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ON THE INTERSECTION OF A CLASS OF MAXIMAL 
SUBGROUPS OF A FINITE GROUP 

N. P. MUKHERJEE AND PRABIR BHATTACHARYA 

1. Introduction. Of late there has been considerable interest in the study 
of analogs of the Frattini subgroup of a finite group and the investigation 
of their properties, particularly their influence on the structure of the 
group, see [2-11], [14-16] and [18]. Gaschutz [11] and more recently 
Bechtell [2] and Rose [18] have considered extensively the intersection of 
the family of all non-normal, maximal subgroups of a finite group. 
Deskins [8] has discussed the intersection of the family of all maximal 
subgroups of a finite group whose indices are not divisible by a given 
prime. Bhatia [7] considered the intersection of the class of all maximal 
subgroups of a given group whose indices are composites. In this paper we 
investigate the intersection of another class of maximal subgroups and its 
relationship with the structure of the group. The subgroup we consider 
here contains the Frattini subgroup and also the two subgroups 
introduced in [8] and [7]. 

Let p be any given prime. Let F(G) denote the family of all maximal 
subgroups of a given group G whose indices are both composite and also 
co-prime top. Let S(G) denote the intersection of the members of F(G). If 
F(G) is empty, then we define S(G) = G. We consider the structure 
of S(G) and its relationship with the properties of G. A number of 
characterisations of S(G) and its relationship with the properties of G are 
given. It is shown that S(G) is solvable if p is the largest prime dividing the 
order of G. In general, S(G) is not solvable and may turn out to be a 
simple group. For example, consider the group G = PSL(2, 7). It is well 
known that the maximal subgroups of PSL(2, 7) can have indices only 7 
and 8. Therefore, the family 

{M:[G:M]2 = 1 and [G:M] is composite} 

is empty. Hence we have that S(G) = G itself which is a simple group. 
However, we prove that S(G) is solvable if G is ^-solvable. We use 
standard group theoretic notation as in [12] and [13]. If M ^ G, then 
[G:M]p denotes the/7-part of [G:M]. 

Definition. Let G be a group. Let p be a given prime. Define 

^ ( G ) = n{M:M is a maximal subgroup of G, [G:M]p = 1} 
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L(G) = n{M:M is a maximal subgroup of G, [G:M] is 
composite} 

S(G) = n{M:M is a maximal subgroup of G, [G:M]p = 1 and 
[G:M] is composite}. 

In case G has no maximal subgroup M such that [G:M] = 1, we define 
^ ( G ) = G. Similarly we set L(G) = G if every maximal subgroup of G is 
of prime index. Likewise, S(G) is defined to be G if there does not exist 
any maximal subgroup of composite index which is not co-prime to p. 

In [8], 0 ( G ) is defined and several important properties are mentioned. 
The subgroup L(G) is considered in Bhatia [7] who shows that it is 
supersolvable and further that if G/L(G) has the Sylow tower property, 
then G has the same property; both ®p(G) and L(G) are contained in S(G) 
and these three subgroups are characteristic subgroups of G. Moreover, if 
p does not divide the order of G, then we have that S(G) = L(G) and also 
that G is supersolvable if and only if G = S(G). Unlike L(G), the 
subgroup S(G) has neither the Sylow tower property nor is in general 
supersolvable. For example, consider when G = Sym(4) and/? = 2. Since 
the intersection of all maximal subgroups in the family F(G) is empty in 
this particular case, we have that S(G) = Sym(4) which is neither 
supersolvable nor is Sylow towered. 

We consider further the subgroup S(G) corresponding to two distinct 
primes. In this context, the subgroup S(G) corresponding to the prime/? 
will be denoted by S (G) and similarly Sq(G) denotes the subgroup S(G) 
corresponding to the prime q. If H denotes the intersection of SAG) and 
S (G), we show that H is supersolvable if either G is /7-solvable or 
g-solvable. If either p or q happens to be the largest prime dividing the 
order of G, then H is supersolvable without any conditions on G. Hence, G 
is supersolvable if and only if G = // , that is G = S (G) = S (G). This 
fact illustrates vividly how some purely set theoretic conditions for a 
group may control the structure of the group and force it to be 
supersolvable. 

