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Abstract

In this paper we study the space of multipliers M(r, s : p , q) from the space of test functions
4>rj(G), on a locally compact abelian group G , to amalgams (if , lq)(G); the former includes
(when r = s = oo) the space of continuous functions with compact support and the latter are
extensions of the LP(G) spaces. We prove that the space M(oo : p) is equal to the derived
space (LP)Q denned by Figa-Talamanca and give a characterization of the Fourier transform
for amalgams in terms of these spaces of multipliers.

1991 Mathematics subject classification (Amer. Math. Soc): 43 A 22.

1. Introduction

The space of test functions Ooos (1 < s < oo), on the real line, was originally
defined by H. Holland [10]. The definition of Or5(G) on a locally compact
abelian group G, is due to Bertrandias and Dupuis [2]. The amalgam spaces
(If, lq) (1 < p, q < oo) are Banach spaces of functions which belong
locally to LP(G) and globally to lq. If p = q then {Lp, lq) is the usual
LP{G) space. The purpose of this paper is to study the space M(r, s : p, q)
(1 < r, s, p, q < oo) of multipliers from ®rs(G) to (Lp , 19){G). We prove
the following.
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98 M. Torres de Squire [2]

1. For 1 < r, s, p < oo and 1 < q < 2, the space M(r, s : p, q) is
trivial.

2. For r = s = oo and p = q, the space M(oo : p) is equal to the
derived space (Lp)0 defined by Figa-Talamanca in [6].

3. for r = s — oo and 1 < r, p, q < oo, the space M{r, s : p, q)
contains or is equal to a set of Fourier transforms of measures. In
particular a measure ft is the Fourier transform of a function in Lp ,
for 1 < p < 2, if and only if /z is a multiplier in M{p : oo).

2. Notation and preliminary results

Throughout this paper G is a locally compact abelian group with dual
group F . The elements of T are denoted by x and we write [x, x] instead
of x(x) (x e G). As usual CC(G) (C0(G)) is the space of continuous func-
tions on G with compact support (which vanish at infinity). For a function
/ o n G, we use f to denote the reflection f(y) = f(-y), and for x in
G, the translation operator rx is defined by rxf{y) = f{y - x). If // is a
measure on G, then its reflection / / and its translation txfi are defined by
M(f) = Mf) and xxfi{f) = n(rxf)(f e CC[G)) respectively. The pairing
between a linear space B and its dual B* is given by ( / , a) — a(f) for a
in B*, and / in B . We use J. Stewart's definition of the amalgam spaces
{Lp,lq){G) = {Lp,l"), (C0,l")(G) = ( C 0 , / 9 ) , (Lp,c0)(G) = (Lp, c0)
(1 < P,Q < oo) and the space of measures Mq(G) = Mq(\ < q < oo)
[12]. We assume all the properties of inclusion, duality, and convolution
product of these spaces, Holder and Young's inequalities, and the Hausdorff-
Young theorem for amalgams as given in [14], and all the properties of the
Segal algebra S0(G) given in [4] and [14]. We denote by A any of the
amalgams (Lp, / " ) , (Lp, c0) (1 < p < oo), (CQ, /s)(l < 5 < oo). We use
H. Feichtinger's definition of the Fourier transform as an element of S0(G)*
[4, 14 Definition 2.3]. We write fi (fi) for the Fourier transform (inverse
Fourier transform) of an element ft of S0{G)*(S0(T)*). If M is a subset
of S0(G)*, then M~ denotes the set of Fourier transforms of element M.
We let JfT be the space of transformable measures [1], and as usual p is
the conjugate of the number p. We finish this section with two preliminary
results.

PROPOSITION 1. If a e S0(G)* and h € S0(G), then a * h is the element
of L°°(G) given by (f, a * h) = (f*h,a) for all f in Ll{G). Hence
(f,o*h) = (h,o*f)forallf in LX(G).
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PROOF. By [14, Proposition 2.8], o*h is in S0(G)* and for g in S0(G)
we have that

\(g,o*h)\ = \(g*h,a)\<\\a\\\\h\\So\\g\\v

The conclusion follows from the density of S0(G) in LX(G) [ 14, Proposition
2.5 and (2.5)].

