MULTIPLIERS FROM SPACES OF TEST FUNCTIONS TO AMALGAMS

MARIA TORRES DE SQUIRE

(Received 28 July 1989; revised 13 May 1991)

Communicated by C. Sutherland

Abstract

In this paper we study the space of multipliers M(r, s : p, q) from the space of test functions $\Phi_{rs}(G)$, on a locally compact abelian group G, to amalgams $(L^p, l^q)(G)$; the former includes (when $r = s = \infty$) the space of continuous functions with compact support and the latter are extensions of the $L^p(G)$ spaces. We prove that the space $M(\infty : p)$ is equal to the derived space $(L^p)_0$ defined by Figá-Talamanca and give a characterization of the Fourier transform for amalgams in terms of these spaces of multipliers.

1991 Mathematics subject classification (Amer. Math. Soc.): 43 A 22.

1. Introduction

The space of test functions $\Phi_{\infty s}$ $(1 \le s \le \infty)$, on the real line, was originally defined by H. Holland [10]. The definition of $\Phi_{rs}(G)$ on a locally compact abelian group G, is due to Bertrandias and Dupuis [2]. The amalgam spaces (L^p, l^q) $(1 \le p, q \le \infty)$ are Banach spaces of functions which belong locally to $L^p(G)$ and globally to l^q . If p = q then (L^p, l^q) is the usual $L^p(G)$ space. The purpose of this paper is to study the space M(r, s : p, q) $(1 \le r, s, p, q \le \infty)$ of multipliers from $\Phi_{rs}(G)$ to $(L^p, l^q)(G)$. We prove the following.

^{© 1993} Australian Mathematical Society 0263-6115/93 \$A2.00 + 0.00

- 1. For $1 \le r, s, p \le \infty$ and $1 \le q < 2$, the space M(r, s : p, q) is trivial.
- 2. For $r = s = \infty$ and p = q, the space $M(\infty : p)$ is equal to the derived space $(L^p)_0$ defined by Figá-Talamanca in [6].
- 3. for $r = s = \infty$ and $1 \le r, p, q \le \infty$, the space M(r, s : p, q) contains or is equal to a set of Fourier transforms of measures. In particular a measure μ is the Fourier transform of a function in L^p , for $1 \le p \le 2$, if and only if μ is a multiplier in $M(p':\infty)$.

2. Notation and preliminary results

Throughout this paper G is a locally compact abelian group with dual group Γ . The elements of Γ are denoted by \hat{x} and we write $[x, \hat{x}]$ instead of $\hat{x}(x)$ $(x \in G)$. As usual $C_c(G)$ $(C_0(G))$ is the space of continuous functions on G with compact support (which vanish at infinity). For a function f on G, we use f' to denote the reflection f'(y) = f(-y), and for x in G, the translation operator τ_x is defined by $\tau_x f(y) = f(y - x)$. If μ is a measure on G, then its reflection μ' and its translation $\tau_x \mu$ are defined by $\mu'(f) = \mu(f')$ and $\tau_x \mu(f) = \mu(\tau_x f)(f \in C_c(G))$ respectively. The pairing between a linear space B and its dual B^* is given by $\langle f, \sigma \rangle = \sigma(f)$ for σ in B^* , and f in B. We use J. Stewart's definition of the amalgam spaces $(L^{p}, l^{q})(G) = (L^{p}, l^{q}), \ (C_{0}, l^{q})(G) = (C_{0}, l^{q}), \ (L^{p}, c_{0})(G) = (L^{p}, c_{0})$ $(1 \le p, q \le \infty)$ and the space of measures $M_q(G) = M_q(1 \le q \le \infty)$ [12]. We assume all the properties of inclusion, duality, and convolution product of these spaces, Hölder and Young's inequalities, and the Hausdorff-Young theorem for amalgams as given in [14], and all the properties of the Segal algebra $S_0(G)$ given in [4] and [14]. We denote by A any of the amalgams $(L^{p}, l^{q}), (L^{p}, c_{0}) (1 \le p < \infty), (C_{0}, l^{s})(1 \le s \le \infty)$. We use H. Feichtinger's definition of the Fourier transform as an element of $S_0(G)^*$ [4, 14 Definition 2.3]. We write $\hat{\mu}$ ($\check{\mu}$) for the Fourier transform (inverse Fourier transform) of an element μ of $S_0(G)^*(S_0(\Gamma)^*)$. If M is a subset of $S_0(G)^*$, then M^{\frown} denotes the set of Fourier transforms of element M. We let \mathcal{M}_T be the space of transformable measures [1], and as usual p' is the conjugate of the number p. We finish this section with two preliminary results.

PROPOSITION 1. If $\sigma \in S_0(G)^*$ and $h \in S_0(G)$, then $\sigma * h$ is the element of $L^{\infty}(G)$ given by $\langle f, \sigma * h \rangle = \langle f * h, \sigma \rangle$ for all f in $L^1(G)$. Hence $\langle f, \sigma * h \rangle = \langle h, \sigma * f \rangle$ for all f in $L^1(G)$.

PROOF. By [14, Proposition 2.8], $\sigma * h$ is in $S_0(G)^*$ and for g in $S_0(G)$ we have that

$$|\langle g, \sigma * h \rangle| = |\langle g * h, \sigma \rangle| \le ||\sigma|| ||h||_{S_{\alpha}} ||g||_{1}.$$

The conclusion follows from the density of $S_0(G)$ in $L^1(G)$ [14, Proposition 2.5 and (2.5)].

THEOREM 2. Let S be any of the spaces $(L^p, l^1)(G)$ $(1 \le p < \infty)$ or (C_0, l^1) . If $T: S \to S_0(G)^*$ is a linear bounded operator such that T(f*g) = Tf*g for all f and g in S, then there exists a unique μ in $S_0(G)^*$ such that $Tf = \mu * f$ for all f in S.