2. Preliminary results. 

LEMMA 1. [1, p. 118]. IfN is a minimal normal subgroup of a group G then 
either N is elementary abelian, or N is the direct product of isomorphic copies 
of a simple group. Further if N is abelian and M is any maximal subgroup of 
G such that N g M, then G = MN and M n N = <1>. 

We shall use the following generalisation of the "Frattini Argument" to 
solvable groups whose proof which we omit is a direct consequence of 
P. Hall's extended Sylow theorems. 

LEMMA 2. Let N be a normal, solvable subgroup of G, let TT be a set of 
primes. If H is a Hall m-subgroup of N, then we have G = NG(H)N. 
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The following result will be useful in some proofs using induction 
arguments. 

PROPOSITION 3. Let K*<\ G. Then 

(i) S(G)K/K ç s (G/K) 

(ii) L(G)K/K ç L(G/K) 

(iii) <fr(G)K/K Q <&(G/K) 

(iv) <&p(G)K/K Q %(G/K). 

Proof, (i) Write G = G/K. Let M be a maximal subgroup of G of 
composite index such that [G:M] = 1. Now M = M IK where M is a 
maximal subgroup of G containing K. Therefore 

[G:M]p = [G:M]p = 1. 

Let J be the intersection of all M corresponding to each M of composite 
index such that [G:M]p = 1. Then S(G) Q J and K Q J and therefore 
S(G)/K Q J/K It is easy to show that J/K Q S(G/K) and so (i) follows. 
The proofs of (ii) and (iii) are similar to the above argument. 

COROLLARY 4. Let K <3 G. 

(i) IfK Q S(G) then S (G/K) = S(G)/K 
(ii) IfK ç L(G) then L(G/K) = L(G)/K 

(iii) IfKQ <yG) then %(G/K) = %(G)/K 

For the subgroup S(G) we prove the following result about the structure 
of its Sylow subgroups. 

PROPOSITION 5. Let p be the prime taken in the definition of S(G). Then 
(i) if p divides the order of S(G) andp is moreover the largest prime dividing 
the order of S(G) then any Sylowp-subgroup P ofS(G) is normal in G. (ii) If 
p does not divide the order of S(G) then if Q e Syl (S(G) ) where q is the 
largest prime dividing the order of S(G) we have Q' O G. 

Proof We denote S(G) by S for convenience, (i) Suppose if possible 
that P is not normal in G. Then NG(P) ¥= G and by the Frattini argument, 
G = SNG(P). Let M be a maximal subgroup of G containing NG(P). 
We have that G = SM. Now NG(P) Q M and by the Sylow theory, 
[G:NG(P) ] = 1 H- kp for some integer k and consequently [G:M] = 1 + 
sp for some non-zero integer s. We observe that [G:M] cannot be 
composite. For, if so then as [G:M] = 1 it would imply that S Q M and 
therefore G = M, a contradiction. So, [G:M] = 1 + sp is a prime dividing 
the order of S which is a contradiction to the fact p is the largest prime 
dividing \S(G) |. Hence P O G. (ii) Suppose that Q is not normal in G. By 
the Frattini argument, G = SNG(Q). Let M be a maximal subgroup of G 
containing NG(Q). Then G = SM and [G:M] = 1 + kq = r, say. Arguing 
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as in (i) we have that r must be composite and also that/? divides r. Since r 
divides the order of S, we then have that p divides the order of S, a 
contradiction to the hypothesis. Hence Q O G. 

We recall the definition that a group G has the Sylow tower property if 
every homomorphic image of G has a normal Sylow subgroup. 

COROLLARY 6. (i) If G satisfies the hypothesis of Proposition 5 (i), then 
S(G)/P has the Sylow tower property; (ii) If G satisfies the hypothesis of 
Proposition 5 (ii) then S(G) has the Sylow tower property. 

THEOREM 7. (i) ®p(G) is solvable. 
(ii) If p does not divide the order of <bp(G), then $p(G) = 0(G). 

(hi) 0 ( G ) = PT where P is a normal Sylowp-subgroup of$>(G) and T is 
a nilpotent complement of P. 

(iv) <S> (G)/P is nilpotent. (Thus Op(G) is meta-nilpotent.) 