THEOREM 2. Let S be any of the spaces (Lp, /')((/) (1 < p < oo) or
( C o , / ' ) . / / T : S1 — S0(G)* « a //wear bounded operator such that T(f*g) =
Tf * g for all f and g in S, then there exists a unique fi in S0(G)* such
that Tf = n*f for all f in S.

Hence {Tf)" = af for all f in S, where a = p..

PROOF. The proof is essentially the same as [14, Theorem 3.2]. Observe
that the functions Xa defined in the proof of [14, Theorem 3.2] belongs to
S0(G) [13, Lemma 6.4] and S0(G) is included in (Co, l°)(G). The second
statement follows from [14, Proposition 2.8].

3. The space of multipliers

The space of test functions ®rs{G) = (j)rs (1 < r, s < oo), as defined in
[15, Definition 3.1] consists of continuous functions with compact support
<p such that its Fourier transform ip belongs to (Co, /*)(F). It is normed
by M\\rs (see [14, (1.9)]). The duality between <&rs(G) and its Banach dual,

MS,(T) if r = oo, ( / / ' , ls')(T) if r is finite [2, §2 c], [15, Remark 3.2ii)]
will be denoted by ({<p, n)), hence

(1) ({<p,n))

for f i e O r s , n e MS,(T) if r = oo, pe {Lr>, ls'){T) if r < oo. Clearly,
as sets, Ori is equal to O ^ , and as normed spaces O ^ is continuously
embedded into O r j . The space O^j is dense in S0(G) [123, Lemma 6.4;
5, p. 275] and it is the smallest of all the spaces O r i .

DEFINITION 3. A multiplier from Q>rs{G) (1 < r, s < oo) to the amalgam
A is a bounded linear operator which is translation invariant, that is, for any
xeG, TXT=TTX.

The space of multipliers will be denoted by M(r, s : p, q) if A = (Lp ,1"),
by M(r,s:oc,q) if A = (C o , I"), and by A T ( r , 5 : p , o o ) if A = (Lp , c0).
If r = s or p = q, then we write M(r : q).
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If T is a multiplier from Q>rs to A , then its adjoint T' is a bounded linear
operator from A* to O*s, and by (1) we have for g e A* and q> e <£>rs that

(2) / cp{-x)dT'g{x) = ((<p, T'g)) = {Tv,g)= [ T(p(x)dg'(x).
Jr JG

We use this to prove that T commutes with convolution.

PROPOSITION 4. Let T be in M(r, s :p, q) (I < r, s, p, q <oo). Then
for all <p and y/ in <t>rs we have T(<p * y/) = Tip * y/.

PROOF. Let g be in A*. By (2) and Fubini's theorem we have that

{T(p*y/,g)= I I T<p(x-s)y/(s)dsdg'(x)
JG JG

= I v(s)((?s<P,T'g))ds= f (p{-x)yj{-x)dT'g{x)
JG JT

If T is in M(r, s : p, q) (l<r,s,p,q<oo),xeG,geA* and
q> € <Prs, then as in the previous proof

((<P, T ' r x g ) ) = (Txx<p , g ) =

Hence

(3) x

If F is the Fourier transform on O^ and T is multiplier in M{r, s, :
p, q) (I < r, s, p, q < oo), then by (2), Proposition 4, and [14, Proposi-
tion 2.5, 2.8] the composition of F and T1 is a bounded linear operator
which commutes with convolution. That is, for g and / in (if , ll)(G) if
1 < p < oo and in (Co, /')((?) if p = 1 we have that

FT\f*g) = FT'f*g.