Hence $(Tf)^{\widehat{}} = \sigma \hat{f}$ for all f in S, where $\sigma = \hat{\mu}$.

PROOF. The proof is essentially the same as [14, Theorem 3.2]. Observe that the functions λ_{α} defined in the proof of [14, Theorem 3.2] belongs to $S_0(G)$ [13, Lemma 6.4] and $S_0(G)$ is included in $(C_0, l^0)(G)$. The second statement follows from [14, Proposition 2.8].

3. The space of multipliers

The space of test functions $\Phi_{rs}(G) = \phi_{rs}$ $(1 \le r, s \le \infty)$, as defined in [15, Definition 3.1] consists of continuous functions with compact support φ such that its Fourier transform $\hat{\varphi}$ belongs to $(C_0, l^s)(\Gamma)$. It is normed by $\|\hat{\varphi}\|_{rs}$ (see [14, (1.9)]). The duality between $\Phi_{rs}(G)$ and its Banach dual, $M_{s'}(\Gamma)$ if $r = \infty$, $(L^{r'}, l^{s'})(\Gamma)$ if r is finite [2, §2 c], [15, Remark 3.2ii)] will be denoted by $\langle\langle \varphi, \mu \rangle \rangle$, hence

(1)
$$\langle \langle \varphi, \mu \rangle \rangle = \int_{\Gamma} \hat{\varphi}(-\hat{x}) d\mu(\hat{x})$$

for $\varphi \in \Phi_{rs}$, $\mu \in M_{s'}(\Gamma)$ if $r = \infty$, $\mu \in (L^{r'}, l^{s'})(\Gamma)$ if $r < \infty$. Clearly, as sets, Φ_{rs} is equal to Φ_{∞} , and as normed spaces Φ_{∞} is continuously embedded into Φ_{rs} . The space $\Phi_{\infty 1}$ is dense in $S_0(G)$ [123, Lemma 6.4; 5, p. 275] and it is the smallest of all the spaces Φ_{rs} .

DEFINITION 3. A multiplier from $\Phi_{rs}(G)$ $(1 \le r, s \le \infty)$ to the amalgam A is a bounded linear operator which is translation invariant, that is, for any $x \in G$, $\tau_x T = T \tau_x$.

The space of multipliers will be denoted by M(r, s : p, q) if $A = (L^p, l^q)$, by $M(r, s : \infty, q)$ if $A = (C_0, l^q)$, and by $M(r, s : p, \infty)$ if $A = (L^p, c_0)$. If r = s or p = q, then we write M(r : q). If T is a multiplier from Φ_{rs} to A, then its adjoint T' is a bounded linear operator from A^* to Φ_{rs}^* , and by (1) we have for $g \in A^*$ and $\varphi \in \Phi_{rs}$ that

(2)
$$\int_{\Gamma} \hat{\varphi}(-\hat{x}) dT' g(\hat{x}) = \langle \langle \varphi, T'g \rangle \rangle = \langle T\varphi, g \rangle = \int_{G} T\varphi(x) dg'(x)$$

We use this to prove that T commutes with convolution.

PROPOSITION 4. Let T be in M(r, s : p, q) $(1 \le r, s, p, q \le \infty)$. Then for all φ and ψ in Φ_{rs} we have $T(\varphi * \psi) = T\varphi * \psi$.

PROOF. Let g be in A^* . By (2) and Fubini's theorem we have that

$$\begin{aligned} \langle T\varphi * \psi, g \rangle &= \int_G \int_G T\varphi(x-s)\psi(s) \, ds \, dg'(x) \\ &= \int_G \psi(s) \langle \langle \tau_s \varphi, T'g \rangle \rangle \, ds = \int_\Gamma \hat{\varphi}(-\hat{x}) \hat{\psi}(-\hat{x}) \, dT'g(\hat{x}) \\ &= \langle \langle \varphi * \psi, T'g \rangle \rangle = \langle T(\varphi * \psi), g \rangle. \end{aligned}$$

If T is in M(r, s : p, q) $(1 \le r, s, p, q \le \infty)$, $x \in G$, $g \in A^*$ and $\varphi \in \Phi_{rs}$, then as in the previous proof

$$\langle \langle \varphi, T'\tau_{x}g \rangle \rangle = \langle T\tau_{x}\varphi, g \rangle = \langle \langle \varphi, [x,]T'g \rangle \rangle$$

Hence

(3)
$$T'\tau_{x}g = [x, .]T'g.$$

If F is the Fourier transform on Φ_{rs}^* and T is multiplier in M(r, s, : p, q) $(1 \le r, s, p, q \le \infty)$, then by (2), Proposition 4, and [14, Proposition 2.5, 2.8] the composition of F and T' is a bounded linear operator which commutes with convolution. That is, for g and f in $(L^{p'}, l^1)(G)$ if $1 and in <math>(C_0, l^1)(G)$ if p = 1 we have that

$$FT'(f * g) = FT'f * g.$$

This together with Theorem 2, Proposition 4, and [14, Remark 2.4 ii)] implies that there exists $\mu \in S_0(G)^*$, hence a unique $\sigma \in S_0(\Gamma)^*$, such that

$$FT'f = \mu * f$$

(5)
$$f'f = \sigma \hat{f} = (\mu * f)^{\widehat{}}$$

Moreover, since $S_0(G)$ is included in $(L^{p'}, l^1)$ and (C_0, l^1) we have by Proposition 1, (5), and [14, (1.9)] that $\mu * f$ is a transformable measure for

Multipliers from spaces of test functions to amalgams

all f in $S_0(G)$. Hence by [1, Corollary 3.1], if $\varphi \in \Phi_{rs}(G)$, then $\hat{\varphi}$ belongs to $L^1(T'f)$ and therefore

$$\int_G \varphi(x)\mu * f(x) \, dx = \int_{\Gamma} \hat{\varphi}(-\hat{x}) d(T'f)(\hat{x}).$$

By (1) and Proposition 1 we conclude that

$$\langle \mu * \varphi, f \rangle = \langle T \varphi, f \rangle$$

for all f in $S_0(G)$.