Proof. We distinguish two cases. 
Case 1. p does not divide the order of 0 ( G ) . Let M be a maximal 

subgroup of G. If 0 ( G ) is not contained in M, then G = MOp(G). 
Then clearly, [G:M]p = 1. So 0 ( G ) Q M, a contradiction. Therefore 
O (G) is contained in every maximal subgroup of G and consequently 
%(G) = 0(G) proving (ii). Now (i), (iii) and (iv) follow immediately 
in this case from the properties of 0(G). 

Case 2. p divides the order of 0 ( G ) . Let P be a Sylow p-subgroup of 
<&p(G). We claim that P <3 G. For, suppose that P is not normal in G. Then 
by the Frattini argument 

G = NG(P)%(G). 

Let M be a maximal subgroup of G containing NG(P). It follows that 
G = M$p(G). Since P is a Sylow ^-subgroup of 0^(G) and P is contained 
in M, we now get that [G:M] = 1. This implies that 0 ( G ) Q M and 
consequently 

G = MO^(G) = M, 

a contradiction. Hence we conclude that P is normal in G. So by the 
Schur-Zassenhaus theorem we have that 0 ( G ) = PT where T is a 
/7-complement. By Corollary 4 (iii) we have that 

<^(G/P) = %(G)/P - PT/P 

which is isomorphic to T. Since p does not divide the order of T, we have 
by using Case 1 that 

<&p(G/P) = 0(G/P). 

Since a Frattini subgroup is always nilpotent, it follows that 0(G/P) is 
nilpotent and so T is nilpotent, proving (iii) and (iv). Further, it follows 
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that Q>p(G)/P is nilpotent (and so solvable). Therefore &p(G) is solvable 
since P is solvable, proving (i). 

3. Conditions implying solvability of S(G). 

THEOREM 8. Let p be the prime taken in the definition ofS(G). Then (i) if 
p is the largest prime dividing the order of G then S(G) is solvable; (ii) if G is 
p-solvable, then S(G) is solvable. 

Proof (i) We use induction on the order of G. We distinguish two cases: 
Case 1. S(G) ¥= G. Let N be a minimal normal subgroup of G contain

ed in S(G). By induction on GIN, we have that S(G)/N is solvable. 
For convenience we denote S(G) by S. If W is another minimal 
normal subgroup of G contained in S, then again SIW is solvable and so 
S{W n N) = S is solvable. So, we may suppose that N is the unique 
minimal normal subgroup of G which is contained in S. Further, let B be 
another minimal normal subgroup of G. Then TIB, the intersection of all 
maximal subgroups of GIB, which have composite indices and which are 
also prime to p, is solvable by applying the induction hypothesis. But 
SB/B ç TIB. Therefore 

SBIB = S/(S D B) = S 

is solvable; we may now assume that TV is the unique minimal normal 
subgroup of G. 

Let L be a maximal subgroup of G such that [G:L]p = 1. Now we claim 
that N Q L. Suppose that N i L. Then we get that G = LN. Also, [G:L] 
cannot be composite, for if so then SQL implying that N Q L and so 
G = LN = L, a contradiction. Let [G:L] = t, a prime. Now we note that 
L must be corefree otherwise N Q L, contradicting our supposition. Now 
by representing G on the / cosets of L, it follows that the order of G divides 
t\ and consequently / must be equal to q, the largest prime dividing the 
order of G. Since / divides \S\, t = /?, a contradiction. Hence, we must have 
that N Q L. Therefore, N Q ®P(G) and so N is solvable since $p(G) is 
solvable by Theorem 7 (i). Then, together with the fact that S(G)IN 
is solvable, it implies that S(G) is solvable proving the result. 