This together with Theorem 2, Proposition 4, and [14, Remark 2.4 ii)] implies
that there exists fi e S0(G)*, hence a unique a € S0(F)*, such that

(4)

(5)

Moreover, since S0(G) is included in (If , / ' ) and (Co, / ') we have by
Proposition 1, (5), and [14, (1.9)] that fi* f is a transformable measure for
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[5] Multipliers from spaces of test functions to amalgams 101

all / in S0(G). Hence by [1, Corollary 3.1], if <p e ®rs{G), then (p belongs
to Ll(T'f) and therefore

<p(x)n*f(x)dx= [<p(-x)d(T'f)(x).
JT

[
JG

By (1) and Proposition 1 we conclude that

for all / in S0(G).
By the density of S0(G) in A, and [14, Theorem 1.4], we conclude that

for all (f> e <J>ri

(6) Tq> = n*(p.

From (4) and (5) and the fact that Or i is included in the amalgams

{If', / ' ) and (Co, / ' ) we have that

Ttp = FT'<p and ( 7 » ~ = t'q> for all <p e <£„.

PROPOSITION 5. Let T be in M(r, s : p, q) {1 < r, s, p, q < oo). The

functional a in S^Y)* associated to T1 in (5) belongs to M^T). Moreover,
a belongs to

1. ( L 1 , / ° ° ) ( r ) if either r is finite or \ < q < 2 .
2 . M2{T) if r = s = oo .
3. ( L 1 , / 2 ) ( r ) if r - 5 = oo and l<q<2.
4. (z/ , /°°)(r) if r = 2 and r is finite.
5. (Z/ , /°°)(r) if\<q<2and2<p,s<oo.

PROOF. We take E a compact subset of T, h a continuous function with
compact support contained in i s , and g a function in ^^yiG) such that g
is in CC{G) and g = 1 on £ [12, Theorem 3.1]. By [14, (2.6] we have that

where CE is a constant depending on E.

Therefore a is a measure of T by [5, Theorem Bl; 11, Theorem 5.1.4].
Now for /? in / the function Tgg is equal to one on Lg , (I and L» as

in [14, Remark 1.3]) and ?([$,. ]g) = axpg belongs to MS,(T) [14, (1.9)],
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hence

/ U \rfig\(x)d\a\(x)}

and therefore a is a measure in Mx (F ) . To prove 1 we take a compact
subset K of F with Haar measure zero, and a function <p in Q>rs(G) such

that 0 = 0 on K. If r is finite, then atp = T'tp is a function in (Lr , Is )(F)
and we have that

a(K) = f <p(x)do(x) = f T'^x)d(x) = 0.
JK JK

Hence a is absolutely continuous with respect to the Haar measure on F
and we conclude from [3, Chapter V] that a belongs to (L1, /°°)(r). If
1 < Q < 2 , then by (6) and [14, Proposition 2.8, Remark 2.7] we have
that af = (7>)~ is a function on T. As before this implies that a is in

To prove 3 we note that O^ is equal to O ^ as sets, and by (5), for any
q> e O ^ , the measure o<p belongs to M^F) that is, a is a Fourier multiplier
on O^j and by [15, Theorem 6.15], a is in M2(T). Part 4 follows from 1
and 2.

Now, if r is finite and s = 2, then aQ belongs to (1 / , / )(F) for all
(p € Orl. Hence vo(j> is in L\F) for any u in (/r, /2)(F).

Again by [15, Theorem 6.1], va belongs to (Ll, 12)(T) and by the con-

verse of Holder's inequality a is in (Lr , /°°)(r).

Part 5 is similar to 4; note that a<p — (T(p)~ belongs to (L9 , /2)(F) for
all <p €®rs.

From (6) and Proposition 2.4 we see that M{r ,s:p,q) (1 < r, s, p, q <

oo) is isometrically isomorphic to the set of n e S0(G)* such that fi is in
M^T) if r = oo and in (L , /°°)(F) if r is finite, and norm equal to

We now use the concept of set of uniqueness, to show that for 1 < q < 2,
(1 < r, s, p < oo) the space M(r, s :p, q) is trivial (cf. [6, Theorem 3]).

DEFINITION 6. A subset E of F is a set of uniqueness for (Lp, 1"){G)
(1 < P, q < oo), if for any / in (if , 19)(G) such that / vanishes outside
E, then / = 0.