[5]

By the density of $S_0(G)$ in A, and [14, Theorem 1.4], we conclude that for all $\varphi \in \Phi_{rs}$

$$T\varphi = \mu * \varphi.$$

From (4) and (5) and the fact that Φ_{rs} is included in the amalgams $(L^{p'}, l^1)$ and (C_0, l^1) we have that

$$T\varphi = FT'\varphi$$
 and $(T\varphi)^{\widehat{}} = T'\varphi$ for all $\varphi \in \Phi_{rs}$.

PROPOSITION 5. Let T be in M(r, s : p, q) $(1 \le r, s, p, q \le \infty)$. The functional σ in $S_0(\Gamma)^*$ associated to T' in (5) belongs to $M_{\infty}(\Gamma)$. Moreover, σ belongs to

1. $(L^{1}, l^{\infty})(\Gamma)$ if either *r* is finite or $1 \le q \le 2$. 2. $M_{2}(\Gamma)$ if $r = s = \infty$. 3. $(L^{1}, l^{2})(\Gamma)$ if $r = s = \infty$ and $1 \le q \le 2$. 4. $(L^{r'}, l^{\infty})(\Gamma)$ if r = 2 and *r* is finite. 5. $(L^{q'}, l^{\infty})(\Gamma)$ if $1 \le q \le 2$ and $2 \le p$, $s \le \infty$.

PROOF. We take E a compact subset of Γ , h a continuous function with compact support contained in E, and g a function in $\Phi_{\infty 1}(G)$ such that \hat{g} is in $C_c(G)$ and $\hat{g} \equiv 1$ on E [12, Theorem 3.1]. By [14, (2.6] we have that

$$\begin{aligned} |\langle h, \sigma \rangle| &= |\langle h\hat{g}, \sigma \rangle| = |\langle h, \sigma \hat{g} \rangle| = |\langle h, T'g \rangle| \\ &\leq \|T'g\|_{r's} \|h\|_{rs} \leq C_E \|h\|_{\infty} \end{aligned}$$

where C_E is a constant depending on E.

Therefore σ is a measure of Γ by [5, Theorem B1; 11, Theorem 5.1.4]. Now for β in *I* the function $\tau_{\beta}g$ is equal to one on L_{β} , (*I* and L_{β} as in [14, Remark 1.3]) and $T'([\beta, .]g) = \sigma \tau_{\beta} \hat{g}$ belongs to $M_{s'}(\Gamma)$ [14, (1.9)], hence

$$\begin{aligned} |\sigma|(L_{\beta})^{s'} &= \left[\int_{L_{\beta}} |\tau_{\beta} \hat{g}|(\hat{x}) d|\sigma|(\hat{x}) \right]^{s'} \\ &= \|\sigma \tau_{\beta} \hat{g}\|_{s'}^{s'} \leq \|T'\|^{s'} \|[\beta, ..]g\|_{p'q'}^{s'} = \|T'\|^{s'} \|g\|_{p'q'}^{s'} \end{aligned}$$

and therefore σ is a measure in $M_{\infty}(\Gamma)$. To prove 1 we take a compact subset K of Γ with Haar measure zero, and a function φ in $\Phi_{rs}(G)$ such that $\hat{\varphi} \equiv 0$ on K. If r is finite, then $\sigma \hat{\varphi} = T' \varphi$ is a function in $(L^{r'}, l^{s'})(\Gamma)$ and we have that

$$\sigma(K) = \int_{K} \hat{\varphi}(\hat{x}) \, d\sigma(\hat{x}) = \int_{K} T' \varphi(\hat{x}) d(\hat{x}) = 0.$$

Hence σ is absolutely continuous with respect to the Haar measure on Γ and we conclude from [3, Chapter V] that σ belongs to $(L^1, l^{\infty})(\Gamma)$. If $1 \leq q \leq 2$, then by (6) and [14, Proposition 2.8, Remark 2.7] we have that $\sigma \hat{\varphi} = (T\varphi)^{\widehat{}}$ is a function on Γ . As before this implies that σ is in $(L^1, l^{\infty})(\Gamma)$.

To prove 3 we note that Φ_{∞} is equal to $\Phi_{\infty 2}$ as sets, and by (5), for any $\varphi \in \Phi_{\infty}$, the measure $\sigma \hat{\varphi}$ belongs to $M_1(\Gamma)$ that is, σ is a Fourier multiplier on $\Phi_{\infty 2}$ and by [15, Theorem 6.15], σ is in $M_2(\Gamma)$. Part 4 follows from 1 and 2.

Now, if r is finite and s = 2, then $\sigma \hat{\varphi}$ belongs to $(L^{r'}, l^2)(\Gamma)$ for all $\varphi \in \Phi_{r_1}$. Hence $\nu \sigma \hat{\varphi}$ is in $L^1(\Gamma)$ for any ν in $(l', l^2)(\Gamma)$.

Again by [15, Theorem 6.1], $\nu\sigma$ belongs to $(L^1, l^2)(\Gamma)$ and by the converse of Hölder's inequality σ is in $(L^{r'}, l^{\infty})(\Gamma)$.

Part 5 is similar to 4; note that $\sigma \hat{\varphi} = (T \varphi)^{\widehat{}}$ belongs to $(L^{q'}, l^2)(\Gamma)$ for all $\varphi \in \Phi_{rs}$.