Case 2. S(G) = G. This implies that if M is a maximal subgroup of G 
such that [G:M] = 1 then [G:M] must be a prime; let M be such a 
maximal subgroup and let [G:M] = t, a prime. Now by representing G on 
the / cosets of M, we get that the core of M is nontrivial as otherwise the 
order of G must divide t\ which is not possible because t ¥= p. Thus G is 
not a simple group. Now by the same argument as in Case 1, we have a 
unique minimal normal subgroup H in G and also H Q S(G). Since the 
core of H in M is non-trivial, H Q M. Hence, we have that H Q $>p(G). So 
H is solvable since ®p(G) is solvable by Theorem 7 (i). Now by induction 
hypothesis, S(G)IH = GIH is solvable. Hence, we get that S(G) is 
solvable proving the result. 
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(ii) We use induction on the order of G. If TV is a minimal normal 
subgroup of G contained in S(G), then by the same argument as in (i), 
Case 1, we have that TV is the unique minimal normal subgroup of G, 
otherwise, the result holds. Now since G is/7-solvable, TV is either a/?-group 
or a //-group. If TV is a /?-group, then TV is solvable because by induction 
S(G)/N is solvable. Now suppose that TV is a/?'-group. If TV is contained in 
every maximal subgroup whose index is prime top, then TV Q O^(G) and 
so TV is solvable since 0 ( G ) is solvable by Theorem 7 (i). Hence, it will 
follow that S(G) is solvable. We may now assume that TV <2 M for some 
maximal subgroup M such that [G:M] = 1. Then G = NM. We note that 
M is core free. Again [G:M] must be a prime because the two facts 
that [G.M] is composite and [G:M] = 1 would imply that S(G) Q M and 
so TV Q M. This gives that G = MN = M, a contradiction. Let [G:M] = r 
where r ¥= p is a prime. Now by representing G on the cosets of M in G, it 
now follows that the order of G divides r\. Hence r = q where q is the 
largest prime dividing the order of G. 

Further we have that TV is contained in every maximal subgroup K such 
that [G:K]q = 1. For, if there is such a K which does not contain TV, then 
G = KN. Now since TV is a/?'-group, we have [G:K]p = 1 and moreover if 
[G:K] is composite then it will follow that TV ç: K, a contradiction. 
So [G:K] = s, a prime and s ¥= q since [G:K]q = 1. Now by representing G 
on the cosets of AT in G as before, we get that the order of G divides s\ 
which is not possible since then q divides s\, a contradiction. Hence it 
follows that N Q K, that is, TV Q ®q(G) and so TV is solvable using 
Theorem 7 (i). As in Case 1 this now implies that S(G) is solvable. 

It is a well known result of Huppert (see for example [17, 9.45, p. 268] ) 
that a group G is supersolvable if and only if G/<I>(G) is supersolvable. The 
following theorem is a generalisation of this and we shall use it later in the 
proof of Theorem 10. 

THEOREM 9. Let G be a group containing a normal subgroup H which 
contains 0(G). Then H is supersolvable if and only if / / / 0 (G) is 
supersolvable. 

Proof. If H is supersolvable then obviously / / / 0 ( G ) is supersolv
able. Now, suppose that / / / 0 (G) is supersolvable. We may assume that 
0(G) ^ (1) as otherwise the result holds trivially. We use induction on 
the order of H. We split the proof into three steps. 

Step 1. Suppose that 0(G) is a subgroup whose order is a composite 
number. Then, letpl9p2 be two distinct primes dividing the order of 0(G). 
Let P j , P2 be Sylow pl and Sylow p2 — subgroups respectively of 
0(G). Since 0(G) is nilpotent, Px and P2 are characteristic subgroups 
of 0(G). Then it follows that P}, P2 are normal in G. So, we have that 

(///P1)/0(G/P1) = (H/Px)/(Q(G)/Px) = / / /0(G) 
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is supersolvable by the hypothesis. Therefore by the induction hypothesis 
we get H/Px is supersolvable. Similarly we get that H/P2 is supersolvable. 
Therefore, 

H/(Pl n P2)~ H 

is supersolvable, proving the theorem. 
Step 2. Now, we consider the case when 0(G) is a subgroup of order ps 

where p is a prime and s is an integer, s ^ 1. For convenience let us write 
p = 0(G). Assume, first, that 0(P) # (1). Then we have that 

( # / 0 ( / > ) ) / 0 ( G / 0 ( P ) ) = (///O0P))/(O(G)/O(/>)) = / / / 0 (G) 

is supersolvable. So by induction, we get that H/$(P) is supersolvable. 
Thus we have that 

(///O(P) ) / (0 ( / / ) /0 (P) ) = H/<&(H) 

is supersolvable. Consequently, H is supersolvable using a result of 
Huppert (see for example, [17, 9.45, p. 268] ) and the proof is complete. 