Sets of uniqueness for (if, lq)(G) (1 <p,q<2) always exists [8, page
133], and also for (Lr, l")(G) (2 < r < oo, 1 < q < 2) because (Lr, I") c
(If, I9) for 1 < p < 2 < r < oo.
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THEOREM 7. If I < p < oo, 1 < q < 2 and f is a function on V such
that f<p belongs to (Lp, lq){G)~ for all <p e CC(T). Then / = 0 locally
almost everywhere.

PROOF. Suppose that / does not vanish locally almost everywhere. Then
there exists a compact set K of nonnegative measure such that / does not
vanish almost everywhere on K. Let y/ be a continuous function with
compact support such that y/ = 1 on ^ . Then y/f does not vanish locally
almost everywhere. Since y/q> is in CC(F) for all <p e CC(T), it follows
that y/(pf belongs to (Lp, l")(G)~ for all <p e CC(T). Thus without loss
of generality we can assume that / vanishes off some compact set K of
nonnegative measure.

If p = q = 1, then <pf is in Ll(G)~ for all q> e Cc , so q>f' = g for some
g € LX{G). Since cpf is in L™ and Z^° c (L2, I1), the function g belongs
to L1 D (L°° , I2), then by the Riesz-Thorin theorem [13, Theorem 5.6; 10,
Theorem 5], we have that g is in (Lp, I9) for some fixed 1 < p < oo,
1 < q < 2, so we can further assume that tpf belongs to (Lp, lq){G)~ for
some fixed l < p < o o , 1 < q < 2.

If p = oo and q — 1, then as above g e (L°° , / ') and <pf is in L2(T),
so g is in (L°°, I1) n L2 . By the same argument we can assume that q>f is
in ( L p , lq)(G)~ f o r s o m e fixed 2<p < o o , \<q<2.

If q> is a function in CC(T) such that g> = 1 on K, then qtf = f, hence

/ is in [Lp, lq)(G)~ and therefore / is a function in Lq with compact
support, because / vanishes off K. Thus / belongs to L (F).

Let S be the map defined on CC(T) by (S<p)~ = q>f. An application
of the Closed Graph Theorem shows that 5 restricted to CC(E), for E
a compact subset of V, is continuous. Now we take E a compact subset
of F and {<pn} a sequence in CC{V) such that <pn = 1 on £ for all n,
0 < <Pn(x) < 1 for all Jc in F , and the support of each tpn is equal to
E, with En+l c En and £ = nisn. Hence {<pn} c CC(E{) and converges
pointwise to XE > t n e characteristic function of E. Since £n + 1 c En for
all n , there is a constant C £ , depending on Ex such that \\<pn\\ < CE for
all n. Hence ||5pn||p9 < H^JI^ < CE; that is, {S<pn} is a normed subset
of (Lp ,lq), and therefore it has a weakly convergent subset {Sq>k} . Let g

in (Lp, /") be such that lim(Syfe , h) = (g, h) (he (Lp , lq')(T)). Since
\<Pkf\ < I/I on T, we have that for h e CC(T)

(S<pk , h) = lim((S<pkr, k) = l im{^/ , h) = (XE , h) = ((xEfr, h).

We conclude that (xEf)~ = 8 • ^ u t ^ E is a subset for K and a set of
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uniqueness for (if, lq), then this is a contradiction because %Ef does not
vanish almost everywhere on E.

PROPOSITION 8. If fi is a multiplier in M(r, s : p, q) for 1 < r , s, p, <
co, 1 < q < 2, then

fih e (Lp, l")(Gr for all h e CC{Y).

PROOF. By Proposition 5, ft is a function in (L1, /°°)(r). By [2, §2, c)]
for h e CC(T), there is a sequence {hn} in ^^[ (G) such that
limll^-ZiH^, = 0 . Since \\n*hH\\pq < H M I P J ^ , , the sequence {/**/?„} is
Cauchy in {Lp, lq)(T), so lim \\n*hn -g\\pq = 0 for some g in (if, lq){G).
Since S0(G) is a subspace of (Co, ll)(G), the pointwise product of y/ and
hn - h belongs to Lx{fi) = (Co, / ' ) (G), [13, Proposition 4.1]. Hence for y/
in S0(G)