From (6) and Proposition 2.4 we see that M(r, s : p, q) $(1 \le r, s, p, q \le \infty)$ is isometrically isomorphic to the set of $\mu \in S_0(G)^*$ such that $\hat{\mu}$ is in $M_{\infty}(\Gamma)$ if $r = \infty$ and in $(L^1, l^{\infty})(\Gamma)$ if r is finite, and norm equal to

$$|||\mu||| = \sup\{||\mu * \varphi||_{pq} | \varphi \in \Phi_{rs}, ||\hat{\varphi}||_{rs} \le 1\}.$$

We now use the concept of set of uniqueness, to show that for $1 \le q < 2$, $(1 \le r, s, p \le \infty)$ the space M(r, s : p, q) is trivial (cf. [6, Theorem 3]).

DEFINITION 6. A subset E of Γ is a set of uniqueness for $(L^p, l^q)(G)$ $(1 \le p, q \le \infty)$, if for any f in $(L^p, l^q)(G)$ such that \hat{f} vanishes outside E, then $f \equiv 0$.

Sets of uniqueness for $(L^p, l^q)(G)$ $(1 \le p, q \le 2)$ always exists [8, page 133], and also for $(L^r, l^q)(G)$ $(2 \le r \le \infty, 1 \le q \le 2)$ because $(L^r, l^q) \subset (L^p, l^q)$ for $1 \le p \le 2 \le r \le \infty$.

[7]

THEOREM 7. If $1 \le p \le \infty$, $1 \le q < 2$ and f is a function on Γ such that $f\varphi$ belongs to $(L^p, l^q)(G)^{\widehat{}}$ for all $\varphi \in C_c(\Gamma)$. Then $f \equiv 0$ locally almost everywhere.

PROOF. Suppose that f does not vanish locally almost everywhere. Then there exists a compact set K of nonnegative measure such that f does not vanish almost everywhere on K. Let ψ be a continuous function with compact support such that $\psi \equiv 1$ on K. Then ψf does not vanish locally almost everywhere. Since $\psi \varphi$ is in $C_c(\Gamma)$ for all $\varphi \in C_c(\Gamma)$, it follows that $\psi \varphi f$ belongs to $(L^p, l^q)(G)^{\widehat{}}$ for all $\varphi \in C_c(\Gamma)$. Thus without loss of generality we can assume that f vanishes off some compact set K of nonnegative measure.

If p = q = 1, then φf is in $L^{1}(G)^{\frown}$ for all $\varphi \in C_{c}$, so $\varphi f = \hat{g}$ for some $g \in L^{1}(G)$. Since φf is in L_{c}^{∞} and $L_{c}^{\infty} \subset (L^{2}, l^{1})$, the function g belongs to $L^{1} \cap (L^{\infty}, l^{2})$, then by the Riesz-Thorin theorem [13, Theorem 5.6; 10, Theorem 5], we have that g is in (L^{p}, l^{q}) for some fixed 1 , <math>1 < q < 2, so we can further assume that φf belongs to $(L^{p}, l^{q})(G)^{\frown}$ for some fixed 1 , <math>1 < q < 2.

If $p = \infty$ and q = 1, then as above $g \in (L^{\infty}, l^1)$ and φf is in $L^2(\Gamma)$, so g is in $(L^{\infty}, l^1) \cap L^2$. By the same argument we can assume that φf is in $(L^p, l^q)(G)^{\frown}$ for some fixed 2 , <math>1 < q < 2.

If φ is a function in $C_c(\Gamma)$ such that $\varphi \equiv 1$ on K, then $\varphi f = f$, hence f is in $(L^p, l^q)(G)^{\widehat{}}$ and therefore f is a function in $L^{q'}$ with compact support, because f vanishes off K. Thus f belongs to $L^2(\Gamma)$.

Let S be the map defined on $C_c(\Gamma)$ by $(S\varphi)^{\widehat{}} = \varphi f$. An application of the Closed Graph Theorem shows that S restricted to $C_c(E)$, for E a compact subset of Γ , is continuous. Now we take E a compact subset of Γ and $\{\varphi_n\}$ a sequence in $C_c(\Gamma)$ such that $\varphi_n \equiv 1$ on E for all n, $0 \leq \varphi_n(\hat{x}) \leq 1$ for all \hat{x} in Γ , and the support of each φ_n is equal to E, with $E_{n+1} \subset E_n$ and $E = \cap E_n$. Hence $\{\varphi_n\} \subset C_c(E_1)$ and converges pointwise to χ_E , the characteristic function of E. Since $E_{n+1} \subset E_n$ for all n, there is a constant C_E , depending on E_1 such that $\|\varphi_n\| \leq C_E$ for all n. Hence $\|S\varphi_n\|_{pq} \leq \|\varphi_n\|_{\infty} \leq C_E$; that is, $\{S\varphi_n\}$ is a normed subset of (L^p, l^q) , and therefore it has a weakly convergent subset $\{S\varphi_k\}$. Let g in (L^p, l^q) be such that $\lim \langle S\varphi_k, h \rangle = \langle g, h \rangle$ $(h \in (L^{p'}, l^{q'})(\Gamma))$. Since $|\varphi_k f| \leq |f|$ on Γ , we have that for $h \in C_c(\Gamma)$

$$\langle S\varphi_k, h\rangle = \lim \langle (S\varphi_k)^{\widehat{}}, k\rangle = \lim \langle \varphi_k f, \hat{h}\rangle = \langle \chi_E, \hat{h}\rangle = \langle (\chi_E f)^{\widehat{}}, h\rangle.$$

We conclude that $(\chi_E f)^{\hat{}} = g$. But if E is a subset for K and a set of

uniqueness for (L^p, l^q) , then this is a contradiction because $\chi_E f$ does not vanish almost everywhere on E.

PROPOSITION 8. If μ is a multiplier in M(r, s : p, q) for $1 \le r, s, p, \le \infty$, $1 \le q < 2$, then

$$\hat{\mu}h \in (L^p, l^q)(G)$$
 for all $h \in C_c(\Gamma)$.

