}{(2 n)!}\right. & \left(\frac{t}{2-t}\right)^{2 n} \tag{18}\\
& \left.\quad+(\alpha-\beta) \sum_{n=0}^{\infty}-\frac{(\alpha-\beta+1)_{2 n}}{(2)_{2 n}}\left(\frac{t}{2-t}\right)^{2 n+1}\right]
\end{align*}
$$

Thus

$$
\begin{align*}
& Q=\frac{(2-t)^{\beta-\alpha}}{[4(1-t)]^{k(\beta-\alpha)}}\left[\sum_{n=0}^{\infty} \frac{(\alpha-\beta)_{2 n}}{(2 n)!}\left(\frac{t}{2-t}\right)^{2 n}\right. \tag{19}\\
&\left.\quad+\sum_{n=0}^{\infty} \frac{(\alpha-\beta)_{2 n+1}}{(2 n+1)!}\left(\frac{t}{2-t}\right)^{2 n+1}\right]
\end{align*}
$$

or

$$
\begin{equation*}
Q=\frac{\left(\frac{2-t}{2}\right)^{\beta-\alpha}}{(1-t)^{1 / \beta-\alpha)}} \sum_{n=0}^{\infty} \frac{(\alpha-\beta)_{n}}{n!}\left(\frac{t}{2-t}\right)^{n} . \tag{20}
\end{equation*}
$$

The series in (20) represents a binomial expansion, and (20) becomes

$$
\begin{equation*}
Q=(1-t)^{\frac{1}{2}(\beta-\alpha)} . \tag{21}
\end{equation*}
$$

The result of (15)-(21) changes (14) into

$$
\begin{equation*}
\sum_{p=1}^{\infty} Z_{p} t^{p}=-1+(1-t)^{-j-1-\alpha} \tag{22}
\end{equation*}
$$

Expanding the right side of (22) gives

$$
\begin{equation*}
\sum_{p=1}^{\infty} Z_{p} t^{p}=\sum_{p=1}^{\infty} \frac{(1+\alpha+j)_{p} t^{p}}{p!} \tag{23}
\end{equation*}
$$

and thus

$$
\begin{equation*}
Z_{p}=\frac{(1+\alpha+j)_{p}}{p!} \tag{24}
\end{equation*}
$$

Substitute this in (9) to find

$$
\begin{align*}
& g_{n}(x)= \frac{(-1)^{n}(1+\alpha+\beta+n)_{n}\left(\frac{1-x}{2}\right)^{n}}{n!} \tag{25}\\
& \quad+\sum_{j=0}^{n-1} \frac{(1+\alpha+\beta+n)_{j}\left(\frac{x-1}{2}\right)^{j}(1+\alpha+j)_{n-j}}{j!(n-j)!} \\
&= \frac{(-1)^{n}(1+\alpha+\beta+n)_{n}\left(\frac{1-x}{2}\right)^{n}}{n!} \\
& \quad \quad+\frac{(1+\alpha)_{n}}{n!} \sum_{j=0}^{n-1} \frac{(1+\alpha+\beta+n)_{j}\left(\frac{1-x}{2}\right)^{j}(-n)_{j}}{j!(1+\alpha)_{j}} \\
&= P_{n}^{(\alpha, \beta)}(x),
\end{align*}
$$

as desired. This completes the proof of (7).

Wayne University