\(¥,Mn))\ = \(V,{hH-h),ji)\

C II^ - h \ \ x l

where k is equal to p if 1 < p < 2 and to 2 if 2 < p < oo. By the density
of S0(T) in (C0,l

k'){r) we conclude that fi(hn-h) is a function in Mk(F)
and therefore lim\\fi(hn - h)\\llc = 0 [14, page 125]. Since h - g belongs to

(Lq , I )(F) and jxhn = (fi* hn)~ (cf. (5) and (6)) we have by the continuity
of the Fourier transform that

h { k h n - g\\pq

where C is a constant depending on G, p and q . This implies that fih = g.

C O R O L L A R Y 9 . The space M ( r , s : p , q) for 1 < r, s , p < o o , 1 < ^ < 2
is trivial.

PROOF. Theorem 7, Proposition 8, and the inclusions M(r, s : p, q) c
M ( o o , r : p , q ) c M { o o , \ : p , q ) .

This last result is for any locally compact abelian group, and this improves
[11, Theorems 4.6.5 and 4.6.6] because as we will see in the next section, the
derived space {Lp)0 denned in [6] is equal to M(oo : p).
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4. Special infinite cases

In this section we give necessary and sufficient conditions for an element
of S0(G)* to be a multiplier.

PROPOSITION 10. Let n be an element of S0{G)* with the Fourier trans-
form jx in {Lr>, /°°)(F) for 1 < r < oc {in M^T)). If fth is an element of
A for each h in (Lr, ls){T) {in (Co, /*)(r)) (1 < s < oo), then n belongs
to M{r, s:p,q) {to M{oo,s:p, q)) (1 <p, q < oo).

PROOF. We define the map S on {Lr, /S)(F) by {Sh)~ = fih . Let {hn}
be a sequence in {Lr, Is) such that lim||/in - h\\rs = 0 and suppose that
lim \\hn - g\\A = 0. For y/ e S0(G) we have that

B - h\\rs + \MA'\\Shn - g\\A.

From [14, Remark 2.4 iii)], the density of S0{G) in A, and the Closed
Graph Theorem, the map S is continuous. Now, if y/ e 4*rs, then by [14,
Proposition 2.8] we have that

The proof for r = oo is similar.
REMARKS. The space &{Q>rs) (1 < r, s < oo) of resonant classes of mea-

sures relative to Ori [15, Definition 3.3] consists of transformable measures

whose Fourier transform belongs to (Lr , Is ){T) if 1 < r < oo to AfooJ/(F)
if r — oo.

From Proposition 10, Corollary 7, [15, Corollary 3.5; 1, Theorem 2.5] we
have that

1. if n G J?T with jih € •&{&;,>q>) (1 < P < oo, 1 < q < 2) for each

2. if / e {Lp, 19){G) {\<q<2,\<p<oo) and fh e {Lp,

for each h e (Co, / ' )(F), then / = 0. That is, the subspace of
{If, lq){G) invariant under the product of Fourier transforms by
elements of (Co, /2)(F) is trivial.
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106 M. Torres de Squire [10]

When p — q, this improves Figa-Talamanca's result in [6] because (Co, / )
is a subspace of Co n L1.

THEOREM 11. An element \i € S0(G)* is a multiplier in M(r, s : p, oo)

(1 < r,s,p < oo) if and only if for each g in (Lp , I )(G) there exists a

measure vg in Ms,(T) if r = oo and in (Lr , Is )(F) if r is finite, such that

PROOF. The necessity part follows from (4) and (6). We now assume that
r is finite and let R be the Segal algebra (Lp, I1) if 1 < p < oo and (Co, / ')
if p = 1. We define the map S on R by Sg = u . As in the previous
proposition an application of the Closed Graph Theorem shows that 5 is
continuous. By Proposition 1 and the fact that (ft * g)~ — Sg(g e S0(G))
[14, Remark 2.4ii)] the convolution fi*g is a transformable measure. Hence
by [1, Corollary 3.1] for y/ e <Prs(G) and g € S0(G) we have that

\(g,P*V)\ = \{¥,H*g)\ = \(V, (/i*gD\
= \{V,Sg)\<\\Sg\\r.s,mrs<\\S\\\\g\\R\\v\\rs.