PROOF. By Proposition 5, $\hat{\mu}$ is a function in $(L^1, l^{\infty})(\Gamma)$. By [2, §2, c)] for $h \in C_c(\Gamma)$, there is a sequence $\{h_n\}$ in $\Phi_{\infty 1}(G)$ such that $\lim \|\hat{h}_n - h\|_{\infty 1} = 0$. Since $\|\mu * h_n\|_{pq} \leq |||\mu|| |||\hat{h}_n\|_{\infty 1}$, the sequence $\{\mu * h_n\}$ is Cauchy in $(L^p, l^q)(\Gamma)$, so $\lim \|\mu * h_n - g\|_{pq} = 0$ for some g in $(L^p, l^q)(G)$. Since $S_0(G)$ is a subspace of $(C_0, l^1)(G)$, the pointwise product of ψ and $h_n - h$ belongs to $L^1(\hat{\mu}) = (C_0, l^1)(G)$, [13, Proposition 4.1]. Hence for ψ in $S_0(G)$

$$\begin{aligned} |\langle \psi, \hat{\mu}(h_n) \rangle| &= |\langle \psi(\hat{h}_n - h), \hat{\mu} \rangle| \\ &\leq \|\hat{\mu}\|_{\infty} \|\psi(\hat{h}_n - h)\|_{\infty 1} \leq \|\hat{\mu}\|_{\infty} \|\psi\|_{\infty} \|\hat{h}_n - h\|_{\infty 1} \\ &\leq \|\hat{\mu}\|_{\infty} \|\psi\|_{\infty k'} \|\hat{h}_n - h\|_{\infty 1} \end{aligned}$$

where k is equal to p' if $1 \le p \le 2$ and to 2 if $2 \le p \le \infty$. By the density of $S_0(\Gamma)$ in $(C_0, l^{k'})(\Gamma)$ we conclude that $\hat{\mu}(\hat{h}_n - h)$ is a function in $M_k(\Gamma)$ and therefore $\lim \|\hat{\mu}(\hat{h}_n - h)\|_{1k} = 0$ [14, page 125]. Since $\hat{h} - \hat{g}$ belongs to $(L^{q'}, l^k)(\Gamma)$ and $\hat{\mu}\hat{h}_n = (\mu * h_n)^{\uparrow}$ (cf. (5) and (6)) we have by the continuity of the Fourier transform that

$$\begin{split} \|\hat{\mu}h - \hat{g}\|_{1k} &\leq \|\hat{\mu}\hat{h}_n - \hat{\mu}h\|_{1k} + \|\hat{\mu}\hat{h}_n - \hat{g}\|_{1k} \\ &\leq \|\hat{\mu}(\hat{h}_n - h)\|_{1k} + \|\hat{\mu}\hat{h}_n - \hat{g}\|_{q'k} \\ &\leq \|\hat{\mu}(\hat{h}_n - h)\|_{1k} + C\|\mu * h_n - g\|_p \end{split}$$

where C is a constant depending on G, p and q. This implies that $\hat{\mu}h = \hat{g}$.

COROLLARY 9. The space M(r, s : p, q) for $1 \le r, s, p \le \infty$, $1 \le q < 2$ is trivial.

PROOF. Theorem 7, Proposition 8, and the inclusions $M(r, s : p, q) \subset M(\infty, r : p, q) \subset M(\infty, 1 : p, q)$.

This last result is for any locally compact abelian group, and this improves [11, Theorems 4.6.5 and 4.6.6] because as we will see in the next section, the derived space $(L^p)_0$ defined in [6] is equal to $M(\infty : p)$.

4. Special infinite cases

In this section we give necessary and sufficient conditions for an element of $S_0(G)^*$ to be a multiplier.

PROPOSITION 10. Let μ be an element of $S_0(G)^*$ with the Fourier transform $\hat{\mu}$ in $(L^{r'}, l^{\infty})(\Gamma)$ for $1 \le r < \infty$ (in $M_{\infty}(\Gamma)$). If $\hat{\mu}h$ is an element of A for each h in $(L^r, l^s)(\Gamma)$ (in $(C_0, l^s)(\Gamma)$) $(1 \le s \le \infty)$, then μ belongs to M(r, s : p, q) (to $M(\infty, s : p, q)$) $(1 \le p, q \le \infty)$.

PROOF. We define the map S on $(L', l^s)(\Gamma)$ by $(Sh)^{\widehat{}} = \hat{\mu}h$. Let $\{h_n\}$ be a sequence in (L', l^s) such that $\lim \|h_n - h\|_{rs} = 0$ and suppose that $\lim \|h_n - g\|_A = 0$. For $\psi \in S_0(G)$ we have that

$$\begin{split} |\langle \psi, (Sh)^{\widehat{}} - \hat{g} \rangle| &\leq |\langle \psi, (Sh_n)^{\widehat{}} - (Sh)^{\widehat{}} \rangle| + |\langle \psi, (Sh_n)^{\widehat{}} - \hat{g} \rangle| \\ &\leq |\langle \psi, \hat{\mu}h_n - \hat{\mu}h \rangle| + |\langle \hat{\psi}, Sh_n - g \rangle| \\ &\leq |\langle \psi(h_n - h), \hat{\mu} \rangle| + \|\hat{\psi}\|_{A^*} \|Sh_n - g\|_A \\ &\leq \|\hat{\mu}\|_{r'\infty} \|\psi\|_{\infty s'} \|h_n - h\|_{rs} + \|\hat{\psi}\|_{A^*} \|Sh_n - g\|_A \end{split}$$

From [14, Remark 2.4 iii)], the density of $S_0(G)$ in A, and the Closed Graph Theorem, the map S is continuous. Now, if $\psi \in \Psi_{rs}$, then by [14, Proposition 2.8] we have that

$$\|\mu * \psi\|_{A} = \|S\hat{\psi}\|_{A} \le \|S\| \|\hat{\psi}\|_{rs}.$$

The proof for $r = \infty$ is similar.