Now, we consider the possibility that O(P) = (1). Then we have that 
P = 0(G) is an elementary abelian/?-group. Note that H is solvable since 
/ / /0 (G) is supersolvable and 0(G) is nilpotent. 

Step 3. 0(G) is an elementary abelian /?-group. Let S&- be the 
supersolvable residual of / / . Since S&- Q P, S&- is abelian. Since H is 
solvable we have by [13, VI, Satz 7.15, p. 703] that H = S&T where 
S&r n T = (1) and T is supersolvable. Moreover if NG(T) ¥= G then 
choose a maximal subgroup M of G containing NG(T). For x G G, r x c / / 
and by [13, VI, Satz 7.15, p. 703] we have that Tx = Ts for some s (= H. 
Now xs~l e NG(T) implies that G = NG(T)H. Therefore we get that 

G = NG(T)H = ^ ( T ) ^ =MSp=M 

since 5 ^ c 0(G) ç M. However, this is a contradiction to the fact that 
G ¥= M. Therefore we have that NG(T) = G and so T is normal in G. 
Consequently H = S^ X T and so / / is supersolvable, being the direct 
product of two supersolvable groups. 

Hence the proof of the theorem is now complete. 

Finally, we consider the subgroup S(G) corresponding to two distinct 
primes, the subgroup S(G) corresponding to the primes p and q are then 
denoted by S (G) and Sq(G) respectively; when only one prime/? is under 
consideration we write as before S(G) for S (G). We have given an 
example in Section 1 that S(G) is not in general supersolvable, or even 
solvable. However, we have 

THEOREM 10. Let p, q be two distinct primes dividing the order of a 
group G. Suppose that G is either p-solvable or q-solvable. Then we have that 
S (G) n Sq(G) is supersolvable. 
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Proof. Let H denote the intersection of Sp(G) and Sq(G). By Theorem 
8 (ii) we have that H is solvable. Using induction on the order of G we now 
prove that H is supersolvable. Let TV be a minimal normal subgroup of G 
contained in H. By the induction hypothesis and Corollary 4, we get 
that 

Sp(G/N) n Sq(G/N) = H/N 

is supersolvable. Now if X is another minimal normal subgroup of G 
contained in H, then again we have that H/X is supersolvable and 
consequently ///(TV n X) = H is supersolvable and we are done. So we 
may suppose that TV is the unique minimal normal subgroup of G 
contained in H. Since H is solvable, TV is elementary abelian. (We observe 
that if TV is cyclic then the theorem follows now immediately from the fact 
that H/N is supersolvable.) 

Let M be any maximal subgroup of G. If TV is not contained in M, then 
G = MTV. Since TV is abelian we have from Lemma 1 that M n TV = (1). 
Therefore [G:M] = |TV|. Suppose if possible that [G:M]p = 1. Then [G:M] 
must be a prime since if [G:M] is composite, then by the definition of 
Sp(G) it will follow that N Q M and we then obtain that G = M, a 
contradiction. Thus \N\ = [G:M] is a prime implying that TV is cyclic and 
so the theorem follows by the remark made at the end of the last 
paragraph. Therefore, we may now assume that [G:M] ¥= 1 and so TV is an 
elementary abelian/7-group. Now, if [G:M] = 1 then the result will follow 
by arguing as in the case when [G:M] = 1. Thus we must have that 
[G:M]q ^ 1. Now, this implies q divides the order of TV which is not 
possible since TV is an elementary abelian /?-group whereas p and q are 
distinct primes. It now follows that TV is contained in every maximal 
subgroup of G. So TV Q $(G). Since clearly 0(G) Q H, it now follows 
that 

H/<fr(G) = (H/N)/(<b(G)/N). 

Since H/N is supersolvable we get now that H/<b(G) is supersolvable. 
Using Theorem 9 it follows that H is supersolvable proving the theorem. 

Using Theorem 8 (i) and arguing as in the proof of Theorem 10, we get 
the following result whose proof we omit. 

THEOREM 11. Let G be a group andp, q be two distinct primes dividing the 
order of G, one of them being the largest prime divisor of the order of G. Then 
H = S (G) Pi S (G) is supersolvable. 
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