Since S0(G) is dense in R and fly/ - Si// for all yi e S0(G), we conclude
as in the proof of Proposition 5 that n is a multiplier. The case r — oo is
similar.

By [14, Theorem 6.2] we see that if T € M(oo : p, q), then the ele-
ment n associated to FT' in (4) belongs to (Lp, l")(r). Hence by (6),
M(oo :p,q)c (if, lq), but this is not always the case, as we will see in §4.
The next theorem gives necessary and sufficient conditions for a function in
(Lp ,l")(G) to be a multiplier.

THEOREM 12. A function f in (Lp, lq){G) belongs to M(r,s : p, q)

(1 < r, s, p, q < oo) if and only if for each g in {Lp ,lq)(G), there exists
i i

a unique measure vg in Mst(T) if r = oo in (Lr , Is )(F) / / r is finite, such
that f*g = vg.

PROOF. Suppose that / is in M(r, s : p, q) and define the function F
on Ori(G) by F(y/) = / * g * ^(0) . Clearly F is linear and \F(y/)\ <
Ill/Ill II*IWI*IL- By [15, Remark 3.2] there exists ug in %S(G)* such
that (y/, f * g) = ((y/, v )). This implies that / * g is transformable and
( /* g)~ - v

g [1> §2], hence f*g-Og [14, Remark 2.4 ii)]. To prove the
I i

converse we define the function 5 on (Lp , /* )(G) by (Sg)" = v and, as
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[11] Multipliers from spaces of test functions to amalgams 107

in Theorem 11, the function 5 is continuous. Now for y/ s Q>rs we have
that

\\f*W\\M = sup{|(s, / * yf)\\g e B and \\g\\B < 1}

where B is the amalgam (Lp> , 1"'){G) if 1 < p, q < oo (Co, I9') if p = 1,
1 < q < oo or (Lp, c0) if 1 < p < oo, # = 1. Since

\(g, / * v)\ = \(w,f*g)\ = \{v, (Sg))\\(v>,sg(\ < \\s\\||g||B||^||fV
we conclude as in the proof of Theorem 11 that / is a multiplier.

REMARK. From Theorem 12 and [6, Lemma 1] the space {Lp)0 is equal
to M(oo : p). Moreover M(oo : p, q) c (Lp, /*) n Jt^- for 1 < p , q < oo
[1, Theorem 2.3].

5. Spaces of Fourier transform of measures

In [6, §4] Figa-Talamanca showed that (Lp )v c Af(oo : p) (2 < p < oo)
and AfjV = Af (oo : oo). Similarly, in this section, we consider the problem
of finding a space of measures M such that Mv c M(r, s : p, q).

THEOREM 13. 1. Let 2 <p, q < oo, 1 < 5 < O O , I < r < oo. If l/x =

l/Q+l/r< 1 and l/y= l/p+l/s < 1, then {Lx>, ly')(Tf cM(r,s:p,q)

and (Lr', f ' ) ( r ) v = M{r, s : oo).
2 . Let 2 < q < oo, 2 < p < oo, l < s < o o . If y is as in part 1,

then (L9 , ly )(F)V c M(oo, s : p, q), M <(F)V c Af(oo, ^ : p, oo) and
y

3. Let 2 < q < oo, 1 < p < 2, 1 < r < oo, I < s < oo. If x is as in
part 1 and l/y = 1/2 + l/s < 1, */u?n ( z / , /*' )(r)v c M ( r , r p , ( ? ) .

4. Le/ 2 < ^ < o o , 1 < p < 2, 1 < 5 < O O . If y is as in part 3,
then (L9>, ly')(T)V c Af(oo,5 : p, q), Ar,(F)v c Af(oo,s : p.oo) and
(L',/2)(F)V cAf(oo:p ,oo) .