REMARKS. The space $\mathscr{R}(\Phi_{rs})$ $(1 \le r, s \le \infty)$ of resonant classes of measures relative to Φ_{rs} [15, Definition 3.3] consists of transformable measures whose Fourier transform belongs to $(L^{r'}, l^{s'})(\Gamma)$ if $1 \le r < \infty$ to $M_{\infty s'}(\Gamma)$ if $r = \infty$.

From Proposition 10, Corollary 7, [15, Corollary 3.5; 1, Theorem 2.5] we have that

- 1. if $\mu \in \mathscr{M}_T$ with $\hat{\mu}h \in \mathscr{R}(\Phi_{p'q'})$ $(1 for each <math>h \in (C_0, l^1)(\Gamma)$, then $\mu \equiv 0$.
- 2. if $f \in (L^p, l^q)(G)$ $(1 \le q < 2, 1 \le p \le \infty)$ and $\hat{f}h \in (L^p, l^q)(\Gamma)^{\widehat{}}$ for each $h \in (C_0, l^1)(\Gamma)$, then $f \equiv 0$. That is, the subspace of $(L^p, l^q)(G)$ invariant under the product of Fourier transforms by elements of $(C_0, l^2)(\Gamma)$ is trivial.

When p = q, this improves Figá-Talamanca's result in [6] because (C_0, l^1) is a subspace of $C_0 \cap L^1$.

THEOREM 11. An element $\mu \in S_0(G)^*$ is a multiplier in $M(r, s : p, \infty)$ $(1 \le r, s, p \le \infty)$ if and only if for each g in $(L^{p'}, l^1)(G)$ there exists a measure ν_g in $M_{s'}(\Gamma)$ if $r = \infty$ and in $(L^{r'}, l^{s'})(\Gamma)$ if r is finite, such that $\mu * g = \hat{\nu}_g$.

PROOF. The necessity part follows from (4) and (6). We now assume that r is finite and let R be the Segal algebra (L^p, l^1) if $1 and <math>(C_0, l^1)$ if p = 1. We define the map S on R by $Sg = \nu_g$. As in the previous proposition an application of the Closed Graph Theorem shows that S is continuous. By Proposition 1 and the fact that $(\mu * g)^{\widehat{}} = Sg(g \in S_0(G))$ [14, Remark 2.4ii)] the convolution $\mu * g$ is a transformable measure. Hence by [1, Corollary 3.1] for $\psi \in \Phi_{rs}(G)$ and $g \in S_0(G)$ we have that

$$\begin{aligned} |\langle g, \mu * \psi \rangle| &= |\langle \psi, \mu * g \rangle| = |\langle \psi, (\mu * g)^{\widehat{}} \rangle| \\ &= |\langle \hat{\psi}, Sg \rangle| \le ||Sg||_{r's'} ||\hat{\psi}||_{rs} \le ||S|| ||g||_{R} ||\hat{\psi}||_{rs}. \end{aligned}$$

Since $S_0(G)$ is dense in R and $\hat{\mu}\hat{\psi} = S\psi$ for all $\psi \in S_0(G)$, we conclude as in the proof of Proposition 5 that μ is a multiplier. The case $r = \infty$ is similar.

By [14, Theorem 6.2] we see that if $T \in M(\infty : p, q)$, then the element μ associated to FT' in (4) belongs to $(L^p, l^q)(\Gamma)$. Hence by (6), $M(\infty : p, q) \subset (L^p, l^q)$, but this is not always the case, as we will see in §4. The next theorem gives necessary and sufficient conditions for a function in $(L^p, l^q)(G)$ to be a multiplier.

THEOREM 12. A function f in $(L^p, l^q)(G)$ belongs to M(r, s : p, q) $(1 \le r, s, p, q \le \infty)$ if and only if for each g in $(L^{p'}, l^{q'})(G)$, there exists a unique measure ν_g in $M_{s'}(\Gamma)$ if $r = \infty$ in $(L^{r'}, l^{s'})(\Gamma)$ if r is finite, such that $f * g = \check{\nu}_g$.

PROOF. Suppose that f is in M(r, s : p, q) and define the function F on $\Phi_{rs}(G)$ by $F(\psi) = f * g * \psi(0)$. Clearly F is linear and $|F(\psi)| \leq |||f||| \|g\|_{p'g} \|\hat{\psi}\|_{rs}$. By [15, Remark 3.2] there exists ν_g in $\Phi_{rs}(G)^*$ such that $\langle \psi, f * g \rangle = \langle \langle \psi, \nu_g \rangle \rangle$. This implies that f * g is transformable and $(f * g)^{\widehat{}} = \nu_g$ [1, §2], hence $f * g = \hat{\nu}_g$ [14, Remark 2.4 ii)]. To prove the converse we define the function S on $(L^{p'}, l^{q'})(G)$ by $(Sg)^{\widehat{}} = \nu_g$ and, as

in Theorem 11, the function S is continuous. Now for $\psi \in \Phi_{rs}$ we have that

$$\|f * \psi\|_{pq} = \sup\{|\langle g, f * \psi\rangle||g \in B \text{ and } \|g\|_{B} \le 1\}$$

where B is the amalgam $(L^{p'}, l^{q'})(G)$ if $1 < p, q \le \infty$ $(C_0, l^{q'})$ if $p = 1, 1 < q \le \infty$ or (L^p, c_0) if 1 . Since

$$|\langle g, f * \psi \rangle| = |\langle \psi, f * g \rangle| = |\langle \psi, (Sg) \rangle||\langle \hat{\psi}, Sg \rangle| \le ||S|| ||g||_B ||\hat{\psi}||_{r's'}$$

we conclude as in the proof of Theorem 11 that f is a multiplier.

REMARK. From Theorem 12 and [6, Lemma 1] the space $(L^p)_0$ is equal to $M(\infty : p)$. Moreover $M(\infty : p, q) \subset (L^p, l^q) \cap \mathscr{M}_{\mathscr{F}}$ for $1 \leq p, q \leq \infty$ [1, Theorem 2.3].

5. Spaces of Fourier transform of measures

In [6, §4] Figá-Talamanca showed that $(L^{p'})^{\vee} \subset M(\infty : p)$ $(2 \le p \le \infty)$ and $M_1^{\vee} = M(\infty : \infty)$. Similarly, in this section, we consider the problem of finding a space of measures M such that $M^{\vee} \subset M(r, s : p, q)$.

THEOREM 13. 1. Let $2 \le p$, $q \le \infty$, $1 \le s \le \infty$, $1 \le r < \infty$. If $1/x = 1/q + 1/r \le 1$ and $1/y = 1/p + 1/s \le 1$, then $(L^{x'}, l^{y'})(\Gamma)^{\vee} \subset M(r, s : p, q)$ and $(L^{r'}, l^{s'})(\Gamma)^{\vee} = M(r, s : \infty)$.

2. Let $2 \leq q < \infty$, $2 \leq p \leq \infty$, $1 \leq s \leq \infty$. If y is as in part 1, then $(L^{q'}, l^{y'})(\Gamma)^{\vee} \subset M(\infty, s : p, q)$, $M_{y'}(\Gamma)^{\vee} \subset M(\infty, s : p, \infty)$ and $M_{s'}(\Gamma)^{\vee} = M(\infty, s : \infty)$.

3. Let $2 \le q \le \infty$, $1 \le p \le 2$, $1 \le r < \infty$, $1 \le s \le \infty$. If x is as in part 1 and $1/y = 1/2 + 1/s \le 1$, then $(L^{x'}, l^{y'})(\Gamma)^{\vee} \subset M(r, s : p, q)$.

4. Let $2 \leq q < \infty$, $1 \leq p \leq 2$, $1 \leq s \leq \infty$. If y is as in part 3, then $(L^{q'}, l^{y'})(\Gamma)^{\vee} \subset M(\infty, s : p, q)$, $M_1(\Gamma)^{\vee} \subset M(\infty, s : p, \infty)$ and $(L^1, l^2)(\Gamma)^{\vee} \subset M(\infty : p, \infty)$.

PROOF. 1. Let $f \in (L^{x'}, l^{y'})(\Gamma)$, $h \in S_0(G)$ and $\psi \in \Phi_{rs}(G)$. By [14, Definition 2.3 and (2.5)] we have that

$$\begin{aligned} |\langle h, \tilde{f} * \psi \rangle| &= |\langle h \check{\psi}, f \rangle| \le ||f||_{x'y'} ||h \check{\psi}||_{xy} \\ &\le ||f||_{x'y'} ||\hat{h}||_{pq} ||\hat{\psi}||_{rs} \le ||f||_{x'y'} C ||h||_{p'q'} ||\check{\psi}||_{rs} \end{aligned}$$

where C is a constant depending on G, p and q, given by the Hausdorff-Young theorem for amalgams [14, Remark 2.7].

Since $S_0(G)$ is dense in $(L^{p'}, l^{q'})$ we conclude by [14, Remark 2.4 ii)] that f is in M(r, s: p, q) and

(7)
$$|||f||| \le C ||f||_{x'y'}.$$

The inclusion $(L^{r'}, l^{s'})(\Gamma)^{\vee} \subset M(r, s:\infty)$ is proven in a similar manner.

If f is in $M(r, s:\infty)$, then clearly the map $F(\psi) = \langle \psi, f \rangle$ is a functional on $\Phi_{rs}(G)$. Hence by [15, Remark 3.2 ii)] there exists $\mu \in (L^{r'}, l^{s'})(\Gamma)$ such that $\langle \psi, f \rangle = \langle \langle \psi, \mu \rangle \rangle = \langle \psi, \check{\mu} \rangle$ for all $\psi \in \Phi_{rs}(G)$, and in particular for all $\psi \in \Phi_{\infty 1}$. Since $\Phi_{\infty 1}$ is dense in $S_0(G)$, we conclude that $f = \check{\mu}$.

The proofs for 2, 3, and 4 are similar.

The amalgam (L^1, l^2) is the biggest space of functions whose Fourier transform is also a function [9]. Thus we see from Theorem 13, that if y' > 2, then M(r, s : p, q) contains elements of $S_0(G)^*$ which are not functions. We will show that for certain values of p, q, r, s, the space M(r, s : p, q) is included in an amalgam space, and contains a space of Fourier transforms. The constant which appears in the next result is given by the Hausdorff-Young theorem.

COROLLARY 14. 1. If $2 \le q < \infty$ and $2 \le p \le \infty$, then

(a) $(L^{q'}, l^{p;})(\Gamma)^{\vee} \subset M(\infty; p, q) \subset (L^{p}, l^{q})(G) \text{ and } ||f||_{pq} \leq |||\check{f}||| \leq C ||f||_{q'p'},$ (b) $M_{p'}(\Gamma)^{\vee} \subset M(\infty; p, \infty) \subset (L^{p}, l^{\infty})(G) \text{ and } ||\check{\mu}||_{p\infty} \leq |||\check{\mu}|||C||\mu||_{p'},$

where C is a constant depending on G, p and q.

2. If $2 \le q < \infty$ and $1 \le p \le 2$, then

(a) $(L^{q'}, l^2)(G)^{\vee} \subset M(\infty : p, q) \subset (L^2, l^q)(G)$ and $\|\check{f}\|_{2q} \leq |||\check{f}||| \leq C \|f\|_{q'^2}$,

(b) $M_2(\Gamma)^{\vee} \subset M(\infty : p, \infty) \subset (L^2, l^{\infty})(G) \text{ and } \|\check{\mu}\|_{2\infty} \leq |||\check{\mu}|| \leq C \|\mu\|_2$,

where C is a constant depending on G and q.