PROOF. 1. Let / e (Lx' , /y ')(F), A € S0(G) and ^ e <t>JG). By [14,
Definition 2.3 and (2.5)] we have that

\(h,f*if,)\ = \{h<j>,f)\<\\f\\x,y,\\hv\\xy

where C is a constant depending on G , p and q , given by the Hausdorff-
Young theorem for amalgams [14, Remark 2.7].
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Since S0(G) is dense in (if ,l9) we conclude by [14, Remark 2.4 ii)]
that / is in M(r, s : p, q) and

(7) Hl/lll < C\\f\\x,yl.

The inclusion (Lr , Is )(T) c M(r, s : oo) is proven in a similar manner.
If / is in M(r, s : oo), then clearly the map F(y/) = (<//, f) is a func-

tional on ®rs(G). Hence by [15, Remark 3.2 ii)] there exists ne(Lr , Is )(T)
such that (y/, f) = {(y/, //)) — (y/, p.) for all ^ e ^ ( G ) > a n d in particular
for all y/ e O ^ , . Since <Pool is dense in S0(G), we conclude that f = jti.

The proofs for 2, 3, and 4 are similar.

The amalgam (Ll, I2) is the biggest space of functions whose Fourier
transform is also a function [9]. Thus we see from Theorem 13, that if
y > 2, then M(r, s : p, q) contains elements of SQ(G)* which are not
functions. We will show that for certain values of p, q, r, s, the space
M(r, s : p, q) is included in an amalgam space, and contains a space of
Fourier transforms. The constant which appears in the next result is given
by the Hausdorff-Young theorem.

COROLLARY 14. 1. If 2 < q < oo and 2 < p < oo, then

pg £ \ \ \ J III ^ » - I U l l g ' p ' '(a) (Lg>, f'XlfcMioo-.p, q) C (Lp, l")(G) and \\f\\pq < |||/||| < C||/||

(b) Mp,{T)v c M(oo : p, oo) c (If, l°°)(G) and \\[i\\poo < \\\fi\\\C\\fi\\pp,{T)v c M ( o o : p , oo) c (If, l)(G) and \\[i\\poo < \\\fi\\\C\\fi\\pl

where C is a constant depending on G, p and q.
2. If 2 < q < oo and 1 < p < 2, then

(a) (Lq', l2)(G)y C M(oo : p, q) c (L2, l")(G) and \\f\\lq <
C||/||,.2.

(b) M2(T)V c M(oo : p,oo) c (L2, l°°)(G) and \\ju\\2oo <
C\\H\\2,
where C is a constant depending on G and q.

3. If 2 < r, s < oo, 2 < q < oo and l/x = l/q + \/s < 1, then

( z / , O ( r ) v c M(r,s : oo,q) c (Ls, lr)(G) and \\f\\sr < C\\\f\\\ <

C2\\f\\x's, where C is a constant depending on G, r, and s.
4. / / " l < r < 2 < 5 < o o , 2 < ^ < o o and x is as part 3), then

(Lx' ,ls')(T)v c M(r,s : oo,q) c (Lp,l9)(G)s and \\f\\s2 < C\\\f\\\ <
C \\f\\sx where C is a constant depending on G and s.

5. If 2 < s < oo, then Ms,(T)v c M(oo, s : oo) c (If, l°°)(G) and

< Hl/lll < C \\n\\s> where C is a constant depending on G and s.
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PROOF. 1. Let {y/v} be the approximate identity of LX{G)) defined in
[15, page 462]. Since S0(G) is a Segal algebra we have for \i e M(oo : p, q)
and h € S0(G) that

\(h, /i)\ = lim\{h *yfv,n)\ = lim\(h, fi * <j>v)\

By [14, Proposition 2.6] we conclude that fi is in {Lp , I9) and \\n\\pg <
. The rest of the proof follows from (7) above. Part b) and 2 are proven

in a similar manner.
3. Let n e M(r, s : oo, q) and h G ̂ ^ ( G ) • As in the proof of part 1

using [14, Theorem 1.6] we have that

\{h,n)\<

I i

By the density of ^ool in (Ls , lr ){G) [14, Proposition 2.5] we conclude
that \\n\\rs < \\\n\ ||. The rest of the proof follows from (7) above. The proofs
of 4 and 5 are similar.
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