3. If $2 \leq r$, $s \leq \infty$, $2 \leq q < \infty$ and $1/x = 1/q + 1/s \leq 1$, then $(L^{x'}, l^{s'})(\Gamma)^{\vee} \subset M(r, s : \infty, q) \subset (L^s, l^r)(G)$ and $\|\check{f}\|_{sr} \leq C \||\check{f}|\| \leq C^2 \|f\|_{x's'}$ where C is a constant depending on G, r, and s.

4. If $1 \le r \le 2 \le s \le \infty$, $2 \le q < \infty$ and x is as part 3), then $(L^{x'}, l^{s'})(\Gamma)^{\vee} \subset M(r, s : \infty, q) \subset (L^p, l^q)(G)s$ and $\|\check{f}\|_{s^2} \le C \||\check{f}\|| \le C^2 \|f\|_{sx}$ where C is a constant depending on G and s.

5. If $2 \le s \le \infty$, then $M_{s'}(\Gamma)^{\vee} \subset M(\infty, s : \infty) \subset (L^s, l^{\infty})(G)$ and $\|\check{\mu}\|_{s\infty} \le \||\mu\|\| \le C^2 \|\mu\|_{s'}$ where C is a constant depending on G and s.

PROOF. 1. Let $\{\psi_U\}$ be the approximate identity of $L^1(G)$) defined in [15, page 462]. Since $S_0(G)$ is a Segal algebra we have for $\mu \in M(\infty : p, q)$ and $h \in S_0(G)$ that

$$\begin{aligned} |\langle h, \mu \rangle| &= \lim |\langle h * \Psi_U, \mu \rangle| = \lim |\langle h, \mu * \Phi_U \rangle| \\ &\leq \lim ||\mu||| \|\hat{\psi}_U\|_{\infty} \|h\|_{p'a'} \leq |||\mu||| \|h\|_{p'a'}. \end{aligned}$$

By [14, Proposition 2.6] we conclude that μ is in (L^p, l^q) and $\|\mu\|_{pq} \le \|\|\mu\|\|$. The rest of the proof follows from (7) above. Part b) and 2 are proven in a similar manner.

3. Let $\mu \in M(r, s : \infty, q)$ and $h \in \Phi_{\infty 1}(G)$. As in the proof of part 1 using [14, Theorem 1.6] we have that

$$\begin{aligned} |\langle h, \mu \rangle| &\leq \lim |\langle \psi_U, \mu * h \rangle| \leq \lim ||\psi_U||_{1q'} ||\mu * h||_{\infty q} \\ &\leq ||\mu * h||_{\infty q} \leq |||\mu||| ||\hat{h}||_{rs} \leq |||\mu|||C||h||_{s'r'}. \end{aligned}$$

By the density of $\Phi_{\infty 1}$ in $(L^{s'}, l^{r'})(G)$ [14, Proposition 2.5] we conclude that $\|\mu\|_{rs} \le \||\mu\||$. The rest of the proof follows from (7) above. The proofs of 4 and 5 are similar.

References

- [1] L. Argabright, and J. Gil de Lamadrid, 'Fourier analysis of unbounded measures on locally compact Abelian groups', *Mem. Amer. Math. Soc.* 145 (1974).
- [2] J. P. Bertandias and C. Dupuis, 'Transformation de Fourier sur les espaces $l^{p}(L^{p})$ ', Ann. Inst. Fourier (Grenoble) 29 (1979), 189-206.
- [3] N. Bourbaki, *Eléments de Mathematique. Integration*, Act. Sci. et Ind. 1175 (Hermann et Cie, Paris, 1973).
- [4] H. G. Feichtinger, 'Un espace de Banach de distributions tempérées sur les groupes localement compacts Abeliens', C. R. Acad. Sci. Paris Sér. I Math. 290 (1980), 791-794.
- [5] H. G. Feichtinger, 'On a new Segal algebra', Mh. Math. 92 (1981), 269-289.
- [6] A. Figá-Talamanca, 'On the subspace of L^p invariant under multiplication of transform by bounded continuous functions', *Rend. Sem. Mat. Univ. Padova* 35 (1965), 176-189.
- [7] A. Figá-Talamanca, and G. I. Gaudry, 'Multipliers and sets of uniqueness of L^p', Michigan Math. J. 17 (1970), 179-191.
- [8] J. J. F. Fournier, 'On the Hausdorff-Young theorem for amalgams', Math. 95 (1983), 117-135.
- [9] J. J. F. Fournier and J. Stewart, 'Amalgams of L^p and l^q', Bull. Amer. Math. Soc. 13 (1985), 1-21.
- [10] F. Holland, 'On the representations of functions as Fourier transforms of unbounded measures', Proc. London math. Soc. (3) 30 (1975), 347-365.
- [11] R. Larsen, An introduction to the theory of multipliers, Grundlehren Math. Wiss. 175 (Springer, Berlin, 1971).
- [12] J. Stewart, 'Fourier transforms of unbounded measures', Canad. J. Math. 31 (1979), 1281-1292.

M. Torres de Squire

[14]

- [13] M. L. Torres de Squire, 'Amalgams of L^p and l^q ', (Ph. D. Thesis, McMaster University, Canada, 1985).
- [14] M. L. Torres de Squire, 'Multipliers for amalgams and the algebra $S_0(G)$ ', Canad. J. Math. 39 (1987), 123-148.
- [15] M. L. Torres de Squire, 'Resonance classes of measures', Internat. J. Math. Math. Sci. 10 (1987), 461-472.

Department of Mathematics and Statistics University of Regina Regina Saskatchewan Canada S4S 0A2